Line data Source code
1 : /*-------------------------------------------------------------------------
2 : *
3 : * verify_nbtree.c
4 : * Verifies the integrity of nbtree indexes based on invariants.
5 : *
6 : * For B-Tree indexes, verification includes checking that each page in the
7 : * target index has items in logical order as reported by an insertion scankey
8 : * (the insertion scankey sort-wise NULL semantics are needed for
9 : * verification).
10 : *
11 : * When index-to-heap verification is requested, a Bloom filter is used to
12 : * fingerprint all tuples in the target index, as the index is traversed to
13 : * verify its structure. A heap scan later uses Bloom filter probes to verify
14 : * that every visible heap tuple has a matching index tuple.
15 : *
16 : *
17 : * Copyright (c) 2017-2026, PostgreSQL Global Development Group
18 : *
19 : * IDENTIFICATION
20 : * contrib/amcheck/verify_nbtree.c
21 : *
22 : *-------------------------------------------------------------------------
23 : */
24 : #include "postgres.h"
25 :
26 : #include "access/heaptoast.h"
27 : #include "access/htup_details.h"
28 : #include "access/nbtree.h"
29 : #include "access/table.h"
30 : #include "access/tableam.h"
31 : #include "access/transam.h"
32 : #include "access/xact.h"
33 : #include "verify_common.h"
34 : #include "catalog/index.h"
35 : #include "catalog/pg_am.h"
36 : #include "catalog/pg_opfamily_d.h"
37 : #include "common/pg_prng.h"
38 : #include "lib/bloomfilter.h"
39 : #include "miscadmin.h"
40 : #include "storage/smgr.h"
41 : #include "utils/guc.h"
42 : #include "utils/memutils.h"
43 : #include "utils/snapmgr.h"
44 :
45 :
46 0 : PG_MODULE_MAGIC_EXT(
47 : .name = "amcheck",
48 : .version = PG_VERSION
49 : );
50 :
51 : /*
52 : * A B-Tree cannot possibly have this many levels, since there must be one
53 : * block per level, which is bound by the range of BlockNumber:
54 : */
55 : #define InvalidBtreeLevel ((uint32) InvalidBlockNumber)
56 : #define BTreeTupleGetNKeyAtts(itup, rel) \
57 : Min(IndexRelationGetNumberOfKeyAttributes(rel), BTreeTupleGetNAtts(itup, rel))
58 :
59 : /*
60 : * State associated with verifying a B-Tree index
61 : *
62 : * target is the point of reference for a verification operation.
63 : *
64 : * Other B-Tree pages may be allocated, but those are always auxiliary (e.g.,
65 : * they are current target's child pages). Conceptually, problems are only
66 : * ever found in the current target page (or for a particular heap tuple during
67 : * heapallindexed verification). Each page found by verification's left/right,
68 : * top/bottom scan becomes the target exactly once.
69 : */
70 : typedef struct BtreeCheckState
71 : {
72 : /*
73 : * Unchanging state, established at start of verification:
74 : */
75 :
76 : /* B-Tree Index Relation and associated heap relation */
77 : Relation rel;
78 : Relation heaprel;
79 : /* rel is heapkeyspace index? */
80 : bool heapkeyspace;
81 : /* ShareLock held on heap/index, rather than AccessShareLock? */
82 : bool readonly;
83 : /* Also verifying heap has no unindexed tuples? */
84 : bool heapallindexed;
85 : /* Also making sure non-pivot tuples can be found by new search? */
86 : bool rootdescend;
87 : /* Also check uniqueness constraint if index is unique */
88 : bool checkunique;
89 : /* Per-page context */
90 : MemoryContext targetcontext;
91 : /* Buffer access strategy */
92 : BufferAccessStrategy checkstrategy;
93 :
94 : /*
95 : * Info for uniqueness checking. Fill this field and the one below once
96 : * per index check.
97 : */
98 : IndexInfo *indexinfo;
99 : /* Table scan snapshot for heapallindexed and checkunique */
100 : Snapshot snapshot;
101 :
102 : /*
103 : * Mutable state, for verification of particular page:
104 : */
105 :
106 : /* Current target page */
107 : Page target;
108 : /* Target block number */
109 : BlockNumber targetblock;
110 : /* Target page's LSN */
111 : XLogRecPtr targetlsn;
112 :
113 : /*
114 : * Low key: high key of left sibling of target page. Used only for child
115 : * verification. So, 'lowkey' is kept only when 'readonly' is set.
116 : */
117 : IndexTuple lowkey;
118 :
119 : /*
120 : * The rightlink and incomplete split flag of block one level down to the
121 : * target page, which was visited last time via downlink from target page.
122 : * We use it to check for missing downlinks.
123 : */
124 : BlockNumber prevrightlink;
125 : bool previncompletesplit;
126 :
127 : /*
128 : * Mutable state, for optional heapallindexed verification:
129 : */
130 :
131 : /* Bloom filter fingerprints B-Tree index */
132 : bloom_filter *filter;
133 : /* Debug counter */
134 : int64 heaptuplespresent;
135 : } BtreeCheckState;
136 :
137 : /*
138 : * Starting point for verifying an entire B-Tree index level
139 : */
140 : typedef struct BtreeLevel
141 : {
142 : /* Level number (0 is leaf page level). */
143 : uint32 level;
144 :
145 : /* Left most block on level. Scan of level begins here. */
146 : BlockNumber leftmost;
147 :
148 : /* Is this level reported as "true" root level by meta page? */
149 : bool istruerootlevel;
150 : } BtreeLevel;
151 :
152 : /*
153 : * Information about the last visible entry with current B-tree key. Used
154 : * for validation of the unique constraint.
155 : */
156 : typedef struct BtreeLastVisibleEntry
157 : {
158 : BlockNumber blkno; /* Index block */
159 : OffsetNumber offset; /* Offset on index block */
160 : int postingIndex; /* Number in the posting list (-1 for
161 : * non-deduplicated tuples) */
162 : ItemPointer tid; /* Heap tid */
163 : } BtreeLastVisibleEntry;
164 :
165 : /*
166 : * arguments for the bt_index_check_callback callback
167 : */
168 : typedef struct BTCallbackState
169 : {
170 : bool parentcheck;
171 : bool heapallindexed;
172 : bool rootdescend;
173 : bool checkunique;
174 : } BTCallbackState;
175 :
176 0 : PG_FUNCTION_INFO_V1(bt_index_check);
177 0 : PG_FUNCTION_INFO_V1(bt_index_parent_check);
178 :
179 : static void bt_index_check_callback(Relation indrel, Relation heaprel,
180 : void *state, bool readonly);
181 : static void bt_check_every_level(Relation rel, Relation heaprel,
182 : bool heapkeyspace, bool readonly, bool heapallindexed,
183 : bool rootdescend, bool checkunique);
184 : static BtreeLevel bt_check_level_from_leftmost(BtreeCheckState *state,
185 : BtreeLevel level);
186 : static bool bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
187 : BlockNumber start,
188 : BTPageOpaque start_opaque);
189 : static void bt_recheck_sibling_links(BtreeCheckState *state,
190 : BlockNumber btpo_prev_from_target,
191 : BlockNumber leftcurrent);
192 : static bool heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid);
193 : static void bt_report_duplicate(BtreeCheckState *state,
194 : BtreeLastVisibleEntry *lVis,
195 : ItemPointer nexttid,
196 : BlockNumber nblock, OffsetNumber noffset,
197 : int nposting);
198 : static void bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
199 : BlockNumber targetblock, OffsetNumber offset,
200 : BtreeLastVisibleEntry *lVis);
201 : static void bt_target_page_check(BtreeCheckState *state);
202 : static BTScanInsert bt_right_page_check_scankey(BtreeCheckState *state,
203 : OffsetNumber *rightfirstoffset);
204 : static void bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
205 : OffsetNumber downlinkoffnum);
206 : static void bt_child_highkey_check(BtreeCheckState *state,
207 : OffsetNumber target_downlinkoffnum,
208 : Page loaded_child,
209 : uint32 target_level);
210 : static void bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
211 : BlockNumber blkno, Page page);
212 : static void bt_tuple_present_callback(Relation index, ItemPointer tid,
213 : Datum *values, bool *isnull,
214 : bool tupleIsAlive, void *checkstate);
215 : static IndexTuple bt_normalize_tuple(BtreeCheckState *state,
216 : IndexTuple itup);
217 : static inline IndexTuple bt_posting_plain_tuple(IndexTuple itup, int n);
218 : static bool bt_rootdescend(BtreeCheckState *state, IndexTuple itup);
219 : static inline bool offset_is_negative_infinity(BTPageOpaque opaque,
220 : OffsetNumber offset);
221 : static inline bool invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
222 : OffsetNumber upperbound);
223 : static inline bool invariant_leq_offset(BtreeCheckState *state,
224 : BTScanInsert key,
225 : OffsetNumber upperbound);
226 : static inline bool invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
227 : OffsetNumber lowerbound);
228 : static inline bool invariant_l_nontarget_offset(BtreeCheckState *state,
229 : BTScanInsert key,
230 : BlockNumber nontargetblock,
231 : Page nontarget,
232 : OffsetNumber upperbound);
233 : static Page palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum);
234 : static inline BTScanInsert bt_mkscankey_pivotsearch(Relation rel,
235 : IndexTuple itup);
236 : static ItemId PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block,
237 : Page page, OffsetNumber offset);
238 : static inline ItemPointer BTreeTupleGetHeapTIDCareful(BtreeCheckState *state,
239 : IndexTuple itup, bool nonpivot);
240 : static inline ItemPointer BTreeTupleGetPointsToTID(IndexTuple itup);
241 :
242 : /*
243 : * bt_index_check(index regclass, heapallindexed boolean, checkunique boolean)
244 : *
245 : * Verify integrity of B-Tree index.
246 : *
247 : * Acquires AccessShareLock on heap & index relations. Does not consider
248 : * invariants that exist between parent/child pages. Optionally verifies
249 : * that heap does not contain any unindexed or incorrectly indexed tuples.
250 : */
251 : Datum
252 0 : bt_index_check(PG_FUNCTION_ARGS)
253 : {
254 0 : Oid indrelid = PG_GETARG_OID(0);
255 0 : BTCallbackState args;
256 :
257 0 : args.heapallindexed = false;
258 0 : args.rootdescend = false;
259 0 : args.parentcheck = false;
260 0 : args.checkunique = false;
261 :
262 0 : if (PG_NARGS() >= 2)
263 0 : args.heapallindexed = PG_GETARG_BOOL(1);
264 0 : if (PG_NARGS() >= 3)
265 0 : args.checkunique = PG_GETARG_BOOL(2);
266 :
267 0 : amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
268 : bt_index_check_callback,
269 : AccessShareLock, &args);
270 :
271 0 : PG_RETURN_VOID();
272 0 : }
273 :
274 : /*
275 : * bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean, checkunique boolean)
276 : *
277 : * Verify integrity of B-Tree index.
278 : *
279 : * Acquires ShareLock on heap & index relations. Verifies that downlinks in
280 : * parent pages are valid lower bounds on child pages. Optionally verifies
281 : * that heap does not contain any unindexed or incorrectly indexed tuples.
282 : */
283 : Datum
284 0 : bt_index_parent_check(PG_FUNCTION_ARGS)
285 : {
286 0 : Oid indrelid = PG_GETARG_OID(0);
287 0 : BTCallbackState args;
288 :
289 0 : args.heapallindexed = false;
290 0 : args.rootdescend = false;
291 0 : args.parentcheck = true;
292 0 : args.checkunique = false;
293 :
294 0 : if (PG_NARGS() >= 2)
295 0 : args.heapallindexed = PG_GETARG_BOOL(1);
296 0 : if (PG_NARGS() >= 3)
297 0 : args.rootdescend = PG_GETARG_BOOL(2);
298 0 : if (PG_NARGS() >= 4)
299 0 : args.checkunique = PG_GETARG_BOOL(3);
300 :
301 0 : amcheck_lock_relation_and_check(indrelid, BTREE_AM_OID,
302 : bt_index_check_callback,
303 : ShareLock, &args);
304 :
305 0 : PG_RETURN_VOID();
306 0 : }
307 :
308 : /*
309 : * Helper for bt_index_[parent_]check, coordinating the bulk of the work.
310 : */
311 : static void
312 0 : bt_index_check_callback(Relation indrel, Relation heaprel, void *state, bool readonly)
313 : {
314 0 : BTCallbackState *args = (BTCallbackState *) state;
315 0 : bool heapkeyspace,
316 : allequalimage;
317 :
318 0 : if (!smgrexists(RelationGetSmgr(indrel), MAIN_FORKNUM))
319 0 : ereport(ERROR,
320 : (errcode(ERRCODE_INDEX_CORRUPTED),
321 : errmsg("index \"%s\" lacks a main relation fork",
322 : RelationGetRelationName(indrel))));
323 :
324 : /* Extract metadata from metapage, and sanitize it in passing */
325 0 : _bt_metaversion(indrel, &heapkeyspace, &allequalimage);
326 0 : if (allequalimage && !heapkeyspace)
327 0 : ereport(ERROR,
328 : (errcode(ERRCODE_INDEX_CORRUPTED),
329 : errmsg("index \"%s\" metapage has equalimage field set on unsupported nbtree version",
330 : RelationGetRelationName(indrel))));
331 0 : if (allequalimage && !_bt_allequalimage(indrel, false))
332 : {
333 0 : bool has_interval_ops = false;
334 :
335 0 : for (int i = 0; i < IndexRelationGetNumberOfKeyAttributes(indrel); i++)
336 0 : if (indrel->rd_opfamily[i] == INTERVAL_BTREE_FAM_OID)
337 : {
338 0 : has_interval_ops = true;
339 0 : ereport(ERROR,
340 : (errcode(ERRCODE_INDEX_CORRUPTED),
341 : errmsg("index \"%s\" metapage incorrectly indicates that deduplication is safe",
342 : RelationGetRelationName(indrel)),
343 : has_interval_ops
344 : ? errhint("This is known of \"interval\" indexes last built on a version predating 2023-11.")
345 : : 0));
346 0 : }
347 0 : }
348 :
349 : /* Check index, possibly against table it is an index on */
350 0 : bt_check_every_level(indrel, heaprel, heapkeyspace, readonly,
351 0 : args->heapallindexed, args->rootdescend, args->checkunique);
352 0 : }
353 :
354 : /*
355 : * Main entry point for B-Tree SQL-callable functions. Walks the B-Tree in
356 : * logical order, verifying invariants as it goes. Optionally, verification
357 : * checks if the heap relation contains any tuples that are not represented in
358 : * the index but should be.
359 : *
360 : * It is the caller's responsibility to acquire appropriate heavyweight lock on
361 : * the index relation, and advise us if extra checks are safe when a ShareLock
362 : * is held. (A lock of the same type must also have been acquired on the heap
363 : * relation.)
364 : *
365 : * A ShareLock is generally assumed to prevent any kind of physical
366 : * modification to the index structure, including modifications that VACUUM may
367 : * make. This does not include setting of the LP_DEAD bit by concurrent index
368 : * scans, although that is just metadata that is not able to directly affect
369 : * any check performed here. Any concurrent process that might act on the
370 : * LP_DEAD bit being set (recycle space) requires a heavyweight lock that
371 : * cannot be held while we hold a ShareLock. (Besides, even if that could
372 : * happen, the ad-hoc recycling when a page might otherwise split is performed
373 : * per-page, and requires an exclusive buffer lock, which wouldn't cause us
374 : * trouble. _bt_delitems_vacuum() may only delete leaf items, and so the extra
375 : * parent/child check cannot be affected.)
376 : */
377 : static void
378 0 : bt_check_every_level(Relation rel, Relation heaprel, bool heapkeyspace,
379 : bool readonly, bool heapallindexed, bool rootdescend,
380 : bool checkunique)
381 : {
382 0 : BtreeCheckState *state;
383 0 : Page metapage;
384 0 : BTMetaPageData *metad;
385 0 : uint32 previouslevel;
386 0 : BtreeLevel current;
387 :
388 0 : if (!readonly)
389 0 : elog(DEBUG1, "verifying consistency of tree structure for index \"%s\"",
390 : RelationGetRelationName(rel));
391 : else
392 0 : elog(DEBUG1, "verifying consistency of tree structure for index \"%s\" with cross-level checks",
393 : RelationGetRelationName(rel));
394 :
395 : /*
396 : * This assertion matches the one in index_getnext_tid(). See page
397 : * recycling/"visible to everyone" notes in nbtree README.
398 : */
399 0 : Assert(TransactionIdIsValid(RecentXmin));
400 :
401 : /*
402 : * Initialize state for entire verification operation
403 : */
404 0 : state = palloc0_object(BtreeCheckState);
405 0 : state->rel = rel;
406 0 : state->heaprel = heaprel;
407 0 : state->heapkeyspace = heapkeyspace;
408 0 : state->readonly = readonly;
409 0 : state->heapallindexed = heapallindexed;
410 0 : state->rootdescend = rootdescend;
411 0 : state->checkunique = checkunique;
412 0 : state->snapshot = InvalidSnapshot;
413 :
414 0 : if (state->heapallindexed)
415 : {
416 0 : int64 total_pages;
417 0 : int64 total_elems;
418 0 : uint64 seed;
419 :
420 : /*
421 : * Size Bloom filter based on estimated number of tuples in index,
422 : * while conservatively assuming that each block must contain at least
423 : * MaxTIDsPerBTreePage / 3 "plain" tuples -- see
424 : * bt_posting_plain_tuple() for definition, and details of how posting
425 : * list tuples are handled.
426 : */
427 0 : total_pages = RelationGetNumberOfBlocks(rel);
428 0 : total_elems = Max(total_pages * (MaxTIDsPerBTreePage / 3),
429 : (int64) state->rel->rd_rel->reltuples);
430 : /* Generate a random seed to avoid repetition */
431 0 : seed = pg_prng_uint64(&pg_global_prng_state);
432 : /* Create Bloom filter to fingerprint index */
433 0 : state->filter = bloom_create(total_elems, maintenance_work_mem, seed);
434 0 : state->heaptuplespresent = 0;
435 :
436 : /*
437 : * Register our own snapshot for heapallindexed, rather than asking
438 : * table_index_build_scan() to do this for us later. This needs to
439 : * happen before index fingerprinting begins, so we can later be
440 : * certain that index fingerprinting should have reached all tuples
441 : * returned by table_index_build_scan().
442 : */
443 0 : state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
444 :
445 : /*
446 : * GetTransactionSnapshot() always acquires a new MVCC snapshot in
447 : * READ COMMITTED mode. A new snapshot is guaranteed to have all the
448 : * entries it requires in the index.
449 : *
450 : * We must defend against the possibility that an old xact snapshot
451 : * was returned at higher isolation levels when that snapshot is not
452 : * safe for index scans of the target index. This is possible when
453 : * the snapshot sees tuples that are before the index's indcheckxmin
454 : * horizon. Throwing an error here should be very rare. It doesn't
455 : * seem worth using a secondary snapshot to avoid this.
456 : */
457 0 : if (IsolationUsesXactSnapshot() && rel->rd_index->indcheckxmin &&
458 0 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(rel->rd_indextuple->t_data),
459 0 : state->snapshot->xmin))
460 0 : ereport(ERROR,
461 : errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
462 : errmsg("index \"%s\" cannot be verified using transaction snapshot",
463 : RelationGetRelationName(rel)));
464 0 : }
465 :
466 : /*
467 : * We need a snapshot to check the uniqueness of the index. For better
468 : * performance, take it once per index check. If one was already taken
469 : * above, use that.
470 : */
471 0 : if (state->checkunique)
472 : {
473 0 : state->indexinfo = BuildIndexInfo(state->rel);
474 :
475 0 : if (state->indexinfo->ii_Unique && state->snapshot == InvalidSnapshot)
476 0 : state->snapshot = RegisterSnapshot(GetTransactionSnapshot());
477 0 : }
478 :
479 0 : Assert(!state->rootdescend || state->readonly);
480 0 : if (state->rootdescend && !state->heapkeyspace)
481 0 : ereport(ERROR,
482 : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
483 : errmsg("cannot verify that tuples from index \"%s\" can each be found by an independent index search",
484 : RelationGetRelationName(rel)),
485 : errhint("Only B-Tree version 4 indexes support rootdescend verification.")));
486 :
487 : /* Create context for page */
488 0 : state->targetcontext = AllocSetContextCreate(CurrentMemoryContext,
489 : "amcheck context",
490 : ALLOCSET_DEFAULT_SIZES);
491 0 : state->checkstrategy = GetAccessStrategy(BAS_BULKREAD);
492 :
493 : /* Get true root block from meta-page */
494 0 : metapage = palloc_btree_page(state, BTREE_METAPAGE);
495 0 : metad = BTPageGetMeta(metapage);
496 :
497 : /*
498 : * Certain deletion patterns can result in "skinny" B-Tree indexes, where
499 : * the fast root and true root differ.
500 : *
501 : * Start from the true root, not the fast root, unlike conventional index
502 : * scans. This approach is more thorough, and removes the risk of
503 : * following a stale fast root from the meta page.
504 : */
505 0 : if (metad->btm_fastroot != metad->btm_root)
506 0 : ereport(DEBUG1,
507 : (errcode(ERRCODE_NO_DATA),
508 : errmsg_internal("harmless fast root mismatch in index \"%s\"",
509 : RelationGetRelationName(rel)),
510 : errdetail_internal("Fast root block %u (level %u) differs from true root block %u (level %u).",
511 : metad->btm_fastroot, metad->btm_fastlevel,
512 : metad->btm_root, metad->btm_level)));
513 :
514 : /*
515 : * Starting at the root, verify every level. Move left to right, top to
516 : * bottom. Note that there may be no pages other than the meta page (meta
517 : * page can indicate that root is P_NONE when the index is totally empty).
518 : */
519 0 : previouslevel = InvalidBtreeLevel;
520 0 : current.level = metad->btm_level;
521 0 : current.leftmost = metad->btm_root;
522 0 : current.istruerootlevel = true;
523 0 : while (current.leftmost != P_NONE)
524 : {
525 : /*
526 : * Verify this level, and get left most page for next level down, if
527 : * not at leaf level
528 : */
529 0 : current = bt_check_level_from_leftmost(state, current);
530 :
531 0 : if (current.leftmost == InvalidBlockNumber)
532 0 : ereport(ERROR,
533 : (errcode(ERRCODE_INDEX_CORRUPTED),
534 : errmsg("index \"%s\" has no valid pages on level below %u or first level",
535 : RelationGetRelationName(rel), previouslevel)));
536 :
537 0 : previouslevel = current.level;
538 : }
539 :
540 : /*
541 : * * Check whether heap contains unindexed/malformed tuples *
542 : */
543 0 : if (state->heapallindexed)
544 : {
545 0 : IndexInfo *indexinfo = BuildIndexInfo(state->rel);
546 0 : TableScanDesc scan;
547 :
548 : /*
549 : * Create our own scan for table_index_build_scan(), rather than
550 : * getting it to do so for us. This is required so that we can
551 : * actually use the MVCC snapshot registered earlier.
552 : *
553 : * Note that table_index_build_scan() calls heap_endscan() for us.
554 : */
555 0 : scan = table_beginscan_strat(state->heaprel, /* relation */
556 0 : state->snapshot, /* snapshot */
557 : 0, /* number of keys */
558 : NULL, /* scan key */
559 : true, /* buffer access strategy OK */
560 : true); /* syncscan OK? */
561 :
562 : /*
563 : * Scan will behave as the first scan of a CREATE INDEX CONCURRENTLY
564 : * behaves.
565 : *
566 : * It's okay that we don't actually use the same lock strength for the
567 : * heap relation as any other ii_Concurrent caller would. We have no
568 : * reason to care about a concurrent VACUUM operation, since there
569 : * isn't going to be a second scan of the heap that needs to be sure
570 : * that there was no concurrent recycling of TIDs.
571 : */
572 0 : indexinfo->ii_Concurrent = true;
573 :
574 : /*
575 : * Don't wait for uncommitted tuple xact commit/abort when index is a
576 : * unique index on a catalog (or an index used by an exclusion
577 : * constraint). This could otherwise happen in the readonly case.
578 : */
579 0 : indexinfo->ii_Unique = false;
580 0 : indexinfo->ii_ExclusionOps = NULL;
581 0 : indexinfo->ii_ExclusionProcs = NULL;
582 0 : indexinfo->ii_ExclusionStrats = NULL;
583 :
584 0 : elog(DEBUG1, "verifying that tuples from index \"%s\" are present in \"%s\"",
585 : RelationGetRelationName(state->rel),
586 : RelationGetRelationName(state->heaprel));
587 :
588 0 : table_index_build_scan(state->heaprel, state->rel, indexinfo, true, false,
589 0 : bt_tuple_present_callback, state, scan);
590 :
591 0 : ereport(DEBUG1,
592 : (errmsg_internal("finished verifying presence of " INT64_FORMAT " tuples from table \"%s\" with bitset %.2f%% set",
593 : state->heaptuplespresent, RelationGetRelationName(heaprel),
594 : 100.0 * bloom_prop_bits_set(state->filter))));
595 :
596 0 : bloom_free(state->filter);
597 0 : }
598 :
599 : /* Be tidy: */
600 0 : if (state->snapshot != InvalidSnapshot)
601 0 : UnregisterSnapshot(state->snapshot);
602 0 : MemoryContextDelete(state->targetcontext);
603 0 : }
604 :
605 : /*
606 : * Given a left-most block at some level, move right, verifying each page
607 : * individually (with more verification across pages for "readonly"
608 : * callers). Caller should pass the true root page as the leftmost initially,
609 : * working their way down by passing what is returned for the last call here
610 : * until level 0 (leaf page level) was reached.
611 : *
612 : * Returns state for next call, if any. This includes left-most block number
613 : * one level lower that should be passed on next level/call, which is set to
614 : * P_NONE on last call here (when leaf level is verified). Level numbers
615 : * follow the nbtree convention: higher levels have higher numbers, because new
616 : * levels are added only due to a root page split. Note that prior to the
617 : * first root page split, the root is also a leaf page, so there is always a
618 : * level 0 (leaf level), and it's always the last level processed.
619 : *
620 : * Note on memory management: State's per-page context is reset here, between
621 : * each call to bt_target_page_check().
622 : */
623 : static BtreeLevel
624 0 : bt_check_level_from_leftmost(BtreeCheckState *state, BtreeLevel level)
625 : {
626 : /* State to establish early, concerning entire level */
627 0 : BTPageOpaque opaque;
628 0 : MemoryContext oldcontext;
629 : BtreeLevel nextleveldown;
630 :
631 : /* Variables for iterating across level using right links */
632 0 : BlockNumber leftcurrent = P_NONE;
633 0 : BlockNumber current = level.leftmost;
634 :
635 : /* Initialize return state */
636 0 : nextleveldown.leftmost = InvalidBlockNumber;
637 0 : nextleveldown.level = InvalidBtreeLevel;
638 0 : nextleveldown.istruerootlevel = false;
639 :
640 : /* Use page-level context for duration of this call */
641 0 : oldcontext = MemoryContextSwitchTo(state->targetcontext);
642 :
643 0 : elog(DEBUG1, "verifying level %u%s", level.level,
644 : level.istruerootlevel ?
645 : " (true root level)" : level.level == 0 ? " (leaf level)" : "");
646 :
647 0 : state->prevrightlink = InvalidBlockNumber;
648 0 : state->previncompletesplit = false;
649 :
650 0 : do
651 : {
652 : /* Don't rely on CHECK_FOR_INTERRUPTS() calls at lower level */
653 0 : CHECK_FOR_INTERRUPTS();
654 :
655 : /* Initialize state for this iteration */
656 0 : state->targetblock = current;
657 0 : state->target = palloc_btree_page(state, state->targetblock);
658 0 : state->targetlsn = PageGetLSN(state->target);
659 :
660 0 : opaque = BTPageGetOpaque(state->target);
661 :
662 0 : if (P_IGNORE(opaque))
663 : {
664 : /*
665 : * Since there cannot be a concurrent VACUUM operation in readonly
666 : * mode, and since a page has no links within other pages
667 : * (siblings and parent) once it is marked fully deleted, it
668 : * should be impossible to land on a fully deleted page in
669 : * readonly mode. See bt_child_check() for further details.
670 : *
671 : * The bt_child_check() P_ISDELETED() check is repeated here so
672 : * that pages that are only reachable through sibling links get
673 : * checked.
674 : */
675 0 : if (state->readonly && P_ISDELETED(opaque))
676 0 : ereport(ERROR,
677 : (errcode(ERRCODE_INDEX_CORRUPTED),
678 : errmsg("downlink or sibling link points to deleted block in index \"%s\"",
679 : RelationGetRelationName(state->rel)),
680 : errdetail_internal("Block=%u left block=%u left link from block=%u.",
681 : current, leftcurrent, opaque->btpo_prev)));
682 :
683 0 : if (P_RIGHTMOST(opaque))
684 0 : ereport(ERROR,
685 : (errcode(ERRCODE_INDEX_CORRUPTED),
686 : errmsg("block %u fell off the end of index \"%s\"",
687 : current, RelationGetRelationName(state->rel))));
688 : else
689 0 : ereport(DEBUG1,
690 : (errcode(ERRCODE_NO_DATA),
691 : errmsg_internal("block %u of index \"%s\" concurrently deleted",
692 : current, RelationGetRelationName(state->rel))));
693 0 : goto nextpage;
694 : }
695 0 : else if (nextleveldown.leftmost == InvalidBlockNumber)
696 : {
697 : /*
698 : * A concurrent page split could make the caller supplied leftmost
699 : * block no longer contain the leftmost page, or no longer be the
700 : * true root, but where that isn't possible due to heavyweight
701 : * locking, check that the first valid page meets caller's
702 : * expectations.
703 : */
704 0 : if (state->readonly)
705 : {
706 0 : if (!bt_leftmost_ignoring_half_dead(state, current, opaque))
707 0 : ereport(ERROR,
708 : (errcode(ERRCODE_INDEX_CORRUPTED),
709 : errmsg("block %u is not leftmost in index \"%s\"",
710 : current, RelationGetRelationName(state->rel))));
711 :
712 0 : if (level.istruerootlevel && (!P_ISROOT(opaque) && !P_INCOMPLETE_SPLIT(opaque)))
713 0 : ereport(ERROR,
714 : (errcode(ERRCODE_INDEX_CORRUPTED),
715 : errmsg("block %u is not true root in index \"%s\"",
716 : current, RelationGetRelationName(state->rel))));
717 0 : }
718 :
719 : /*
720 : * Before beginning any non-trivial examination of level, prepare
721 : * state for next bt_check_level_from_leftmost() invocation for
722 : * the next level for the next level down (if any).
723 : *
724 : * There should be at least one non-ignorable page per level,
725 : * unless this is the leaf level, which is assumed by caller to be
726 : * final level.
727 : */
728 0 : if (!P_ISLEAF(opaque))
729 : {
730 0 : IndexTuple itup;
731 0 : ItemId itemid;
732 :
733 : /* Internal page -- downlink gets leftmost on next level */
734 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
735 0 : state->target,
736 0 : P_FIRSTDATAKEY(opaque));
737 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
738 0 : nextleveldown.leftmost = BTreeTupleGetDownLink(itup);
739 0 : nextleveldown.level = opaque->btpo_level - 1;
740 0 : }
741 : else
742 : {
743 : /*
744 : * Leaf page -- final level caller must process.
745 : *
746 : * Note that this could also be the root page, if there has
747 : * been no root page split yet.
748 : */
749 0 : nextleveldown.leftmost = P_NONE;
750 0 : nextleveldown.level = InvalidBtreeLevel;
751 : }
752 :
753 : /*
754 : * Finished setting up state for this call/level. Control will
755 : * never end up back here in any future loop iteration for this
756 : * level.
757 : */
758 0 : }
759 :
760 : /*
761 : * Sibling links should be in mutual agreement. There arises
762 : * leftcurrent == P_NONE && btpo_prev != P_NONE when the left sibling
763 : * of the parent's low-key downlink is half-dead. (A half-dead page
764 : * has no downlink from its parent.) Under heavyweight locking, the
765 : * last bt_leftmost_ignoring_half_dead() validated this btpo_prev.
766 : * Without heavyweight locking, validation of the P_NONE case remains
767 : * unimplemented.
768 : */
769 0 : if (opaque->btpo_prev != leftcurrent && leftcurrent != P_NONE)
770 0 : bt_recheck_sibling_links(state, opaque->btpo_prev, leftcurrent);
771 :
772 : /* Check level */
773 0 : if (level.level != opaque->btpo_level)
774 0 : ereport(ERROR,
775 : (errcode(ERRCODE_INDEX_CORRUPTED),
776 : errmsg("leftmost down link for level points to block in index \"%s\" whose level is not one level down",
777 : RelationGetRelationName(state->rel)),
778 : errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
779 : current, level.level, opaque->btpo_level)));
780 :
781 : /* Verify invariants for page */
782 0 : bt_target_page_check(state);
783 :
784 : nextpage:
785 :
786 : /* Try to detect circular links */
787 0 : if (current == leftcurrent || current == opaque->btpo_prev)
788 0 : ereport(ERROR,
789 : (errcode(ERRCODE_INDEX_CORRUPTED),
790 : errmsg("circular link chain found in block %u of index \"%s\"",
791 : current, RelationGetRelationName(state->rel))));
792 :
793 0 : leftcurrent = current;
794 0 : current = opaque->btpo_next;
795 :
796 0 : if (state->lowkey)
797 : {
798 0 : Assert(state->readonly);
799 0 : pfree(state->lowkey);
800 0 : state->lowkey = NULL;
801 0 : }
802 :
803 : /*
804 : * Copy current target high key as the low key of right sibling.
805 : * Allocate memory in upper level context, so it would be cleared
806 : * after reset of target context.
807 : *
808 : * We only need the low key in corner cases of checking child high
809 : * keys. We use high key only when incomplete split on the child level
810 : * falls to the boundary of pages on the target level. See
811 : * bt_child_highkey_check() for details. So, typically we won't end
812 : * up doing anything with low key, but it's simpler for general case
813 : * high key verification to always have it available.
814 : *
815 : * The correctness of managing low key in the case of concurrent
816 : * splits wasn't investigated yet. Thankfully we only need low key
817 : * for readonly verification and concurrent splits won't happen.
818 : */
819 0 : if (state->readonly && !P_RIGHTMOST(opaque))
820 : {
821 0 : IndexTuple itup;
822 0 : ItemId itemid;
823 :
824 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
825 0 : state->target, P_HIKEY);
826 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
827 :
828 0 : state->lowkey = MemoryContextAlloc(oldcontext, IndexTupleSize(itup));
829 0 : memcpy(state->lowkey, itup, IndexTupleSize(itup));
830 0 : }
831 :
832 : /* Free page and associated memory for this iteration */
833 0 : MemoryContextReset(state->targetcontext);
834 0 : }
835 0 : while (current != P_NONE);
836 :
837 0 : if (state->lowkey)
838 : {
839 0 : Assert(state->readonly);
840 0 : pfree(state->lowkey);
841 0 : state->lowkey = NULL;
842 0 : }
843 :
844 : /* Don't change context for caller */
845 0 : MemoryContextSwitchTo(oldcontext);
846 :
847 : return nextleveldown;
848 0 : }
849 :
850 : /* Check visibility of the table entry referenced by nbtree index */
851 : static bool
852 0 : heap_entry_is_visible(BtreeCheckState *state, ItemPointer tid)
853 : {
854 0 : bool tid_visible;
855 :
856 0 : TupleTableSlot *slot = table_slot_create(state->heaprel, NULL);
857 :
858 0 : tid_visible = table_tuple_fetch_row_version(state->heaprel,
859 0 : tid, state->snapshot, slot);
860 0 : if (slot != NULL)
861 0 : ExecDropSingleTupleTableSlot(slot);
862 :
863 0 : return tid_visible;
864 0 : }
865 :
866 : /*
867 : * Prepare an error message for unique constrain violation in
868 : * a btree index and report ERROR.
869 : */
870 : static void
871 0 : bt_report_duplicate(BtreeCheckState *state,
872 : BtreeLastVisibleEntry *lVis,
873 : ItemPointer nexttid, BlockNumber nblock, OffsetNumber noffset,
874 : int nposting)
875 : {
876 0 : char *htid,
877 : *nhtid,
878 : *itid,
879 0 : *nitid = "",
880 0 : *pposting = "",
881 0 : *pnposting = "";
882 :
883 0 : htid = psprintf("tid=(%u,%u)",
884 0 : ItemPointerGetBlockNumberNoCheck(lVis->tid),
885 0 : ItemPointerGetOffsetNumberNoCheck(lVis->tid));
886 0 : nhtid = psprintf("tid=(%u,%u)",
887 0 : ItemPointerGetBlockNumberNoCheck(nexttid),
888 0 : ItemPointerGetOffsetNumberNoCheck(nexttid));
889 0 : itid = psprintf("tid=(%u,%u)", lVis->blkno, lVis->offset);
890 :
891 0 : if (nblock != lVis->blkno || noffset != lVis->offset)
892 0 : nitid = psprintf(" tid=(%u,%u)", nblock, noffset);
893 :
894 0 : if (lVis->postingIndex >= 0)
895 0 : pposting = psprintf(" posting %u", lVis->postingIndex);
896 :
897 0 : if (nposting >= 0)
898 0 : pnposting = psprintf(" posting %u", nposting);
899 :
900 0 : ereport(ERROR,
901 : (errcode(ERRCODE_INDEX_CORRUPTED),
902 : errmsg("index uniqueness is violated for index \"%s\"",
903 : RelationGetRelationName(state->rel)),
904 : errdetail("Index %s%s and%s%s (point to heap %s and %s) page lsn=%X/%08X.",
905 : itid, pposting, nitid, pnposting, htid, nhtid,
906 : LSN_FORMAT_ARGS(state->targetlsn))));
907 0 : }
908 :
909 : /* Check if current nbtree leaf entry complies with UNIQUE constraint */
910 : static void
911 0 : bt_entry_unique_check(BtreeCheckState *state, IndexTuple itup,
912 : BlockNumber targetblock, OffsetNumber offset,
913 : BtreeLastVisibleEntry *lVis)
914 : {
915 0 : ItemPointer tid;
916 0 : bool has_visible_entry = false;
917 :
918 0 : Assert(targetblock != P_NONE);
919 :
920 : /*
921 : * Current tuple has posting list. Report duplicate if TID of any posting
922 : * list entry is visible and lVis->tid is valid.
923 : */
924 0 : if (BTreeTupleIsPosting(itup))
925 : {
926 0 : for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
927 : {
928 0 : tid = BTreeTupleGetPostingN(itup, i);
929 0 : if (heap_entry_is_visible(state, tid))
930 : {
931 0 : has_visible_entry = true;
932 0 : if (ItemPointerIsValid(lVis->tid))
933 : {
934 0 : bt_report_duplicate(state,
935 0 : lVis,
936 0 : tid, targetblock,
937 0 : offset, i);
938 0 : }
939 :
940 : /*
941 : * Prevent double reporting unique constraint violation
942 : * between the posting list entries of the first tuple on the
943 : * page after cross-page check.
944 : */
945 0 : if (lVis->blkno != targetblock && ItemPointerIsValid(lVis->tid))
946 0 : return;
947 :
948 0 : lVis->blkno = targetblock;
949 0 : lVis->offset = offset;
950 0 : lVis->postingIndex = i;
951 0 : lVis->tid = tid;
952 0 : }
953 0 : }
954 0 : }
955 :
956 : /*
957 : * Current tuple has no posting list. If TID is visible save info about it
958 : * for the next comparisons in the loop in bt_target_page_check(). Report
959 : * duplicate if lVis->tid is already valid.
960 : */
961 : else
962 : {
963 0 : tid = BTreeTupleGetHeapTID(itup);
964 0 : if (heap_entry_is_visible(state, tid))
965 : {
966 0 : has_visible_entry = true;
967 0 : if (ItemPointerIsValid(lVis->tid))
968 : {
969 0 : bt_report_duplicate(state,
970 0 : lVis,
971 0 : tid, targetblock,
972 0 : offset, -1);
973 0 : }
974 :
975 0 : lVis->blkno = targetblock;
976 0 : lVis->offset = offset;
977 0 : lVis->tid = tid;
978 0 : lVis->postingIndex = -1;
979 0 : }
980 : }
981 :
982 0 : if (!has_visible_entry &&
983 0 : lVis->blkno != InvalidBlockNumber &&
984 0 : lVis->blkno != targetblock)
985 : {
986 0 : char *posting = "";
987 :
988 0 : if (lVis->postingIndex >= 0)
989 0 : posting = psprintf(" posting %u", lVis->postingIndex);
990 0 : ereport(DEBUG1,
991 : (errcode(ERRCODE_NO_DATA),
992 : errmsg("index uniqueness can not be checked for index tid=(%u,%u) in index \"%s\"",
993 : targetblock, offset,
994 : RelationGetRelationName(state->rel)),
995 : errdetail("It doesn't have visible heap tids and key is equal to the tid=(%u,%u)%s (points to heap tid=(%u,%u)).",
996 : lVis->blkno, lVis->offset, posting,
997 : ItemPointerGetBlockNumberNoCheck(lVis->tid),
998 : ItemPointerGetOffsetNumberNoCheck(lVis->tid)),
999 : errhint("VACUUM the table and repeat the check.")));
1000 0 : }
1001 0 : }
1002 :
1003 : /*
1004 : * Like P_LEFTMOST(start_opaque), but accept an arbitrarily-long chain of
1005 : * half-dead, sibling-linked pages to the left. If a half-dead page appears
1006 : * under state->readonly, the database exited recovery between the first-stage
1007 : * and second-stage WAL records of a deletion.
1008 : */
1009 : static bool
1010 0 : bt_leftmost_ignoring_half_dead(BtreeCheckState *state,
1011 : BlockNumber start,
1012 : BTPageOpaque start_opaque)
1013 : {
1014 0 : BlockNumber reached = start_opaque->btpo_prev,
1015 0 : reached_from = start;
1016 0 : bool all_half_dead = true;
1017 :
1018 : /*
1019 : * To handle the !readonly case, we'd need to accept BTP_DELETED pages and
1020 : * potentially observe nbtree/README "Page deletion and backwards scans".
1021 : */
1022 0 : Assert(state->readonly);
1023 :
1024 0 : while (reached != P_NONE && all_half_dead)
1025 : {
1026 0 : Page page = palloc_btree_page(state, reached);
1027 0 : BTPageOpaque reached_opaque = BTPageGetOpaque(page);
1028 :
1029 0 : CHECK_FOR_INTERRUPTS();
1030 :
1031 : /*
1032 : * Try to detect btpo_prev circular links. _bt_unlink_halfdead_page()
1033 : * writes that side-links will continue to point to the siblings.
1034 : * Check btpo_next for that property.
1035 : */
1036 0 : all_half_dead = P_ISHALFDEAD(reached_opaque) &&
1037 0 : reached != start &&
1038 0 : reached != reached_from &&
1039 0 : reached_opaque->btpo_next == reached_from;
1040 0 : if (all_half_dead)
1041 : {
1042 0 : XLogRecPtr pagelsn = PageGetLSN(page);
1043 :
1044 : /* pagelsn should point to an XLOG_BTREE_MARK_PAGE_HALFDEAD */
1045 0 : ereport(DEBUG1,
1046 : (errcode(ERRCODE_NO_DATA),
1047 : errmsg_internal("harmless interrupted page deletion detected in index \"%s\"",
1048 : RelationGetRelationName(state->rel)),
1049 : errdetail_internal("Block=%u right block=%u page lsn=%X/%08X.",
1050 : reached, reached_from,
1051 : LSN_FORMAT_ARGS(pagelsn))));
1052 :
1053 0 : reached_from = reached;
1054 0 : reached = reached_opaque->btpo_prev;
1055 0 : }
1056 :
1057 0 : pfree(page);
1058 0 : }
1059 :
1060 0 : return all_half_dead;
1061 0 : }
1062 :
1063 : /*
1064 : * Raise an error when target page's left link does not point back to the
1065 : * previous target page, called leftcurrent here. The leftcurrent page's
1066 : * right link was followed to get to the current target page, and we expect
1067 : * mutual agreement among leftcurrent and the current target page. Make sure
1068 : * that this condition has definitely been violated in the !readonly case,
1069 : * where concurrent page splits are something that we need to deal with.
1070 : *
1071 : * Cross-page inconsistencies involving pages that don't agree about being
1072 : * siblings are known to be a particularly good indicator of corruption
1073 : * involving partial writes/lost updates. The bt_right_page_check_scankey
1074 : * check also provides a way of detecting cross-page inconsistencies for
1075 : * !readonly callers, but it can only detect sibling pages that have an
1076 : * out-of-order keyspace, which can't catch many of the problems that we
1077 : * expect to catch here.
1078 : *
1079 : * The classic example of the kind of inconsistency that we can only catch
1080 : * with this check (when in !readonly mode) involves three sibling pages that
1081 : * were affected by a faulty page split at some point in the past. The
1082 : * effects of the split are reflected in the original page and its new right
1083 : * sibling page, with a lack of any accompanying changes for the _original_
1084 : * right sibling page. The original right sibling page's left link fails to
1085 : * point to the new right sibling page (its left link still points to the
1086 : * original page), even though the first phase of a page split is supposed to
1087 : * work as a single atomic action. This subtle inconsistency will probably
1088 : * only break backwards scans in practice.
1089 : *
1090 : * Note that this is the only place where amcheck will "couple" buffer locks
1091 : * (and only for !readonly callers). In general we prefer to avoid more
1092 : * thorough cross-page checks in !readonly mode, but it seems worth the
1093 : * complexity here. Also, the performance overhead of performing lock
1094 : * coupling here is negligible in practice. Control only reaches here with a
1095 : * non-corrupt index when there is a concurrent page split at the instant
1096 : * caller crossed over to target page from leftcurrent page.
1097 : */
1098 : static void
1099 0 : bt_recheck_sibling_links(BtreeCheckState *state,
1100 : BlockNumber btpo_prev_from_target,
1101 : BlockNumber leftcurrent)
1102 : {
1103 : /* passing metapage to BTPageGetOpaque() would give irrelevant findings */
1104 0 : Assert(leftcurrent != P_NONE);
1105 :
1106 0 : if (!state->readonly)
1107 : {
1108 0 : Buffer lbuf;
1109 0 : Buffer newtargetbuf;
1110 0 : Page page;
1111 0 : BTPageOpaque opaque;
1112 0 : BlockNumber newtargetblock;
1113 :
1114 : /* Couple locks in the usual order for nbtree: Left to right */
1115 0 : lbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM, leftcurrent,
1116 0 : RBM_NORMAL, state->checkstrategy);
1117 0 : LockBuffer(lbuf, BT_READ);
1118 0 : _bt_checkpage(state->rel, lbuf);
1119 0 : page = BufferGetPage(lbuf);
1120 0 : opaque = BTPageGetOpaque(page);
1121 0 : if (P_ISDELETED(opaque))
1122 : {
1123 : /*
1124 : * Cannot reason about concurrently deleted page -- the left link
1125 : * in the page to the right is expected to point to some other
1126 : * page to the left (not leftcurrent page).
1127 : *
1128 : * Note that we deliberately don't give up with a half-dead page.
1129 : */
1130 0 : UnlockReleaseBuffer(lbuf);
1131 0 : return;
1132 : }
1133 :
1134 0 : newtargetblock = opaque->btpo_next;
1135 : /* Avoid self-deadlock when newtargetblock == leftcurrent */
1136 0 : if (newtargetblock != leftcurrent)
1137 : {
1138 0 : newtargetbuf = ReadBufferExtended(state->rel, MAIN_FORKNUM,
1139 0 : newtargetblock, RBM_NORMAL,
1140 0 : state->checkstrategy);
1141 0 : LockBuffer(newtargetbuf, BT_READ);
1142 0 : _bt_checkpage(state->rel, newtargetbuf);
1143 0 : page = BufferGetPage(newtargetbuf);
1144 0 : opaque = BTPageGetOpaque(page);
1145 : /* btpo_prev_from_target may have changed; update it */
1146 0 : btpo_prev_from_target = opaque->btpo_prev;
1147 0 : }
1148 : else
1149 : {
1150 : /*
1151 : * leftcurrent right sibling points back to leftcurrent block.
1152 : * Index is corrupt. Easiest way to handle this is to pretend
1153 : * that we actually read from a distinct page that has an invalid
1154 : * block number in its btpo_prev.
1155 : */
1156 0 : newtargetbuf = InvalidBuffer;
1157 0 : btpo_prev_from_target = InvalidBlockNumber;
1158 : }
1159 :
1160 : /*
1161 : * No need to check P_ISDELETED here, since new target block cannot be
1162 : * marked deleted as long as we hold a lock on lbuf
1163 : */
1164 0 : if (BufferIsValid(newtargetbuf))
1165 0 : UnlockReleaseBuffer(newtargetbuf);
1166 0 : UnlockReleaseBuffer(lbuf);
1167 :
1168 0 : if (btpo_prev_from_target == leftcurrent)
1169 : {
1170 : /* Report split in left sibling, not target (or new target) */
1171 0 : ereport(DEBUG1,
1172 : (errcode(ERRCODE_INTERNAL_ERROR),
1173 : errmsg_internal("harmless concurrent page split detected in index \"%s\"",
1174 : RelationGetRelationName(state->rel)),
1175 : errdetail_internal("Block=%u new right sibling=%u original right sibling=%u.",
1176 : leftcurrent, newtargetblock,
1177 : state->targetblock)));
1178 0 : return;
1179 : }
1180 :
1181 : /*
1182 : * Index is corrupt. Make sure that we report correct target page.
1183 : *
1184 : * This could have changed in cases where there was a concurrent page
1185 : * split, as well as index corruption (at least in theory). Note that
1186 : * btpo_prev_from_target was already updated above.
1187 : */
1188 0 : state->targetblock = newtargetblock;
1189 0 : }
1190 :
1191 0 : ereport(ERROR,
1192 : (errcode(ERRCODE_INDEX_CORRUPTED),
1193 : errmsg("left link/right link pair in index \"%s\" not in agreement",
1194 : RelationGetRelationName(state->rel)),
1195 : errdetail_internal("Block=%u left block=%u left link from block=%u.",
1196 : state->targetblock, leftcurrent,
1197 : btpo_prev_from_target)));
1198 0 : }
1199 :
1200 : /*
1201 : * Function performs the following checks on target page, or pages ancillary to
1202 : * target page:
1203 : *
1204 : * - That every "real" data item is less than or equal to the high key, which
1205 : * is an upper bound on the items on the page. Data items should be
1206 : * strictly less than the high key when the page is an internal page.
1207 : *
1208 : * - That within the page, every data item is strictly less than the item
1209 : * immediately to its right, if any (i.e., that the items are in order
1210 : * within the page, so that the binary searches performed by index scans are
1211 : * sane).
1212 : *
1213 : * - That the last data item stored on the page is strictly less than the
1214 : * first data item on the page to the right (when such a first item is
1215 : * available).
1216 : *
1217 : * - Various checks on the structure of tuples themselves. For example, check
1218 : * that non-pivot tuples have no truncated attributes.
1219 : *
1220 : * - For index with unique constraint make sure that only one of table entries
1221 : * for equal keys is visible.
1222 : *
1223 : * Furthermore, when state passed shows ShareLock held, function also checks:
1224 : *
1225 : * - That all child pages respect strict lower bound from parent's pivot
1226 : * tuple.
1227 : *
1228 : * - That downlink to block was encountered in parent where that's expected.
1229 : *
1230 : * - That high keys of child pages matches corresponding pivot keys in parent.
1231 : *
1232 : * This is also where heapallindexed callers use their Bloom filter to
1233 : * fingerprint IndexTuples for later table_index_build_scan() verification.
1234 : *
1235 : * Note: Memory allocated in this routine is expected to be released by caller
1236 : * resetting state->targetcontext.
1237 : */
1238 : static void
1239 0 : bt_target_page_check(BtreeCheckState *state)
1240 : {
1241 0 : OffsetNumber offset;
1242 0 : OffsetNumber max;
1243 0 : BTPageOpaque topaque;
1244 :
1245 : /* Last visible entry info for checking indexes with unique constraint */
1246 0 : BtreeLastVisibleEntry lVis = {InvalidBlockNumber, InvalidOffsetNumber, -1, NULL};
1247 :
1248 0 : topaque = BTPageGetOpaque(state->target);
1249 0 : max = PageGetMaxOffsetNumber(state->target);
1250 :
1251 0 : elog(DEBUG2, "verifying %u items on %s block %u", max,
1252 : P_ISLEAF(topaque) ? "leaf" : "internal", state->targetblock);
1253 :
1254 : /*
1255 : * Check the number of attributes in high key. Note, rightmost page
1256 : * doesn't contain a high key, so nothing to check
1257 : */
1258 0 : if (!P_RIGHTMOST(topaque))
1259 : {
1260 0 : ItemId itemid;
1261 0 : IndexTuple itup;
1262 :
1263 : /* Verify line pointer before checking tuple */
1264 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
1265 0 : state->target, P_HIKEY);
1266 0 : if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1267 : P_HIKEY))
1268 : {
1269 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1270 0 : ereport(ERROR,
1271 : (errcode(ERRCODE_INDEX_CORRUPTED),
1272 : errmsg("wrong number of high key index tuple attributes in index \"%s\"",
1273 : RelationGetRelationName(state->rel)),
1274 : errdetail_internal("Index block=%u natts=%u block type=%s page lsn=%X/%08X.",
1275 : state->targetblock,
1276 : BTreeTupleGetNAtts(itup, state->rel),
1277 : P_ISLEAF(topaque) ? "heap" : "index",
1278 : LSN_FORMAT_ARGS(state->targetlsn))));
1279 0 : }
1280 0 : }
1281 :
1282 : /*
1283 : * Loop over page items, starting from first non-highkey item, not high
1284 : * key (if any). Most tests are not performed for the "negative infinity"
1285 : * real item (if any).
1286 : */
1287 0 : for (offset = P_FIRSTDATAKEY(topaque);
1288 0 : offset <= max;
1289 0 : offset = OffsetNumberNext(offset))
1290 : {
1291 0 : ItemId itemid;
1292 0 : IndexTuple itup;
1293 0 : size_t tupsize;
1294 0 : BTScanInsert skey;
1295 0 : bool lowersizelimit;
1296 0 : ItemPointer scantid;
1297 :
1298 : /*
1299 : * True if we already called bt_entry_unique_check() for the current
1300 : * item. This helps to avoid visiting the heap for keys, which are
1301 : * anyway presented only once and can't comprise a unique violation.
1302 : */
1303 0 : bool unique_checked = false;
1304 :
1305 0 : CHECK_FOR_INTERRUPTS();
1306 :
1307 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
1308 0 : state->target, offset);
1309 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1310 0 : tupsize = IndexTupleSize(itup);
1311 :
1312 : /*
1313 : * lp_len should match the IndexTuple reported length exactly, since
1314 : * lp_len is completely redundant in indexes, and both sources of
1315 : * tuple length are MAXALIGN()'d. nbtree does not use lp_len all that
1316 : * frequently, and is surprisingly tolerant of corrupt lp_len fields.
1317 : */
1318 0 : if (tupsize != ItemIdGetLength(itemid))
1319 0 : ereport(ERROR,
1320 : (errcode(ERRCODE_INDEX_CORRUPTED),
1321 : errmsg("index tuple size does not equal lp_len in index \"%s\"",
1322 : RelationGetRelationName(state->rel)),
1323 : errdetail_internal("Index tid=(%u,%u) tuple size=%zu lp_len=%u page lsn=%X/%08X.",
1324 : state->targetblock, offset,
1325 : tupsize, ItemIdGetLength(itemid),
1326 : LSN_FORMAT_ARGS(state->targetlsn)),
1327 : errhint("This could be a torn page problem.")));
1328 :
1329 : /* Check the number of index tuple attributes */
1330 0 : if (!_bt_check_natts(state->rel, state->heapkeyspace, state->target,
1331 0 : offset))
1332 : {
1333 0 : ItemPointer tid;
1334 0 : char *itid,
1335 : *htid;
1336 :
1337 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1338 0 : tid = BTreeTupleGetPointsToTID(itup);
1339 0 : htid = psprintf("(%u,%u)",
1340 0 : ItemPointerGetBlockNumberNoCheck(tid),
1341 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1342 :
1343 0 : ereport(ERROR,
1344 : (errcode(ERRCODE_INDEX_CORRUPTED),
1345 : errmsg("wrong number of index tuple attributes in index \"%s\"",
1346 : RelationGetRelationName(state->rel)),
1347 : errdetail_internal("Index tid=%s natts=%u points to %s tid=%s page lsn=%X/%08X.",
1348 : itid,
1349 : BTreeTupleGetNAtts(itup, state->rel),
1350 : P_ISLEAF(topaque) ? "heap" : "index",
1351 : htid,
1352 : LSN_FORMAT_ARGS(state->targetlsn))));
1353 0 : }
1354 :
1355 : /*
1356 : * Don't try to generate scankey using "negative infinity" item on
1357 : * internal pages. They are always truncated to zero attributes.
1358 : */
1359 0 : if (offset_is_negative_infinity(topaque, offset))
1360 : {
1361 : /*
1362 : * We don't call bt_child_check() for "negative infinity" items.
1363 : * But if we're performing downlink connectivity check, we do it
1364 : * for every item including "negative infinity" one.
1365 : */
1366 0 : if (!P_ISLEAF(topaque) && state->readonly)
1367 : {
1368 0 : bt_child_highkey_check(state,
1369 0 : offset,
1370 : NULL,
1371 0 : topaque->btpo_level);
1372 0 : }
1373 0 : continue;
1374 : }
1375 :
1376 : /*
1377 : * Readonly callers may optionally verify that non-pivot tuples can
1378 : * each be found by an independent search that starts from the root.
1379 : * Note that we deliberately don't do individual searches for each
1380 : * TID, since the posting list itself is validated by other checks.
1381 : */
1382 0 : if (state->rootdescend && P_ISLEAF(topaque) &&
1383 0 : !bt_rootdescend(state, itup))
1384 : {
1385 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1386 0 : char *itid,
1387 : *htid;
1388 :
1389 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1390 0 : htid = psprintf("(%u,%u)", ItemPointerGetBlockNumber(tid),
1391 0 : ItemPointerGetOffsetNumber(tid));
1392 :
1393 0 : ereport(ERROR,
1394 : (errcode(ERRCODE_INDEX_CORRUPTED),
1395 : errmsg("could not find tuple using search from root page in index \"%s\"",
1396 : RelationGetRelationName(state->rel)),
1397 : errdetail_internal("Index tid=%s points to heap tid=%s page lsn=%X/%08X.",
1398 : itid, htid,
1399 : LSN_FORMAT_ARGS(state->targetlsn))));
1400 0 : }
1401 :
1402 : /*
1403 : * If tuple is a posting list tuple, make sure posting list TIDs are
1404 : * in order
1405 : */
1406 0 : if (BTreeTupleIsPosting(itup))
1407 : {
1408 0 : ItemPointerData last;
1409 0 : ItemPointer current;
1410 :
1411 0 : ItemPointerCopy(BTreeTupleGetHeapTID(itup), &last);
1412 :
1413 0 : for (int i = 1; i < BTreeTupleGetNPosting(itup); i++)
1414 : {
1415 :
1416 0 : current = BTreeTupleGetPostingN(itup, i);
1417 :
1418 0 : if (ItemPointerCompare(current, &last) <= 0)
1419 : {
1420 0 : char *itid = psprintf("(%u,%u)", state->targetblock, offset);
1421 :
1422 0 : ereport(ERROR,
1423 : (errcode(ERRCODE_INDEX_CORRUPTED),
1424 : errmsg_internal("posting list contains misplaced TID in index \"%s\"",
1425 : RelationGetRelationName(state->rel)),
1426 : errdetail_internal("Index tid=%s posting list offset=%d page lsn=%X/%08X.",
1427 : itid, i,
1428 : LSN_FORMAT_ARGS(state->targetlsn))));
1429 0 : }
1430 :
1431 0 : ItemPointerCopy(current, &last);
1432 0 : }
1433 0 : }
1434 :
1435 : /* Build insertion scankey for current page offset */
1436 0 : skey = bt_mkscankey_pivotsearch(state->rel, itup);
1437 :
1438 : /*
1439 : * Make sure tuple size does not exceed the relevant BTREE_VERSION
1440 : * specific limit.
1441 : *
1442 : * BTREE_VERSION 4 (which introduced heapkeyspace rules) requisitioned
1443 : * a small amount of space from BTMaxItemSize() in order to ensure
1444 : * that suffix truncation always has enough space to add an explicit
1445 : * heap TID back to a tuple -- we pessimistically assume that every
1446 : * newly inserted tuple will eventually need to have a heap TID
1447 : * appended during a future leaf page split, when the tuple becomes
1448 : * the basis of the new high key (pivot tuple) for the leaf page.
1449 : *
1450 : * Since the reclaimed space is reserved for that purpose, we must not
1451 : * enforce the slightly lower limit when the extra space has been used
1452 : * as intended. In other words, there is only a cross-version
1453 : * difference in the limit on tuple size within leaf pages.
1454 : *
1455 : * Still, we're particular about the details within BTREE_VERSION 4
1456 : * internal pages. Pivot tuples may only use the extra space for its
1457 : * designated purpose. Enforce the lower limit for pivot tuples when
1458 : * an explicit heap TID isn't actually present. (In all other cases
1459 : * suffix truncation is guaranteed to generate a pivot tuple that's no
1460 : * larger than the firstright tuple provided to it by its caller.)
1461 : */
1462 0 : lowersizelimit = skey->heapkeyspace &&
1463 0 : (P_ISLEAF(topaque) || BTreeTupleGetHeapTID(itup) == NULL);
1464 0 : if (tupsize > (lowersizelimit ? BTMaxItemSize : BTMaxItemSizeNoHeapTid))
1465 : {
1466 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1467 0 : char *itid,
1468 : *htid;
1469 :
1470 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1471 0 : htid = psprintf("(%u,%u)",
1472 0 : ItemPointerGetBlockNumberNoCheck(tid),
1473 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1474 :
1475 0 : ereport(ERROR,
1476 : (errcode(ERRCODE_INDEX_CORRUPTED),
1477 : errmsg("index row size %zu exceeds maximum for index \"%s\"",
1478 : tupsize, RelationGetRelationName(state->rel)),
1479 : errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
1480 : itid,
1481 : P_ISLEAF(topaque) ? "heap" : "index",
1482 : htid,
1483 : LSN_FORMAT_ARGS(state->targetlsn))));
1484 0 : }
1485 :
1486 : /* Fingerprint leaf page tuples (those that point to the heap) */
1487 0 : if (state->heapallindexed && P_ISLEAF(topaque) && !ItemIdIsDead(itemid))
1488 : {
1489 0 : IndexTuple norm;
1490 :
1491 0 : if (BTreeTupleIsPosting(itup))
1492 : {
1493 : /* Fingerprint all elements as distinct "plain" tuples */
1494 0 : for (int i = 0; i < BTreeTupleGetNPosting(itup); i++)
1495 : {
1496 0 : IndexTuple logtuple;
1497 :
1498 0 : logtuple = bt_posting_plain_tuple(itup, i);
1499 0 : norm = bt_normalize_tuple(state, logtuple);
1500 0 : bloom_add_element(state->filter, (unsigned char *) norm,
1501 0 : IndexTupleSize(norm));
1502 : /* Be tidy */
1503 0 : if (norm != logtuple)
1504 0 : pfree(norm);
1505 0 : pfree(logtuple);
1506 0 : }
1507 0 : }
1508 : else
1509 : {
1510 0 : norm = bt_normalize_tuple(state, itup);
1511 0 : bloom_add_element(state->filter, (unsigned char *) norm,
1512 0 : IndexTupleSize(norm));
1513 : /* Be tidy */
1514 0 : if (norm != itup)
1515 0 : pfree(norm);
1516 : }
1517 0 : }
1518 :
1519 : /*
1520 : * * High key check *
1521 : *
1522 : * If there is a high key (if this is not the rightmost page on its
1523 : * entire level), check that high key actually is upper bound on all
1524 : * page items. If this is a posting list tuple, we'll need to set
1525 : * scantid to be highest TID in posting list.
1526 : *
1527 : * We prefer to check all items against high key rather than checking
1528 : * just the last and trusting that the operator class obeys the
1529 : * transitive law (which implies that all previous items also
1530 : * respected the high key invariant if they pass the item order
1531 : * check).
1532 : *
1533 : * Ideally, we'd compare every item in the index against every other
1534 : * item in the index, and not trust opclass obedience of the
1535 : * transitive law to bridge the gap between children and their
1536 : * grandparents (as well as great-grandparents, and so on). We don't
1537 : * go to those lengths because that would be prohibitively expensive,
1538 : * and probably not markedly more effective in practice.
1539 : *
1540 : * On the leaf level, we check that the key is <= the highkey.
1541 : * However, on non-leaf levels we check that the key is < the highkey,
1542 : * because the high key is "just another separator" rather than a copy
1543 : * of some existing key item; we expect it to be unique among all keys
1544 : * on the same level. (Suffix truncation will sometimes produce a
1545 : * leaf highkey that is an untruncated copy of the lastleft item, but
1546 : * never any other item, which necessitates weakening the leaf level
1547 : * check to <=.)
1548 : *
1549 : * Full explanation for why a highkey is never truly a copy of another
1550 : * item from the same level on internal levels:
1551 : *
1552 : * While the new left page's high key is copied from the first offset
1553 : * on the right page during an internal page split, that's not the
1554 : * full story. In effect, internal pages are split in the middle of
1555 : * the firstright tuple, not between the would-be lastleft and
1556 : * firstright tuples: the firstright key ends up on the left side as
1557 : * left's new highkey, and the firstright downlink ends up on the
1558 : * right side as right's new "negative infinity" item. The negative
1559 : * infinity tuple is truncated to zero attributes, so we're only left
1560 : * with the downlink. In other words, the copying is just an
1561 : * implementation detail of splitting in the middle of a (pivot)
1562 : * tuple. (See also: "Notes About Data Representation" in the nbtree
1563 : * README.)
1564 : */
1565 0 : scantid = skey->scantid;
1566 0 : if (state->heapkeyspace && BTreeTupleIsPosting(itup))
1567 0 : skey->scantid = BTreeTupleGetMaxHeapTID(itup);
1568 :
1569 0 : if (!P_RIGHTMOST(topaque) &&
1570 0 : !(P_ISLEAF(topaque) ? invariant_leq_offset(state, skey, P_HIKEY) :
1571 0 : invariant_l_offset(state, skey, P_HIKEY)))
1572 : {
1573 0 : ItemPointer tid = BTreeTupleGetPointsToTID(itup);
1574 0 : char *itid,
1575 : *htid;
1576 :
1577 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1578 0 : htid = psprintf("(%u,%u)",
1579 0 : ItemPointerGetBlockNumberNoCheck(tid),
1580 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1581 :
1582 0 : ereport(ERROR,
1583 : (errcode(ERRCODE_INDEX_CORRUPTED),
1584 : errmsg("high key invariant violated for index \"%s\"",
1585 : RelationGetRelationName(state->rel)),
1586 : errdetail_internal("Index tid=%s points to %s tid=%s page lsn=%X/%08X.",
1587 : itid,
1588 : P_ISLEAF(topaque) ? "heap" : "index",
1589 : htid,
1590 : LSN_FORMAT_ARGS(state->targetlsn))));
1591 0 : }
1592 : /* Reset, in case scantid was set to (itup) posting tuple's max TID */
1593 0 : skey->scantid = scantid;
1594 :
1595 : /*
1596 : * * Item order check *
1597 : *
1598 : * Check that items are stored on page in logical order, by checking
1599 : * current item is strictly less than next item (if any).
1600 : */
1601 0 : if (OffsetNumberNext(offset) <= max &&
1602 0 : !invariant_l_offset(state, skey, OffsetNumberNext(offset)))
1603 : {
1604 0 : ItemPointer tid;
1605 0 : char *itid,
1606 : *htid,
1607 : *nitid,
1608 : *nhtid;
1609 :
1610 0 : itid = psprintf("(%u,%u)", state->targetblock, offset);
1611 0 : tid = BTreeTupleGetPointsToTID(itup);
1612 0 : htid = psprintf("(%u,%u)",
1613 0 : ItemPointerGetBlockNumberNoCheck(tid),
1614 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1615 0 : nitid = psprintf("(%u,%u)", state->targetblock,
1616 0 : OffsetNumberNext(offset));
1617 :
1618 : /* Reuse itup to get pointed-to heap location of second item */
1619 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
1620 0 : state->target,
1621 0 : OffsetNumberNext(offset));
1622 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
1623 0 : tid = BTreeTupleGetPointsToTID(itup);
1624 0 : nhtid = psprintf("(%u,%u)",
1625 0 : ItemPointerGetBlockNumberNoCheck(tid),
1626 0 : ItemPointerGetOffsetNumberNoCheck(tid));
1627 :
1628 0 : ereport(ERROR,
1629 : (errcode(ERRCODE_INDEX_CORRUPTED),
1630 : errmsg("item order invariant violated for index \"%s\"",
1631 : RelationGetRelationName(state->rel)),
1632 : errdetail_internal("Lower index tid=%s (points to %s tid=%s) higher index tid=%s (points to %s tid=%s) page lsn=%X/%08X.",
1633 : itid,
1634 : P_ISLEAF(topaque) ? "heap" : "index",
1635 : htid,
1636 : nitid,
1637 : P_ISLEAF(topaque) ? "heap" : "index",
1638 : nhtid,
1639 : LSN_FORMAT_ARGS(state->targetlsn))));
1640 0 : }
1641 :
1642 : /*
1643 : * If the index is unique verify entries uniqueness by checking the
1644 : * heap tuples visibility. Immediately check posting tuples and
1645 : * tuples with repeated keys. Postpone check for keys, which have the
1646 : * first appearance.
1647 : */
1648 0 : if (state->checkunique && state->indexinfo->ii_Unique &&
1649 0 : P_ISLEAF(topaque) && !skey->anynullkeys &&
1650 0 : (BTreeTupleIsPosting(itup) || ItemPointerIsValid(lVis.tid)))
1651 : {
1652 0 : bt_entry_unique_check(state, itup, state->targetblock, offset,
1653 : &lVis);
1654 0 : unique_checked = true;
1655 0 : }
1656 :
1657 0 : if (state->checkunique && state->indexinfo->ii_Unique &&
1658 0 : P_ISLEAF(topaque) && OffsetNumberNext(offset) <= max)
1659 : {
1660 : /* Save current scankey tid */
1661 0 : scantid = skey->scantid;
1662 :
1663 : /*
1664 : * Invalidate scankey tid to make _bt_compare compare only keys in
1665 : * the item to report equality even if heap TIDs are different
1666 : */
1667 0 : skey->scantid = NULL;
1668 :
1669 : /*
1670 : * If next key tuple is different, invalidate last visible entry
1671 : * data (whole index tuple or last posting in index tuple). Key
1672 : * containing null value does not violate unique constraint and
1673 : * treated as different to any other key.
1674 : *
1675 : * If the next key is the same as the previous one, do the
1676 : * bt_entry_unique_check() call if it was postponed.
1677 : */
1678 0 : if (_bt_compare(state->rel, skey, state->target,
1679 0 : OffsetNumberNext(offset)) != 0 || skey->anynullkeys)
1680 : {
1681 0 : lVis.blkno = InvalidBlockNumber;
1682 0 : lVis.offset = InvalidOffsetNumber;
1683 0 : lVis.postingIndex = -1;
1684 0 : lVis.tid = NULL;
1685 0 : }
1686 0 : else if (!unique_checked)
1687 : {
1688 0 : bt_entry_unique_check(state, itup, state->targetblock, offset,
1689 : &lVis);
1690 0 : }
1691 0 : skey->scantid = scantid; /* Restore saved scan key state */
1692 0 : }
1693 :
1694 : /*
1695 : * * Last item check *
1696 : *
1697 : * Check last item against next/right page's first data item's when
1698 : * last item on page is reached. This additional check will detect
1699 : * transposed pages iff the supposed right sibling page happens to
1700 : * belong before target in the key space. (Otherwise, a subsequent
1701 : * heap verification will probably detect the problem.)
1702 : *
1703 : * This check is similar to the item order check that will have
1704 : * already been performed for every other "real" item on target page
1705 : * when last item is checked. The difference is that the next item
1706 : * (the item that is compared to target's last item) needs to come
1707 : * from the next/sibling page. There may not be such an item
1708 : * available from sibling for various reasons, though (e.g., target is
1709 : * the rightmost page on level).
1710 : */
1711 0 : if (offset == max)
1712 : {
1713 0 : BTScanInsert rightkey;
1714 :
1715 : /* first offset on a right index page (log only) */
1716 0 : OffsetNumber rightfirstoffset = InvalidOffsetNumber;
1717 :
1718 : /* Get item in next/right page */
1719 0 : rightkey = bt_right_page_check_scankey(state, &rightfirstoffset);
1720 :
1721 0 : if (rightkey &&
1722 0 : !invariant_g_offset(state, rightkey, max))
1723 : {
1724 : /*
1725 : * As explained at length in bt_right_page_check_scankey(),
1726 : * there is a known !readonly race that could account for
1727 : * apparent violation of invariant, which we must check for
1728 : * before actually proceeding with raising error. Our canary
1729 : * condition is that target page was deleted.
1730 : */
1731 0 : if (!state->readonly)
1732 : {
1733 : /* Get fresh copy of target page */
1734 0 : state->target = palloc_btree_page(state, state->targetblock);
1735 : /* Note that we deliberately do not update target LSN */
1736 0 : topaque = BTPageGetOpaque(state->target);
1737 :
1738 : /*
1739 : * All !readonly checks now performed; just return
1740 : */
1741 0 : if (P_IGNORE(topaque))
1742 0 : return;
1743 0 : }
1744 :
1745 0 : ereport(ERROR,
1746 : (errcode(ERRCODE_INDEX_CORRUPTED),
1747 : errmsg("cross page item order invariant violated for index \"%s\"",
1748 : RelationGetRelationName(state->rel)),
1749 : errdetail_internal("Last item on page tid=(%u,%u) page lsn=%X/%08X.",
1750 : state->targetblock, offset,
1751 : LSN_FORMAT_ARGS(state->targetlsn))));
1752 0 : }
1753 :
1754 : /*
1755 : * If index has unique constraint make sure that no more than one
1756 : * found equal items is visible.
1757 : */
1758 0 : if (state->checkunique && state->indexinfo->ii_Unique &&
1759 0 : rightkey && P_ISLEAF(topaque) && !P_RIGHTMOST(topaque))
1760 : {
1761 0 : BlockNumber rightblock_number = topaque->btpo_next;
1762 :
1763 0 : elog(DEBUG2, "check cross page unique condition");
1764 :
1765 : /*
1766 : * Make _bt_compare compare only index keys without heap TIDs.
1767 : * rightkey->scantid is modified destructively but it is ok
1768 : * for it is not used later.
1769 : */
1770 0 : rightkey->scantid = NULL;
1771 :
1772 : /* The first key on the next page is the same */
1773 0 : if (_bt_compare(state->rel, rightkey, state->target, max) == 0 &&
1774 0 : !rightkey->anynullkeys)
1775 : {
1776 0 : Page rightpage;
1777 :
1778 : /*
1779 : * Do the bt_entry_unique_check() call if it was
1780 : * postponed.
1781 : */
1782 0 : if (!unique_checked)
1783 0 : bt_entry_unique_check(state, itup, state->targetblock,
1784 0 : offset, &lVis);
1785 :
1786 0 : elog(DEBUG2, "cross page equal keys");
1787 0 : rightpage = palloc_btree_page(state,
1788 0 : rightblock_number);
1789 0 : topaque = BTPageGetOpaque(rightpage);
1790 :
1791 0 : if (P_IGNORE(topaque))
1792 : {
1793 0 : pfree(rightpage);
1794 0 : break;
1795 : }
1796 :
1797 0 : if (unlikely(!P_ISLEAF(topaque)))
1798 0 : ereport(ERROR,
1799 : (errcode(ERRCODE_INDEX_CORRUPTED),
1800 : errmsg("right block of leaf block is non-leaf for index \"%s\"",
1801 : RelationGetRelationName(state->rel)),
1802 : errdetail_internal("Block=%u page lsn=%X/%08X.",
1803 : state->targetblock,
1804 : LSN_FORMAT_ARGS(state->targetlsn))));
1805 :
1806 0 : itemid = PageGetItemIdCareful(state, rightblock_number,
1807 0 : rightpage,
1808 0 : rightfirstoffset);
1809 0 : itup = (IndexTuple) PageGetItem(rightpage, itemid);
1810 :
1811 0 : bt_entry_unique_check(state, itup, rightblock_number, rightfirstoffset, &lVis);
1812 :
1813 0 : pfree(rightpage);
1814 0 : }
1815 0 : }
1816 0 : }
1817 :
1818 : /*
1819 : * * Downlink check *
1820 : *
1821 : * Additional check of child items iff this is an internal page and
1822 : * caller holds a ShareLock. This happens for every downlink (item)
1823 : * in target excluding the negative-infinity downlink (again, this is
1824 : * because it has no useful value to compare).
1825 : */
1826 0 : if (!P_ISLEAF(topaque) && state->readonly)
1827 0 : bt_child_check(state, skey, offset);
1828 0 : }
1829 :
1830 : /*
1831 : * Special case bt_child_highkey_check() call
1832 : *
1833 : * We don't pass a real downlink, but we've to finish the level
1834 : * processing. If condition is satisfied, we've already processed all the
1835 : * downlinks from the target level. But there still might be pages to the
1836 : * right of the child page pointer to by our rightmost downlink. And they
1837 : * might have missing downlinks. This final call checks for them.
1838 : */
1839 0 : if (!P_ISLEAF(topaque) && P_RIGHTMOST(topaque) && state->readonly)
1840 : {
1841 0 : bt_child_highkey_check(state, InvalidOffsetNumber,
1842 0 : NULL, topaque->btpo_level);
1843 0 : }
1844 0 : }
1845 :
1846 : /*
1847 : * Return a scankey for an item on page to right of current target (or the
1848 : * first non-ignorable page), sufficient to check ordering invariant on last
1849 : * item in current target page. Returned scankey relies on local memory
1850 : * allocated for the child page, which caller cannot pfree(). Caller's memory
1851 : * context should be reset between calls here.
1852 : *
1853 : * This is the first data item, and so all adjacent items are checked against
1854 : * their immediate sibling item (which may be on a sibling page, or even a
1855 : * "cousin" page at parent boundaries where target's rightlink points to page
1856 : * with different parent page). If no such valid item is available, return
1857 : * NULL instead.
1858 : *
1859 : * Note that !readonly callers must reverify that target page has not
1860 : * been concurrently deleted.
1861 : *
1862 : * Save rightfirstoffset for detailed error message.
1863 : */
1864 : static BTScanInsert
1865 0 : bt_right_page_check_scankey(BtreeCheckState *state, OffsetNumber *rightfirstoffset)
1866 : {
1867 0 : BTPageOpaque opaque;
1868 0 : ItemId rightitem;
1869 0 : IndexTuple firstitup;
1870 0 : BlockNumber targetnext;
1871 0 : Page rightpage;
1872 0 : OffsetNumber nline;
1873 :
1874 : /* Determine target's next block number */
1875 0 : opaque = BTPageGetOpaque(state->target);
1876 :
1877 : /* If target is already rightmost, no right sibling; nothing to do here */
1878 0 : if (P_RIGHTMOST(opaque))
1879 0 : return NULL;
1880 :
1881 : /*
1882 : * General notes on concurrent page splits and page deletion:
1883 : *
1884 : * Routines like _bt_search() don't require *any* page split interlock
1885 : * when descending the tree, including something very light like a buffer
1886 : * pin. That's why it's okay that we don't either. This avoidance of any
1887 : * need to "couple" buffer locks is the raison d' etre of the Lehman & Yao
1888 : * algorithm, in fact.
1889 : *
1890 : * That leaves deletion. A deleted page won't actually be recycled by
1891 : * VACUUM early enough for us to fail to at least follow its right link
1892 : * (or left link, or downlink) and find its sibling, because recycling
1893 : * does not occur until no possible index scan could land on the page.
1894 : * Index scans can follow links with nothing more than their snapshot as
1895 : * an interlock and be sure of at least that much. (See page
1896 : * recycling/"visible to everyone" notes in nbtree README.)
1897 : *
1898 : * Furthermore, it's okay if we follow a rightlink and find a half-dead or
1899 : * dead (ignorable) page one or more times. There will either be a
1900 : * further right link to follow that leads to a live page before too long
1901 : * (before passing by parent's rightmost child), or we will find the end
1902 : * of the entire level instead (possible when parent page is itself the
1903 : * rightmost on its level).
1904 : */
1905 0 : targetnext = opaque->btpo_next;
1906 0 : for (;;)
1907 : {
1908 0 : CHECK_FOR_INTERRUPTS();
1909 :
1910 0 : rightpage = palloc_btree_page(state, targetnext);
1911 0 : opaque = BTPageGetOpaque(rightpage);
1912 :
1913 0 : if (!P_IGNORE(opaque) || P_RIGHTMOST(opaque))
1914 0 : break;
1915 :
1916 : /*
1917 : * We landed on a deleted or half-dead sibling page. Step right until
1918 : * we locate a live sibling page.
1919 : */
1920 0 : ereport(DEBUG2,
1921 : (errcode(ERRCODE_NO_DATA),
1922 : errmsg_internal("level %u sibling page in block %u of index \"%s\" was found deleted or half dead",
1923 : opaque->btpo_level, targetnext, RelationGetRelationName(state->rel)),
1924 : errdetail_internal("Deleted page found when building scankey from right sibling.")));
1925 :
1926 0 : targetnext = opaque->btpo_next;
1927 :
1928 : /* Be slightly more pro-active in freeing this memory, just in case */
1929 0 : pfree(rightpage);
1930 : }
1931 :
1932 : /*
1933 : * No ShareLock held case -- why it's safe to proceed.
1934 : *
1935 : * Problem:
1936 : *
1937 : * We must avoid false positive reports of corruption when caller treats
1938 : * item returned here as an upper bound on target's last item. In
1939 : * general, false positives are disallowed. Avoiding them here when
1940 : * caller is !readonly is subtle.
1941 : *
1942 : * A concurrent page deletion by VACUUM of the target page can result in
1943 : * the insertion of items on to this right sibling page that would
1944 : * previously have been inserted on our target page. There might have
1945 : * been insertions that followed the target's downlink after it was made
1946 : * to point to right sibling instead of target by page deletion's first
1947 : * phase. The inserters insert items that would belong on target page.
1948 : * This race is very tight, but it's possible. This is our only problem.
1949 : *
1950 : * Non-problems:
1951 : *
1952 : * We are not hindered by a concurrent page split of the target; we'll
1953 : * never land on the second half of the page anyway. A concurrent split
1954 : * of the right page will also not matter, because the first data item
1955 : * remains the same within the left half, which we'll reliably land on. If
1956 : * we had to skip over ignorable/deleted pages, it cannot matter because
1957 : * their key space has already been atomically merged with the first
1958 : * non-ignorable page we eventually find (doesn't matter whether the page
1959 : * we eventually find is a true sibling or a cousin of target, which we go
1960 : * into below).
1961 : *
1962 : * Solution:
1963 : *
1964 : * Caller knows that it should reverify that target is not ignorable
1965 : * (half-dead or deleted) when cross-page sibling item comparison appears
1966 : * to indicate corruption (invariant fails). This detects the single race
1967 : * condition that exists for caller. This is correct because the
1968 : * continued existence of target block as non-ignorable (not half-dead or
1969 : * deleted) implies that target page was not merged into from the right by
1970 : * deletion; the key space at or after target never moved left. Target's
1971 : * parent either has the same downlink to target as before, or a <
1972 : * downlink due to deletion at the left of target. Target either has the
1973 : * same highkey as before, or a highkey < before when there is a page
1974 : * split. (The rightmost concurrently-split-from-target-page page will
1975 : * still have the same highkey as target was originally found to have,
1976 : * which for our purposes is equivalent to target's highkey itself never
1977 : * changing, since we reliably skip over
1978 : * concurrently-split-from-target-page pages.)
1979 : *
1980 : * In simpler terms, we allow that the key space of the target may expand
1981 : * left (the key space can move left on the left side of target only), but
1982 : * the target key space cannot expand right and get ahead of us without
1983 : * our detecting it. The key space of the target cannot shrink, unless it
1984 : * shrinks to zero due to the deletion of the original page, our canary
1985 : * condition. (To be very precise, we're a bit stricter than that because
1986 : * it might just have been that the target page split and only the
1987 : * original target page was deleted. We can be more strict, just not more
1988 : * lax.)
1989 : *
1990 : * Top level tree walk caller moves on to next page (makes it the new
1991 : * target) following recovery from this race. (cf. The rationale for
1992 : * child/downlink verification needing a ShareLock within
1993 : * bt_child_check(), where page deletion is also the main source of
1994 : * trouble.)
1995 : *
1996 : * Note that it doesn't matter if right sibling page here is actually a
1997 : * cousin page, because in order for the key space to be readjusted in a
1998 : * way that causes us issues in next level up (guiding problematic
1999 : * concurrent insertions to the cousin from the grandparent rather than to
2000 : * the sibling from the parent), there'd have to be page deletion of
2001 : * target's parent page (affecting target's parent's downlink in target's
2002 : * grandparent page). Internal page deletion only occurs when there are
2003 : * no child pages (they were all fully deleted), and caller is checking
2004 : * that the target's parent has at least one non-deleted (so
2005 : * non-ignorable) child: the target page. (Note that the first phase of
2006 : * deletion atomically marks the page to be deleted half-dead/ignorable at
2007 : * the same time downlink in its parent is removed, so caller will
2008 : * definitely not fail to detect that this happened.)
2009 : *
2010 : * This trick is inspired by the method backward scans use for dealing
2011 : * with concurrent page splits; concurrent page deletion is a problem that
2012 : * similarly receives special consideration sometimes (it's possible that
2013 : * the backwards scan will re-read its "original" block after failing to
2014 : * find a right-link to it, having already moved in the opposite direction
2015 : * (right/"forwards") a few times to try to locate one). Just like us,
2016 : * that happens only to determine if there was a concurrent page deletion
2017 : * of a reference page, and just like us if there was a page deletion of
2018 : * that reference page it means we can move on from caring about the
2019 : * reference page. See the nbtree README for a full description of how
2020 : * that works.
2021 : */
2022 0 : nline = PageGetMaxOffsetNumber(rightpage);
2023 :
2024 : /*
2025 : * Get first data item, if any
2026 : */
2027 0 : if (P_ISLEAF(opaque) && nline >= P_FIRSTDATAKEY(opaque))
2028 : {
2029 : /* Return first data item (if any) */
2030 0 : rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2031 0 : P_FIRSTDATAKEY(opaque));
2032 0 : *rightfirstoffset = P_FIRSTDATAKEY(opaque);
2033 0 : }
2034 0 : else if (!P_ISLEAF(opaque) &&
2035 0 : nline >= OffsetNumberNext(P_FIRSTDATAKEY(opaque)))
2036 : {
2037 : /*
2038 : * Return first item after the internal page's "negative infinity"
2039 : * item
2040 : */
2041 0 : rightitem = PageGetItemIdCareful(state, targetnext, rightpage,
2042 0 : OffsetNumberNext(P_FIRSTDATAKEY(opaque)));
2043 0 : }
2044 : else
2045 : {
2046 : /*
2047 : * No first item. Page is probably empty leaf page, but it's also
2048 : * possible that it's an internal page with only a negative infinity
2049 : * item.
2050 : */
2051 0 : ereport(DEBUG2,
2052 : (errcode(ERRCODE_NO_DATA),
2053 : errmsg_internal("%s block %u of index \"%s\" has no first data item",
2054 : P_ISLEAF(opaque) ? "leaf" : "internal", targetnext,
2055 : RelationGetRelationName(state->rel))));
2056 0 : return NULL;
2057 : }
2058 :
2059 : /*
2060 : * Return first real item scankey. Note that this relies on right page
2061 : * memory remaining allocated.
2062 : */
2063 0 : firstitup = (IndexTuple) PageGetItem(rightpage, rightitem);
2064 0 : return bt_mkscankey_pivotsearch(state->rel, firstitup);
2065 0 : }
2066 :
2067 : /*
2068 : * Check if two tuples are binary identical except the block number. So,
2069 : * this function is capable to compare pivot keys on different levels.
2070 : */
2071 : static bool
2072 0 : bt_pivot_tuple_identical(bool heapkeyspace, IndexTuple itup1, IndexTuple itup2)
2073 : {
2074 0 : if (IndexTupleSize(itup1) != IndexTupleSize(itup2))
2075 0 : return false;
2076 :
2077 0 : if (heapkeyspace)
2078 : {
2079 : /*
2080 : * Offset number will contain important information in heapkeyspace
2081 : * indexes: the number of attributes left in the pivot tuple following
2082 : * suffix truncation. Don't skip over it (compare it too).
2083 : */
2084 0 : if (memcmp(&itup1->t_tid.ip_posid, &itup2->t_tid.ip_posid,
2085 0 : IndexTupleSize(itup1) -
2086 0 : offsetof(ItemPointerData, ip_posid)) != 0)
2087 0 : return false;
2088 0 : }
2089 : else
2090 : {
2091 : /*
2092 : * Cannot rely on offset number field having consistent value across
2093 : * levels on pg_upgrade'd !heapkeyspace indexes. Compare contents of
2094 : * tuple starting from just after item pointer (i.e. after block
2095 : * number and offset number).
2096 : */
2097 0 : if (memcmp(&itup1->t_info, &itup2->t_info,
2098 0 : IndexTupleSize(itup1) -
2099 0 : offsetof(IndexTupleData, t_info)) != 0)
2100 0 : return false;
2101 : }
2102 :
2103 0 : return true;
2104 0 : }
2105 :
2106 : /*---
2107 : * Check high keys on the child level. Traverse rightlinks from previous
2108 : * downlink to the current one. Check that there are no intermediate pages
2109 : * with missing downlinks.
2110 : *
2111 : * If 'loaded_child' is given, it's assumed to be the page pointed to by the
2112 : * downlink referenced by 'downlinkoffnum' of the target page.
2113 : *
2114 : * Basically this function is called for each target downlink and checks two
2115 : * invariants:
2116 : *
2117 : * 1) You can reach the next child from previous one via rightlinks;
2118 : * 2) Each child high key have matching pivot key on target level.
2119 : *
2120 : * Consider the sample tree picture.
2121 : *
2122 : * 1
2123 : * / \
2124 : * 2 <-> 3
2125 : * / \ / \
2126 : * 4 <> 5 <> 6 <> 7 <> 8
2127 : *
2128 : * This function will be called for blocks 4, 5, 6 and 8. Consider what is
2129 : * happening for each function call.
2130 : *
2131 : * - The function call for block 4 initializes data structure and matches high
2132 : * key of block 4 to downlink's pivot key of block 2.
2133 : * - The high key of block 5 is matched to the high key of block 2.
2134 : * - The block 6 has an incomplete split flag set, so its high key isn't
2135 : * matched to anything.
2136 : * - The function call for block 8 checks that block 8 can be found while
2137 : * following rightlinks from block 6. The high key of block 7 will be
2138 : * matched to downlink's pivot key in block 3.
2139 : *
2140 : * There is also final call of this function, which checks that there is no
2141 : * missing downlinks for children to the right of the child referenced by
2142 : * rightmost downlink in target level.
2143 : */
2144 : static void
2145 0 : bt_child_highkey_check(BtreeCheckState *state,
2146 : OffsetNumber target_downlinkoffnum,
2147 : Page loaded_child,
2148 : uint32 target_level)
2149 : {
2150 0 : BlockNumber blkno = state->prevrightlink;
2151 0 : Page page;
2152 0 : BTPageOpaque opaque;
2153 0 : bool rightsplit = state->previncompletesplit;
2154 0 : bool first = true;
2155 0 : ItemId itemid;
2156 0 : IndexTuple itup;
2157 0 : BlockNumber downlink;
2158 :
2159 0 : if (OffsetNumberIsValid(target_downlinkoffnum))
2160 : {
2161 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
2162 0 : state->target, target_downlinkoffnum);
2163 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2164 0 : downlink = BTreeTupleGetDownLink(itup);
2165 0 : }
2166 : else
2167 : {
2168 0 : downlink = P_NONE;
2169 : }
2170 :
2171 : /*
2172 : * If no previous rightlink is memorized for current level just below
2173 : * target page's level, we are about to start from the leftmost page. We
2174 : * can't follow rightlinks from previous page, because there is no
2175 : * previous page. But we still can match high key.
2176 : *
2177 : * So we initialize variables for the loop above like there is previous
2178 : * page referencing current child. Also we imply previous page to not
2179 : * have incomplete split flag, that would make us require downlink for
2180 : * current child. That's correct, because leftmost page on the level
2181 : * should always have parent downlink.
2182 : */
2183 0 : if (!BlockNumberIsValid(blkno))
2184 : {
2185 0 : blkno = downlink;
2186 0 : rightsplit = false;
2187 0 : }
2188 :
2189 : /* Move to the right on the child level */
2190 0 : while (true)
2191 : {
2192 : /*
2193 : * Did we traverse the whole tree level and this is check for pages to
2194 : * the right of rightmost downlink?
2195 : */
2196 0 : if (blkno == P_NONE && downlink == P_NONE)
2197 : {
2198 0 : state->prevrightlink = InvalidBlockNumber;
2199 0 : state->previncompletesplit = false;
2200 0 : return;
2201 : }
2202 :
2203 : /* Did we traverse the whole tree level and don't find next downlink? */
2204 0 : if (blkno == P_NONE)
2205 0 : ereport(ERROR,
2206 : (errcode(ERRCODE_INDEX_CORRUPTED),
2207 : errmsg("can't traverse from downlink %u to downlink %u of index \"%s\"",
2208 : state->prevrightlink, downlink,
2209 : RelationGetRelationName(state->rel))));
2210 :
2211 : /* Load page contents */
2212 0 : if (blkno == downlink && loaded_child)
2213 0 : page = loaded_child;
2214 : else
2215 0 : page = palloc_btree_page(state, blkno);
2216 :
2217 0 : opaque = BTPageGetOpaque(page);
2218 :
2219 : /* The first page we visit at the level should be leftmost */
2220 0 : if (first && !BlockNumberIsValid(state->prevrightlink) &&
2221 0 : !bt_leftmost_ignoring_half_dead(state, blkno, opaque))
2222 0 : ereport(ERROR,
2223 : (errcode(ERRCODE_INDEX_CORRUPTED),
2224 : errmsg("the first child of leftmost target page is not leftmost of its level in index \"%s\"",
2225 : RelationGetRelationName(state->rel)),
2226 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2227 : state->targetblock, blkno,
2228 : LSN_FORMAT_ARGS(state->targetlsn))));
2229 :
2230 : /* Do level sanity check */
2231 0 : if ((!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque)) &&
2232 0 : opaque->btpo_level != target_level - 1)
2233 0 : ereport(ERROR,
2234 : (errcode(ERRCODE_INDEX_CORRUPTED),
2235 : errmsg("block found while following rightlinks from child of index \"%s\" has invalid level",
2236 : RelationGetRelationName(state->rel)),
2237 : errdetail_internal("Block pointed to=%u expected level=%u level in pointed to block=%u.",
2238 : blkno, target_level - 1, opaque->btpo_level)));
2239 :
2240 : /* Try to detect circular links */
2241 0 : if ((!first && blkno == state->prevrightlink) || blkno == opaque->btpo_prev)
2242 0 : ereport(ERROR,
2243 : (errcode(ERRCODE_INDEX_CORRUPTED),
2244 : errmsg("circular link chain found in block %u of index \"%s\"",
2245 : blkno, RelationGetRelationName(state->rel))));
2246 :
2247 0 : if (blkno != downlink && !P_IGNORE(opaque))
2248 : {
2249 : /* blkno probably has missing parent downlink */
2250 0 : bt_downlink_missing_check(state, rightsplit, blkno, page);
2251 0 : }
2252 :
2253 0 : rightsplit = P_INCOMPLETE_SPLIT(opaque);
2254 :
2255 : /*
2256 : * If we visit page with high key, check that it is equal to the
2257 : * target key next to corresponding downlink.
2258 : */
2259 0 : if (!rightsplit && !P_RIGHTMOST(opaque) && !P_ISHALFDEAD(opaque))
2260 : {
2261 0 : BTPageOpaque topaque;
2262 0 : IndexTuple highkey;
2263 0 : OffsetNumber pivotkey_offset;
2264 :
2265 : /* Get high key */
2266 0 : itemid = PageGetItemIdCareful(state, blkno, page, P_HIKEY);
2267 0 : highkey = (IndexTuple) PageGetItem(page, itemid);
2268 :
2269 : /*
2270 : * There might be two situations when we examine high key. If
2271 : * current child page is referenced by given target downlink, we
2272 : * should look to the next offset number for matching key from
2273 : * target page.
2274 : *
2275 : * Alternatively, we're following rightlinks somewhere in the
2276 : * middle between page referenced by previous target's downlink
2277 : * and the page referenced by current target's downlink. If
2278 : * current child page hasn't incomplete split flag set, then its
2279 : * high key should match to the target's key of current offset
2280 : * number. This happens when a previous call here (to
2281 : * bt_child_highkey_check()) found an incomplete split, and we
2282 : * reach a right sibling page without a downlink -- the right
2283 : * sibling page's high key still needs to be matched to a
2284 : * separator key on the parent/target level.
2285 : *
2286 : * Don't apply OffsetNumberNext() to target_downlinkoffnum when we
2287 : * already had to step right on the child level. Our traversal of
2288 : * the child level must try to move in perfect lockstep behind (to
2289 : * the left of) the target/parent level traversal.
2290 : */
2291 0 : if (blkno == downlink)
2292 0 : pivotkey_offset = OffsetNumberNext(target_downlinkoffnum);
2293 : else
2294 0 : pivotkey_offset = target_downlinkoffnum;
2295 :
2296 0 : topaque = BTPageGetOpaque(state->target);
2297 :
2298 0 : if (!offset_is_negative_infinity(topaque, pivotkey_offset))
2299 : {
2300 : /*
2301 : * If we're looking for the next pivot tuple in target page,
2302 : * but there is no more pivot tuples, then we should match to
2303 : * high key instead.
2304 : */
2305 0 : if (pivotkey_offset > PageGetMaxOffsetNumber(state->target))
2306 : {
2307 0 : if (P_RIGHTMOST(topaque))
2308 0 : ereport(ERROR,
2309 : (errcode(ERRCODE_INDEX_CORRUPTED),
2310 : errmsg("child high key is greater than rightmost pivot key on target level in index \"%s\"",
2311 : RelationGetRelationName(state->rel)),
2312 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2313 : state->targetblock, blkno,
2314 : LSN_FORMAT_ARGS(state->targetlsn))));
2315 0 : pivotkey_offset = P_HIKEY;
2316 0 : }
2317 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
2318 0 : state->target, pivotkey_offset);
2319 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2320 0 : }
2321 : else
2322 : {
2323 : /*
2324 : * We cannot try to match child's high key to a negative
2325 : * infinity key in target, since there is nothing to compare.
2326 : * However, it's still possible to match child's high key
2327 : * outside of target page. The reason why we're are is that
2328 : * bt_child_highkey_check() was previously called for the
2329 : * cousin page of 'loaded_child', which is incomplete split.
2330 : * So, now we traverse to the right of that cousin page and
2331 : * current child level page under consideration still belongs
2332 : * to the subtree of target's left sibling. Thus, we need to
2333 : * match child's high key to its left uncle page high key.
2334 : * Thankfully we saved it, it's called a "low key" of target
2335 : * page.
2336 : */
2337 0 : if (!state->lowkey)
2338 0 : ereport(ERROR,
2339 : (errcode(ERRCODE_INDEX_CORRUPTED),
2340 : errmsg("can't find left sibling high key in index \"%s\"",
2341 : RelationGetRelationName(state->rel)),
2342 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2343 : state->targetblock, blkno,
2344 : LSN_FORMAT_ARGS(state->targetlsn))));
2345 0 : itup = state->lowkey;
2346 : }
2347 :
2348 0 : if (!bt_pivot_tuple_identical(state->heapkeyspace, highkey, itup))
2349 : {
2350 0 : ereport(ERROR,
2351 : (errcode(ERRCODE_INDEX_CORRUPTED),
2352 : errmsg("mismatch between parent key and child high key in index \"%s\"",
2353 : RelationGetRelationName(state->rel)),
2354 : errdetail_internal("Target block=%u child block=%u target page lsn=%X/%08X.",
2355 : state->targetblock, blkno,
2356 : LSN_FORMAT_ARGS(state->targetlsn))));
2357 0 : }
2358 0 : }
2359 :
2360 : /* Exit if we already found next downlink */
2361 0 : if (blkno == downlink)
2362 : {
2363 0 : state->prevrightlink = opaque->btpo_next;
2364 0 : state->previncompletesplit = rightsplit;
2365 0 : return;
2366 : }
2367 :
2368 : /* Traverse to the next page using rightlink */
2369 0 : blkno = opaque->btpo_next;
2370 :
2371 : /* Free page contents if it's allocated by us */
2372 0 : if (page != loaded_child)
2373 0 : pfree(page);
2374 0 : first = false;
2375 : }
2376 0 : }
2377 :
2378 : /*
2379 : * Checks one of target's downlink against its child page.
2380 : *
2381 : * Conceptually, the target page continues to be what is checked here. The
2382 : * target block is still blamed in the event of finding an invariant violation.
2383 : * The downlink insertion into the target is probably where any problem raised
2384 : * here arises, and there is no such thing as a parent link, so doing the
2385 : * verification this way around is much more practical.
2386 : *
2387 : * This function visits child page and it's sequentially called for each
2388 : * downlink of target page. Assuming this we also check downlink connectivity
2389 : * here in order to save child page visits.
2390 : */
2391 : static void
2392 0 : bt_child_check(BtreeCheckState *state, BTScanInsert targetkey,
2393 : OffsetNumber downlinkoffnum)
2394 : {
2395 0 : ItemId itemid;
2396 0 : IndexTuple itup;
2397 0 : BlockNumber childblock;
2398 0 : OffsetNumber offset;
2399 0 : OffsetNumber maxoffset;
2400 0 : Page child;
2401 0 : BTPageOpaque copaque;
2402 0 : BTPageOpaque topaque;
2403 :
2404 0 : itemid = PageGetItemIdCareful(state, state->targetblock,
2405 0 : state->target, downlinkoffnum);
2406 0 : itup = (IndexTuple) PageGetItem(state->target, itemid);
2407 0 : childblock = BTreeTupleGetDownLink(itup);
2408 :
2409 : /*
2410 : * Caller must have ShareLock on target relation, because of
2411 : * considerations around page deletion by VACUUM.
2412 : *
2413 : * NB: In general, page deletion deletes the right sibling's downlink, not
2414 : * the downlink of the page being deleted; the deleted page's downlink is
2415 : * reused for its sibling. The key space is thereby consolidated between
2416 : * the deleted page and its right sibling. (We cannot delete a parent
2417 : * page's rightmost child unless it is the last child page, and we intend
2418 : * to also delete the parent itself.)
2419 : *
2420 : * If this verification happened without a ShareLock, the following race
2421 : * condition could cause false positives:
2422 : *
2423 : * In general, concurrent page deletion might occur, including deletion of
2424 : * the left sibling of the child page that is examined here. If such a
2425 : * page deletion were to occur, closely followed by an insertion into the
2426 : * newly expanded key space of the child, a window for the false positive
2427 : * opens up: the stale parent/target downlink originally followed to get
2428 : * to the child legitimately ceases to be a lower bound on all items in
2429 : * the page, since the key space was concurrently expanded "left".
2430 : * (Insertion followed the "new" downlink for the child, not our now-stale
2431 : * downlink, which was concurrently physically removed in target/parent as
2432 : * part of deletion's first phase.)
2433 : *
2434 : * While we use various techniques elsewhere to perform cross-page
2435 : * verification for !readonly callers, a similar trick seems difficult
2436 : * here. The tricks used by bt_recheck_sibling_links and by
2437 : * bt_right_page_check_scankey both involve verification of a same-level,
2438 : * cross-sibling invariant. Cross-level invariants are far more squishy,
2439 : * though. The nbtree REDO routines do not actually couple buffer locks
2440 : * across levels during page splits, so making any cross-level check work
2441 : * reliably in !readonly mode may be impossible.
2442 : */
2443 0 : Assert(state->readonly);
2444 :
2445 : /*
2446 : * Verify child page has the downlink key from target page (its parent) as
2447 : * a lower bound; downlink must be strictly less than all keys on the
2448 : * page.
2449 : *
2450 : * Check all items, rather than checking just the first and trusting that
2451 : * the operator class obeys the transitive law.
2452 : */
2453 0 : topaque = BTPageGetOpaque(state->target);
2454 0 : child = palloc_btree_page(state, childblock);
2455 0 : copaque = BTPageGetOpaque(child);
2456 0 : maxoffset = PageGetMaxOffsetNumber(child);
2457 :
2458 : /*
2459 : * Since we've already loaded the child block, combine this check with
2460 : * check for downlink connectivity.
2461 : */
2462 0 : bt_child_highkey_check(state, downlinkoffnum,
2463 0 : child, topaque->btpo_level);
2464 :
2465 : /*
2466 : * Since there cannot be a concurrent VACUUM operation in readonly mode,
2467 : * and since a page has no links within other pages (siblings and parent)
2468 : * once it is marked fully deleted, it should be impossible to land on a
2469 : * fully deleted page.
2470 : *
2471 : * It does not quite make sense to enforce that the page cannot even be
2472 : * half-dead, despite the fact the downlink is modified at the same stage
2473 : * that the child leaf page is marked half-dead. That's incorrect because
2474 : * there may occasionally be multiple downlinks from a chain of pages
2475 : * undergoing deletion, where multiple successive calls are made to
2476 : * _bt_unlink_halfdead_page() by VACUUM before it can finally safely mark
2477 : * the leaf page as fully dead. While _bt_mark_page_halfdead() usually
2478 : * removes the downlink to the leaf page that is marked half-dead, that's
2479 : * not guaranteed, so it's possible we'll land on a half-dead page with a
2480 : * downlink due to an interrupted multi-level page deletion.
2481 : *
2482 : * We go ahead with our checks if the child page is half-dead. It's safe
2483 : * to do so because we do not test the child's high key, so it does not
2484 : * matter that the original high key will have been replaced by a dummy
2485 : * truncated high key within _bt_mark_page_halfdead(). All other page
2486 : * items are left intact on a half-dead page, so there is still something
2487 : * to test.
2488 : */
2489 0 : if (P_ISDELETED(copaque))
2490 0 : ereport(ERROR,
2491 : (errcode(ERRCODE_INDEX_CORRUPTED),
2492 : errmsg("downlink to deleted page found in index \"%s\"",
2493 : RelationGetRelationName(state->rel)),
2494 : errdetail_internal("Parent block=%u child block=%u parent page lsn=%X/%08X.",
2495 : state->targetblock, childblock,
2496 : LSN_FORMAT_ARGS(state->targetlsn))));
2497 :
2498 0 : for (offset = P_FIRSTDATAKEY(copaque);
2499 0 : offset <= maxoffset;
2500 0 : offset = OffsetNumberNext(offset))
2501 : {
2502 : /*
2503 : * Skip comparison of target page key against "negative infinity"
2504 : * item, if any. Checking it would indicate that it's not a strict
2505 : * lower bound, but that's only because of the hard-coding for
2506 : * negative infinity items within _bt_compare().
2507 : *
2508 : * If nbtree didn't truncate negative infinity tuples during internal
2509 : * page splits then we'd expect child's negative infinity key to be
2510 : * equal to the scankey/downlink from target/parent (it would be a
2511 : * "low key" in this hypothetical scenario, and so it would still need
2512 : * to be treated as a special case here).
2513 : *
2514 : * Negative infinity items can be thought of as a strict lower bound
2515 : * that works transitively, with the last non-negative-infinity pivot
2516 : * followed during a descent from the root as its "true" strict lower
2517 : * bound. Only a small number of negative infinity items are truly
2518 : * negative infinity; those that are the first items of leftmost
2519 : * internal pages. In more general terms, a negative infinity item is
2520 : * only negative infinity with respect to the subtree that the page is
2521 : * at the root of.
2522 : *
2523 : * See also: bt_rootdescend(), which can even detect transitive
2524 : * inconsistencies on cousin leaf pages.
2525 : */
2526 0 : if (offset_is_negative_infinity(copaque, offset))
2527 0 : continue;
2528 :
2529 0 : if (!invariant_l_nontarget_offset(state, targetkey, childblock, child,
2530 0 : offset))
2531 0 : ereport(ERROR,
2532 : (errcode(ERRCODE_INDEX_CORRUPTED),
2533 : errmsg("down-link lower bound invariant violated for index \"%s\"",
2534 : RelationGetRelationName(state->rel)),
2535 : errdetail_internal("Parent block=%u child index tid=(%u,%u) parent page lsn=%X/%08X.",
2536 : state->targetblock, childblock, offset,
2537 : LSN_FORMAT_ARGS(state->targetlsn))));
2538 0 : }
2539 :
2540 0 : pfree(child);
2541 0 : }
2542 :
2543 : /*
2544 : * Checks if page is missing a downlink that it should have.
2545 : *
2546 : * A page that lacks a downlink/parent may indicate corruption. However, we
2547 : * must account for the fact that a missing downlink can occasionally be
2548 : * encountered in a non-corrupt index. This can be due to an interrupted page
2549 : * split, or an interrupted multi-level page deletion (i.e. there was a hard
2550 : * crash or an error during a page split, or while VACUUM was deleting a
2551 : * multi-level chain of pages).
2552 : *
2553 : * Note that this can only be called in readonly mode, so there is no need to
2554 : * be concerned about concurrent page splits or page deletions.
2555 : */
2556 : static void
2557 0 : bt_downlink_missing_check(BtreeCheckState *state, bool rightsplit,
2558 : BlockNumber blkno, Page page)
2559 : {
2560 0 : BTPageOpaque opaque = BTPageGetOpaque(page);
2561 0 : ItemId itemid;
2562 0 : IndexTuple itup;
2563 0 : Page child;
2564 0 : BTPageOpaque copaque;
2565 0 : uint32 level;
2566 0 : BlockNumber childblk;
2567 0 : XLogRecPtr pagelsn;
2568 :
2569 0 : Assert(state->readonly);
2570 0 : Assert(!P_IGNORE(opaque));
2571 :
2572 : /* No next level up with downlinks to fingerprint from the true root */
2573 0 : if (P_ISROOT(opaque))
2574 0 : return;
2575 :
2576 0 : pagelsn = PageGetLSN(page);
2577 :
2578 : /*
2579 : * Incomplete (interrupted) page splits can account for the lack of a
2580 : * downlink. Some inserting transaction should eventually complete the
2581 : * page split in passing, when it notices that the left sibling page is
2582 : * P_INCOMPLETE_SPLIT().
2583 : *
2584 : * In general, VACUUM is not prepared for there to be no downlink to a
2585 : * page that it deletes. This is the main reason why the lack of a
2586 : * downlink can be reported as corruption here. It's not obvious that an
2587 : * invalid missing downlink can result in wrong answers to queries,
2588 : * though, since index scans that land on the child may end up
2589 : * consistently moving right. The handling of concurrent page splits (and
2590 : * page deletions) within _bt_moveright() cannot distinguish
2591 : * inconsistencies that last for a moment from inconsistencies that are
2592 : * permanent and irrecoverable.
2593 : *
2594 : * VACUUM isn't even prepared to delete pages that have no downlink due to
2595 : * an incomplete page split, but it can detect and reason about that case
2596 : * by design, so it shouldn't be taken to indicate corruption. See
2597 : * _bt_pagedel() for full details.
2598 : */
2599 0 : if (rightsplit)
2600 : {
2601 0 : ereport(DEBUG1,
2602 : (errcode(ERRCODE_NO_DATA),
2603 : errmsg_internal("harmless interrupted page split detected in index \"%s\"",
2604 : RelationGetRelationName(state->rel)),
2605 : errdetail_internal("Block=%u level=%u left sibling=%u page lsn=%X/%08X.",
2606 : blkno, opaque->btpo_level,
2607 : opaque->btpo_prev,
2608 : LSN_FORMAT_ARGS(pagelsn))));
2609 0 : return;
2610 : }
2611 :
2612 : /*
2613 : * Page under check is probably the "top parent" of a multi-level page
2614 : * deletion. We'll need to descend the subtree to make sure that
2615 : * descendant pages are consistent with that, though.
2616 : *
2617 : * If the page (which must be non-ignorable) is a leaf page, then clearly
2618 : * it can't be the top parent. The lack of a downlink is probably a
2619 : * symptom of a broad problem that could just as easily cause
2620 : * inconsistencies anywhere else.
2621 : */
2622 0 : if (P_ISLEAF(opaque))
2623 0 : ereport(ERROR,
2624 : (errcode(ERRCODE_INDEX_CORRUPTED),
2625 : errmsg("leaf index block lacks downlink in index \"%s\"",
2626 : RelationGetRelationName(state->rel)),
2627 : errdetail_internal("Block=%u page lsn=%X/%08X.",
2628 : blkno,
2629 : LSN_FORMAT_ARGS(pagelsn))));
2630 :
2631 : /* Descend from the given page, which is an internal page */
2632 0 : elog(DEBUG1, "checking for interrupted multi-level deletion due to missing downlink in index \"%s\"",
2633 : RelationGetRelationName(state->rel));
2634 :
2635 0 : level = opaque->btpo_level;
2636 0 : itemid = PageGetItemIdCareful(state, blkno, page, P_FIRSTDATAKEY(opaque));
2637 0 : itup = (IndexTuple) PageGetItem(page, itemid);
2638 0 : childblk = BTreeTupleGetDownLink(itup);
2639 0 : for (;;)
2640 : {
2641 0 : CHECK_FOR_INTERRUPTS();
2642 :
2643 0 : child = palloc_btree_page(state, childblk);
2644 0 : copaque = BTPageGetOpaque(child);
2645 :
2646 0 : if (P_ISLEAF(copaque))
2647 0 : break;
2648 :
2649 : /* Do an extra sanity check in passing on internal pages */
2650 0 : if (copaque->btpo_level != level - 1)
2651 0 : ereport(ERROR,
2652 : (errcode(ERRCODE_INDEX_CORRUPTED),
2653 : errmsg_internal("downlink points to block in index \"%s\" whose level is not one level down",
2654 : RelationGetRelationName(state->rel)),
2655 : errdetail_internal("Top parent/under check block=%u block pointed to=%u expected level=%u level in pointed to block=%u.",
2656 : blkno, childblk,
2657 : level - 1, copaque->btpo_level)));
2658 :
2659 0 : level = copaque->btpo_level;
2660 0 : itemid = PageGetItemIdCareful(state, childblk, child,
2661 0 : P_FIRSTDATAKEY(copaque));
2662 0 : itup = (IndexTuple) PageGetItem(child, itemid);
2663 0 : childblk = BTreeTupleGetDownLink(itup);
2664 : /* Be slightly more pro-active in freeing this memory, just in case */
2665 0 : pfree(child);
2666 : }
2667 :
2668 : /*
2669 : * Since there cannot be a concurrent VACUUM operation in readonly mode,
2670 : * and since a page has no links within other pages (siblings and parent)
2671 : * once it is marked fully deleted, it should be impossible to land on a
2672 : * fully deleted page. See bt_child_check() for further details.
2673 : *
2674 : * The bt_child_check() P_ISDELETED() check is repeated here because
2675 : * bt_child_check() does not visit pages reachable through negative
2676 : * infinity items. Besides, bt_child_check() is unwilling to descend
2677 : * multiple levels. (The similar bt_child_check() P_ISDELETED() check
2678 : * within bt_check_level_from_leftmost() won't reach the page either,
2679 : * since the leaf's live siblings should have their sibling links updated
2680 : * to bypass the deletion target page when it is marked fully dead.)
2681 : *
2682 : * If this error is raised, it might be due to a previous multi-level page
2683 : * deletion that failed to realize that it wasn't yet safe to mark the
2684 : * leaf page as fully dead. A "dangling downlink" will still remain when
2685 : * this happens. The fact that the dangling downlink's page (the leaf's
2686 : * parent/ancestor page) lacked a downlink is incidental.
2687 : */
2688 0 : if (P_ISDELETED(copaque))
2689 0 : ereport(ERROR,
2690 : (errcode(ERRCODE_INDEX_CORRUPTED),
2691 : errmsg_internal("downlink to deleted leaf page found in index \"%s\"",
2692 : RelationGetRelationName(state->rel)),
2693 : errdetail_internal("Top parent/target block=%u leaf block=%u top parent/under check lsn=%X/%08X.",
2694 : blkno, childblk,
2695 : LSN_FORMAT_ARGS(pagelsn))));
2696 :
2697 : /*
2698 : * Iff leaf page is half-dead, its high key top parent link should point
2699 : * to what VACUUM considered to be the top parent page at the instant it
2700 : * was interrupted. Provided the high key link actually points to the
2701 : * page under check, the missing downlink we detected is consistent with
2702 : * there having been an interrupted multi-level page deletion. This means
2703 : * that the subtree with the page under check at its root (a page deletion
2704 : * chain) is in a consistent state, enabling VACUUM to resume deleting the
2705 : * entire chain the next time it encounters the half-dead leaf page.
2706 : */
2707 0 : if (P_ISHALFDEAD(copaque) && !P_RIGHTMOST(copaque))
2708 : {
2709 0 : itemid = PageGetItemIdCareful(state, childblk, child, P_HIKEY);
2710 0 : itup = (IndexTuple) PageGetItem(child, itemid);
2711 0 : if (BTreeTupleGetTopParent(itup) == blkno)
2712 0 : return;
2713 0 : }
2714 :
2715 0 : ereport(ERROR,
2716 : (errcode(ERRCODE_INDEX_CORRUPTED),
2717 : errmsg("internal index block lacks downlink in index \"%s\"",
2718 : RelationGetRelationName(state->rel)),
2719 : errdetail_internal("Block=%u level=%u page lsn=%X/%08X.",
2720 : blkno, opaque->btpo_level,
2721 : LSN_FORMAT_ARGS(pagelsn))));
2722 0 : }
2723 :
2724 : /*
2725 : * Per-tuple callback from table_index_build_scan, used to determine if index has
2726 : * all the entries that definitely should have been observed in leaf pages of
2727 : * the target index (that is, all IndexTuples that were fingerprinted by our
2728 : * Bloom filter). All heapallindexed checks occur here.
2729 : *
2730 : * The redundancy between an index and the table it indexes provides a good
2731 : * opportunity to detect corruption, especially corruption within the table.
2732 : * The high level principle behind the verification performed here is that any
2733 : * IndexTuple that should be in an index following a fresh CREATE INDEX (based
2734 : * on the same index definition) should also have been in the original,
2735 : * existing index, which should have used exactly the same representation
2736 : *
2737 : * Since the overall structure of the index has already been verified, the most
2738 : * likely explanation for error here is a corrupt heap page (could be logical
2739 : * or physical corruption). Index corruption may still be detected here,
2740 : * though. Only readonly callers will have verified that left links and right
2741 : * links are in agreement, and so it's possible that a leaf page transposition
2742 : * within index is actually the source of corruption detected here (for
2743 : * !readonly callers). The checks performed only for readonly callers might
2744 : * more accurately frame the problem as a cross-page invariant issue (this
2745 : * could even be due to recovery not replaying all WAL records). The !readonly
2746 : * ERROR message raised here includes a HINT about retrying with readonly
2747 : * verification, just in case it's a cross-page invariant issue, though that
2748 : * isn't particularly likely.
2749 : *
2750 : * table_index_build_scan() expects to be able to find the root tuple when a
2751 : * heap-only tuple (the live tuple at the end of some HOT chain) needs to be
2752 : * indexed, in order to replace the actual tuple's TID with the root tuple's
2753 : * TID (which is what we're actually passed back here). The index build heap
2754 : * scan code will raise an error when a tuple that claims to be the root of the
2755 : * heap-only tuple's HOT chain cannot be located. This catches cases where the
2756 : * original root item offset/root tuple for a HOT chain indicates (for whatever
2757 : * reason) that the entire HOT chain is dead, despite the fact that the latest
2758 : * heap-only tuple should be indexed. When this happens, sequential scans may
2759 : * always give correct answers, and all indexes may be considered structurally
2760 : * consistent (i.e. the nbtree structural checks would not detect corruption).
2761 : * It may be the case that only index scans give wrong answers, and yet heap or
2762 : * SLRU corruption is the real culprit. (While it's true that LP_DEAD bit
2763 : * setting will probably also leave the index in a corrupt state before too
2764 : * long, the problem is nonetheless that there is heap corruption.)
2765 : *
2766 : * Heap-only tuple handling within table_index_build_scan() works in a way that
2767 : * helps us to detect index tuples that contain the wrong values (values that
2768 : * don't match the latest tuple in the HOT chain). This can happen when there
2769 : * is no superseding index tuple due to a faulty assessment of HOT safety,
2770 : * perhaps during the original CREATE INDEX. Because the latest tuple's
2771 : * contents are used with the root TID, an error will be raised when a tuple
2772 : * with the same TID but non-matching attribute values is passed back to us.
2773 : * Faulty assessment of HOT-safety was behind at least two distinct CREATE
2774 : * INDEX CONCURRENTLY bugs that made it into stable releases, one of which was
2775 : * undetected for many years. In short, the same principle that allows a
2776 : * REINDEX to repair corruption when there was an (undetected) broken HOT chain
2777 : * also allows us to detect the corruption in many cases.
2778 : */
2779 : static void
2780 0 : bt_tuple_present_callback(Relation index, ItemPointer tid, Datum *values,
2781 : bool *isnull, bool tupleIsAlive, void *checkstate)
2782 : {
2783 0 : BtreeCheckState *state = (BtreeCheckState *) checkstate;
2784 0 : IndexTuple itup,
2785 : norm;
2786 :
2787 0 : Assert(state->heapallindexed);
2788 :
2789 : /* Generate a normalized index tuple for fingerprinting */
2790 0 : itup = index_form_tuple(RelationGetDescr(index), values, isnull);
2791 0 : itup->t_tid = *tid;
2792 0 : norm = bt_normalize_tuple(state, itup);
2793 :
2794 : /* Probe Bloom filter -- tuple should be present */
2795 0 : if (bloom_lacks_element(state->filter, (unsigned char *) norm,
2796 0 : IndexTupleSize(norm)))
2797 0 : ereport(ERROR,
2798 : (errcode(ERRCODE_DATA_CORRUPTED),
2799 : errmsg("heap tuple (%u,%u) from table \"%s\" lacks matching index tuple within index \"%s\"",
2800 : ItemPointerGetBlockNumber(&(itup->t_tid)),
2801 : ItemPointerGetOffsetNumber(&(itup->t_tid)),
2802 : RelationGetRelationName(state->heaprel),
2803 : RelationGetRelationName(state->rel)),
2804 : !state->readonly
2805 : ? errhint("Retrying verification using the function bt_index_parent_check() might provide a more specific error.")
2806 : : 0));
2807 :
2808 0 : state->heaptuplespresent++;
2809 0 : pfree(itup);
2810 : /* Cannot leak memory here */
2811 0 : if (norm != itup)
2812 0 : pfree(norm);
2813 0 : }
2814 :
2815 : /*
2816 : * Normalize an index tuple for fingerprinting.
2817 : *
2818 : * In general, index tuple formation is assumed to be deterministic by
2819 : * heapallindexed verification, and IndexTuples are assumed immutable. While
2820 : * the LP_DEAD bit is mutable in leaf pages, that's ItemId metadata, which is
2821 : * not fingerprinted. Normalization is required to compensate for corner
2822 : * cases where the determinism assumption doesn't quite work.
2823 : *
2824 : * There is currently one such case: index_form_tuple() does not try to hide
2825 : * the source TOAST state of input datums. The executor applies TOAST
2826 : * compression for heap tuples based on different criteria to the compression
2827 : * applied within btinsert()'s call to index_form_tuple(): it sometimes
2828 : * compresses more aggressively, resulting in compressed heap tuple datums but
2829 : * uncompressed corresponding index tuple datums. A subsequent heapallindexed
2830 : * verification will get a logically equivalent though bitwise unequal tuple
2831 : * from index_form_tuple(). False positive heapallindexed corruption reports
2832 : * could occur without normalizing away the inconsistency.
2833 : *
2834 : * Returned tuple is often caller's own original tuple. Otherwise, it is a
2835 : * new representation of caller's original index tuple, palloc()'d in caller's
2836 : * memory context.
2837 : *
2838 : * Note: This routine is not concerned with distinctions about the
2839 : * representation of tuples beyond those that might break heapallindexed
2840 : * verification. In particular, it won't try to normalize opclass-equal
2841 : * datums with potentially distinct representations (e.g., btree/numeric_ops
2842 : * index datums will not get their display scale normalized-away here).
2843 : * Caller does normalization for non-pivot tuples that have a posting list,
2844 : * since dummy CREATE INDEX callback code generates new tuples with the same
2845 : * normalized representation.
2846 : */
2847 : static IndexTuple
2848 0 : bt_normalize_tuple(BtreeCheckState *state, IndexTuple itup)
2849 : {
2850 0 : TupleDesc tupleDescriptor = RelationGetDescr(state->rel);
2851 0 : Datum normalized[INDEX_MAX_KEYS];
2852 0 : bool isnull[INDEX_MAX_KEYS];
2853 0 : bool need_free[INDEX_MAX_KEYS];
2854 0 : bool formnewtup = false;
2855 0 : IndexTuple reformed;
2856 0 : int i;
2857 :
2858 : /* Caller should only pass "logical" non-pivot tuples here */
2859 0 : Assert(!BTreeTupleIsPosting(itup) && !BTreeTupleIsPivot(itup));
2860 :
2861 : /* Easy case: It's immediately clear that tuple has no varlena datums */
2862 0 : if (!IndexTupleHasVarwidths(itup))
2863 0 : return itup;
2864 :
2865 0 : for (i = 0; i < tupleDescriptor->natts; i++)
2866 : {
2867 0 : Form_pg_attribute att;
2868 :
2869 0 : att = TupleDescAttr(tupleDescriptor, i);
2870 :
2871 : /* Assume untoasted/already normalized datum initially */
2872 0 : need_free[i] = false;
2873 0 : normalized[i] = index_getattr(itup, att->attnum,
2874 0 : tupleDescriptor,
2875 0 : &isnull[i]);
2876 0 : if (att->attbyval || att->attlen != -1 || isnull[i])
2877 0 : continue;
2878 :
2879 : /*
2880 : * Callers always pass a tuple that could safely be inserted into the
2881 : * index without further processing, so an external varlena header
2882 : * should never be encountered here
2883 : */
2884 0 : if (VARATT_IS_EXTERNAL(DatumGetPointer(normalized[i])))
2885 0 : ereport(ERROR,
2886 : (errcode(ERRCODE_INDEX_CORRUPTED),
2887 : errmsg("external varlena datum in tuple that references heap row (%u,%u) in index \"%s\"",
2888 : ItemPointerGetBlockNumber(&(itup->t_tid)),
2889 : ItemPointerGetOffsetNumber(&(itup->t_tid)),
2890 : RelationGetRelationName(state->rel))));
2891 0 : else if (!VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])) &&
2892 0 : VARSIZE(DatumGetPointer(normalized[i])) > TOAST_INDEX_TARGET &&
2893 0 : (att->attstorage == TYPSTORAGE_EXTENDED ||
2894 0 : att->attstorage == TYPSTORAGE_MAIN))
2895 : {
2896 : /*
2897 : * This value will be compressed by index_form_tuple() with the
2898 : * current storage settings. We may be here because this tuple
2899 : * was formed with different storage settings. So, force forming.
2900 : */
2901 0 : formnewtup = true;
2902 0 : }
2903 0 : else if (VARATT_IS_COMPRESSED(DatumGetPointer(normalized[i])))
2904 : {
2905 0 : formnewtup = true;
2906 0 : normalized[i] = PointerGetDatum(PG_DETOAST_DATUM(normalized[i]));
2907 0 : need_free[i] = true;
2908 0 : }
2909 :
2910 : /*
2911 : * Short tuples may have 1B or 4B header. Convert 4B header of short
2912 : * tuples to 1B
2913 : */
2914 0 : else if (VARATT_CAN_MAKE_SHORT(DatumGetPointer(normalized[i])))
2915 : {
2916 : /* convert to short varlena */
2917 0 : Size len = VARATT_CONVERTED_SHORT_SIZE(DatumGetPointer(normalized[i]));
2918 0 : char *data = palloc(len);
2919 :
2920 0 : SET_VARSIZE_SHORT(data, len);
2921 0 : memcpy(data + 1, VARDATA(DatumGetPointer(normalized[i])), len - 1);
2922 :
2923 0 : formnewtup = true;
2924 0 : normalized[i] = PointerGetDatum(data);
2925 0 : need_free[i] = true;
2926 0 : }
2927 0 : }
2928 :
2929 : /*
2930 : * Easier case: Tuple has varlena datums, none of which are compressed or
2931 : * short with 4B header
2932 : */
2933 0 : if (!formnewtup)
2934 0 : return itup;
2935 :
2936 : /*
2937 : * Hard case: Tuple had compressed varlena datums that necessitate
2938 : * creating normalized version of the tuple from uncompressed input datums
2939 : * (normalized input datums). This is rather naive, but shouldn't be
2940 : * necessary too often.
2941 : *
2942 : * In the heap, tuples may contain short varlena datums with both 1B
2943 : * header and 4B headers. But the corresponding index tuple should always
2944 : * have such varlena's with 1B headers. So, if there is a short varlena
2945 : * with 4B header, we need to convert it for fingerprinting.
2946 : *
2947 : * Note that we rely on deterministic index_form_tuple() TOAST compression
2948 : * of normalized input.
2949 : */
2950 0 : reformed = index_form_tuple(tupleDescriptor, normalized, isnull);
2951 0 : reformed->t_tid = itup->t_tid;
2952 :
2953 : /* Cannot leak memory here */
2954 0 : for (i = 0; i < tupleDescriptor->natts; i++)
2955 0 : if (need_free[i])
2956 0 : pfree(DatumGetPointer(normalized[i]));
2957 :
2958 0 : return reformed;
2959 0 : }
2960 :
2961 : /*
2962 : * Produce palloc()'d "plain" tuple for nth posting list entry/TID.
2963 : *
2964 : * In general, deduplication is not supposed to change the logical contents of
2965 : * an index. Multiple index tuples are merged together into one equivalent
2966 : * posting list index tuple when convenient.
2967 : *
2968 : * heapallindexed verification must normalize-away this variation in
2969 : * representation by converting posting list tuples into two or more "plain"
2970 : * tuples. Each tuple must be fingerprinted separately -- there must be one
2971 : * tuple for each corresponding Bloom filter probe during the heap scan.
2972 : *
2973 : * Note: Caller still needs to call bt_normalize_tuple() with returned tuple.
2974 : */
2975 : static inline IndexTuple
2976 0 : bt_posting_plain_tuple(IndexTuple itup, int n)
2977 : {
2978 0 : Assert(BTreeTupleIsPosting(itup));
2979 :
2980 : /* Returns non-posting-list tuple */
2981 0 : return _bt_form_posting(itup, BTreeTupleGetPostingN(itup, n), 1);
2982 : }
2983 :
2984 : /*
2985 : * Search for itup in index, starting from fast root page. itup must be a
2986 : * non-pivot tuple. This is only supported with heapkeyspace indexes, since
2987 : * we rely on having fully unique keys to find a match with only a single
2988 : * visit to a leaf page, barring an interrupted page split, where we may have
2989 : * to move right. (A concurrent page split is impossible because caller must
2990 : * be readonly caller.)
2991 : *
2992 : * This routine can detect very subtle transitive consistency issues across
2993 : * more than one level of the tree. Leaf pages all have a high key (even the
2994 : * rightmost page has a conceptual positive infinity high key), but not a low
2995 : * key. Their downlink in parent is a lower bound, which along with the high
2996 : * key is almost enough to detect every possible inconsistency. A downlink
2997 : * separator key value won't always be available from parent, though, because
2998 : * the first items of internal pages are negative infinity items, truncated
2999 : * down to zero attributes during internal page splits. While it's true that
3000 : * bt_child_check() and the high key check can detect most imaginable key
3001 : * space problems, there are remaining problems it won't detect with non-pivot
3002 : * tuples in cousin leaf pages. Starting a search from the root for every
3003 : * existing leaf tuple detects small inconsistencies in upper levels of the
3004 : * tree that cannot be detected any other way. (Besides all this, this is
3005 : * probably also useful as a direct test of the code used by index scans
3006 : * themselves.)
3007 : */
3008 : static bool
3009 0 : bt_rootdescend(BtreeCheckState *state, IndexTuple itup)
3010 : {
3011 0 : BTScanInsert key;
3012 0 : BTStack stack;
3013 0 : Buffer lbuf;
3014 0 : bool exists;
3015 :
3016 0 : key = _bt_mkscankey(state->rel, itup);
3017 0 : Assert(key->heapkeyspace && key->scantid != NULL);
3018 :
3019 : /*
3020 : * Search from root.
3021 : *
3022 : * Ideally, we would arrange to only move right within _bt_search() when
3023 : * an interrupted page split is detected (i.e. when the incomplete split
3024 : * bit is found to be set), but for now we accept the possibility that
3025 : * that could conceal an inconsistency.
3026 : */
3027 0 : Assert(state->readonly && state->rootdescend);
3028 0 : exists = false;
3029 0 : stack = _bt_search(state->rel, NULL, key, &lbuf, BT_READ);
3030 :
3031 0 : if (BufferIsValid(lbuf))
3032 : {
3033 0 : BTInsertStateData insertstate;
3034 0 : OffsetNumber offnum;
3035 0 : Page page;
3036 :
3037 0 : insertstate.itup = itup;
3038 0 : insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));
3039 0 : insertstate.itup_key = key;
3040 0 : insertstate.postingoff = 0;
3041 0 : insertstate.bounds_valid = false;
3042 0 : insertstate.buf = lbuf;
3043 :
3044 : /* Get matching tuple on leaf page */
3045 0 : offnum = _bt_binsrch_insert(state->rel, &insertstate);
3046 : /* Compare first >= matching item on leaf page, if any */
3047 0 : page = BufferGetPage(lbuf);
3048 : /* Should match on first heap TID when tuple has a posting list */
3049 0 : if (offnum <= PageGetMaxOffsetNumber(page) &&
3050 0 : insertstate.postingoff <= 0 &&
3051 0 : _bt_compare(state->rel, key, page, offnum) == 0)
3052 0 : exists = true;
3053 0 : _bt_relbuf(state->rel, lbuf);
3054 0 : }
3055 :
3056 0 : _bt_freestack(stack);
3057 0 : pfree(key);
3058 :
3059 0 : return exists;
3060 0 : }
3061 :
3062 : /*
3063 : * Is particular offset within page (whose special state is passed by caller)
3064 : * the page negative-infinity item?
3065 : *
3066 : * As noted in comments above _bt_compare(), there is special handling of the
3067 : * first data item as a "negative infinity" item. The hard-coding within
3068 : * _bt_compare() makes comparing this item for the purposes of verification
3069 : * pointless at best, since the IndexTuple only contains a valid TID (a
3070 : * reference TID to child page).
3071 : */
3072 : static inline bool
3073 0 : offset_is_negative_infinity(BTPageOpaque opaque, OffsetNumber offset)
3074 : {
3075 : /*
3076 : * For internal pages only, the first item after high key, if any, is
3077 : * negative infinity item. Internal pages always have a negative infinity
3078 : * item, whereas leaf pages never have one. This implies that negative
3079 : * infinity item is either first or second line item, or there is none
3080 : * within page.
3081 : *
3082 : * Negative infinity items are a special case among pivot tuples. They
3083 : * always have zero attributes, while all other pivot tuples always have
3084 : * nkeyatts attributes.
3085 : *
3086 : * Right-most pages don't have a high key, but could be said to
3087 : * conceptually have a "positive infinity" high key. Thus, there is a
3088 : * symmetry between down link items in parent pages, and high keys in
3089 : * children. Together, they represent the part of the key space that
3090 : * belongs to each page in the index. For example, all children of the
3091 : * root page will have negative infinity as a lower bound from root
3092 : * negative infinity downlink, and positive infinity as an upper bound
3093 : * (implicitly, from "imaginary" positive infinity high key in root).
3094 : */
3095 0 : return !P_ISLEAF(opaque) && offset == P_FIRSTDATAKEY(opaque);
3096 : }
3097 :
3098 : /*
3099 : * Does the invariant hold that the key is strictly less than a given upper
3100 : * bound offset item?
3101 : *
3102 : * Verifies line pointer on behalf of caller.
3103 : *
3104 : * If this function returns false, convention is that caller throws error due
3105 : * to corruption.
3106 : */
3107 : static inline bool
3108 0 : invariant_l_offset(BtreeCheckState *state, BTScanInsert key,
3109 : OffsetNumber upperbound)
3110 : {
3111 0 : ItemId itemid;
3112 0 : int32 cmp;
3113 :
3114 0 : Assert(!key->nextkey && key->backward);
3115 :
3116 : /* Verify line pointer before checking tuple */
3117 0 : itemid = PageGetItemIdCareful(state, state->targetblock, state->target,
3118 0 : upperbound);
3119 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3120 0 : if (!key->heapkeyspace)
3121 0 : return invariant_leq_offset(state, key, upperbound);
3122 :
3123 0 : cmp = _bt_compare(state->rel, key, state->target, upperbound);
3124 :
3125 : /*
3126 : * _bt_compare() is capable of determining that a scankey with a
3127 : * filled-out attribute is greater than pivot tuples where the comparison
3128 : * is resolved at a truncated attribute (value of attribute in pivot is
3129 : * minus infinity). However, it is not capable of determining that a
3130 : * scankey is _less than_ a tuple on the basis of a comparison resolved at
3131 : * _scankey_ minus infinity attribute. Complete an extra step to simulate
3132 : * having minus infinity values for omitted scankey attribute(s).
3133 : */
3134 0 : if (cmp == 0)
3135 : {
3136 0 : BTPageOpaque topaque;
3137 0 : IndexTuple ritup;
3138 0 : int uppnkeyatts;
3139 0 : ItemPointer rheaptid;
3140 0 : bool nonpivot;
3141 :
3142 0 : ritup = (IndexTuple) PageGetItem(state->target, itemid);
3143 0 : topaque = BTPageGetOpaque(state->target);
3144 0 : nonpivot = P_ISLEAF(topaque) && upperbound >= P_FIRSTDATAKEY(topaque);
3145 :
3146 : /* Get number of keys + heap TID for item to the right */
3147 0 : uppnkeyatts = BTreeTupleGetNKeyAtts(ritup, state->rel);
3148 0 : rheaptid = BTreeTupleGetHeapTIDCareful(state, ritup, nonpivot);
3149 :
3150 : /* Heap TID is tiebreaker key attribute */
3151 0 : if (key->keysz == uppnkeyatts)
3152 0 : return key->scantid == NULL && rheaptid != NULL;
3153 :
3154 0 : return key->keysz < uppnkeyatts;
3155 0 : }
3156 :
3157 0 : return cmp < 0;
3158 0 : }
3159 :
3160 : /*
3161 : * Does the invariant hold that the key is less than or equal to a given upper
3162 : * bound offset item?
3163 : *
3164 : * Caller should have verified that upperbound's line pointer is consistent
3165 : * using PageGetItemIdCareful() call.
3166 : *
3167 : * If this function returns false, convention is that caller throws error due
3168 : * to corruption.
3169 : */
3170 : static inline bool
3171 0 : invariant_leq_offset(BtreeCheckState *state, BTScanInsert key,
3172 : OffsetNumber upperbound)
3173 : {
3174 0 : int32 cmp;
3175 :
3176 0 : Assert(!key->nextkey && key->backward);
3177 :
3178 0 : cmp = _bt_compare(state->rel, key, state->target, upperbound);
3179 :
3180 0 : return cmp <= 0;
3181 0 : }
3182 :
3183 : /*
3184 : * Does the invariant hold that the key is strictly greater than a given lower
3185 : * bound offset item?
3186 : *
3187 : * Caller should have verified that lowerbound's line pointer is consistent
3188 : * using PageGetItemIdCareful() call.
3189 : *
3190 : * If this function returns false, convention is that caller throws error due
3191 : * to corruption.
3192 : */
3193 : static inline bool
3194 0 : invariant_g_offset(BtreeCheckState *state, BTScanInsert key,
3195 : OffsetNumber lowerbound)
3196 : {
3197 0 : int32 cmp;
3198 :
3199 0 : Assert(!key->nextkey && key->backward);
3200 :
3201 0 : cmp = _bt_compare(state->rel, key, state->target, lowerbound);
3202 :
3203 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3204 0 : if (!key->heapkeyspace)
3205 0 : return cmp >= 0;
3206 :
3207 : /*
3208 : * No need to consider the possibility that scankey has attributes that we
3209 : * need to force to be interpreted as negative infinity. _bt_compare() is
3210 : * able to determine that scankey is greater than negative infinity. The
3211 : * distinction between "==" and "<" isn't interesting here, since
3212 : * corruption is indicated either way.
3213 : */
3214 0 : return cmp > 0;
3215 0 : }
3216 :
3217 : /*
3218 : * Does the invariant hold that the key is strictly less than a given upper
3219 : * bound offset item, with the offset relating to a caller-supplied page that
3220 : * is not the current target page?
3221 : *
3222 : * Caller's non-target page is a child page of the target, checked as part of
3223 : * checking a property of the target page (i.e. the key comes from the
3224 : * target). Verifies line pointer on behalf of caller.
3225 : *
3226 : * If this function returns false, convention is that caller throws error due
3227 : * to corruption.
3228 : */
3229 : static inline bool
3230 0 : invariant_l_nontarget_offset(BtreeCheckState *state, BTScanInsert key,
3231 : BlockNumber nontargetblock, Page nontarget,
3232 : OffsetNumber upperbound)
3233 : {
3234 0 : ItemId itemid;
3235 0 : int32 cmp;
3236 :
3237 0 : Assert(!key->nextkey && key->backward);
3238 :
3239 : /* Verify line pointer before checking tuple */
3240 0 : itemid = PageGetItemIdCareful(state, nontargetblock, nontarget,
3241 0 : upperbound);
3242 0 : cmp = _bt_compare(state->rel, key, nontarget, upperbound);
3243 :
3244 : /* pg_upgrade'd indexes may legally have equal sibling tuples */
3245 0 : if (!key->heapkeyspace)
3246 0 : return cmp <= 0;
3247 :
3248 : /* See invariant_l_offset() for an explanation of this extra step */
3249 0 : if (cmp == 0)
3250 : {
3251 0 : IndexTuple child;
3252 0 : int uppnkeyatts;
3253 0 : ItemPointer childheaptid;
3254 0 : BTPageOpaque copaque;
3255 0 : bool nonpivot;
3256 :
3257 0 : child = (IndexTuple) PageGetItem(nontarget, itemid);
3258 0 : copaque = BTPageGetOpaque(nontarget);
3259 0 : nonpivot = P_ISLEAF(copaque) && upperbound >= P_FIRSTDATAKEY(copaque);
3260 :
3261 : /* Get number of keys + heap TID for child/non-target item */
3262 0 : uppnkeyatts = BTreeTupleGetNKeyAtts(child, state->rel);
3263 0 : childheaptid = BTreeTupleGetHeapTIDCareful(state, child, nonpivot);
3264 :
3265 : /* Heap TID is tiebreaker key attribute */
3266 0 : if (key->keysz == uppnkeyatts)
3267 0 : return key->scantid == NULL && childheaptid != NULL;
3268 :
3269 0 : return key->keysz < uppnkeyatts;
3270 0 : }
3271 :
3272 0 : return cmp < 0;
3273 0 : }
3274 :
3275 : /*
3276 : * Given a block number of a B-Tree page, return page in palloc()'d memory.
3277 : * While at it, perform some basic checks of the page.
3278 : *
3279 : * There is never an attempt to get a consistent view of multiple pages using
3280 : * multiple concurrent buffer locks; in general, we only acquire a single pin
3281 : * and buffer lock at a time, which is often all that the nbtree code requires.
3282 : * (Actually, bt_recheck_sibling_links couples buffer locks, which is the only
3283 : * exception to this general rule.)
3284 : *
3285 : * Operating on a copy of the page is useful because it prevents control
3286 : * getting stuck in an uninterruptible state when an underlying operator class
3287 : * misbehaves.
3288 : */
3289 : static Page
3290 0 : palloc_btree_page(BtreeCheckState *state, BlockNumber blocknum)
3291 : {
3292 0 : Buffer buffer;
3293 0 : Page page;
3294 0 : BTPageOpaque opaque;
3295 0 : OffsetNumber maxoffset;
3296 :
3297 0 : page = palloc(BLCKSZ);
3298 :
3299 : /*
3300 : * We copy the page into local storage to avoid holding pin on the buffer
3301 : * longer than we must.
3302 : */
3303 0 : buffer = ReadBufferExtended(state->rel, MAIN_FORKNUM, blocknum, RBM_NORMAL,
3304 0 : state->checkstrategy);
3305 0 : LockBuffer(buffer, BT_READ);
3306 :
3307 : /*
3308 : * Perform the same basic sanity checking that nbtree itself performs for
3309 : * every page:
3310 : */
3311 0 : _bt_checkpage(state->rel, buffer);
3312 :
3313 : /* Only use copy of page in palloc()'d memory */
3314 0 : memcpy(page, BufferGetPage(buffer), BLCKSZ);
3315 0 : UnlockReleaseBuffer(buffer);
3316 :
3317 0 : opaque = BTPageGetOpaque(page);
3318 :
3319 0 : if (P_ISMETA(opaque) && blocknum != BTREE_METAPAGE)
3320 0 : ereport(ERROR,
3321 : (errcode(ERRCODE_INDEX_CORRUPTED),
3322 : errmsg("invalid meta page found at block %u in index \"%s\"",
3323 : blocknum, RelationGetRelationName(state->rel))));
3324 :
3325 : /* Check page from block that ought to be meta page */
3326 0 : if (blocknum == BTREE_METAPAGE)
3327 : {
3328 0 : BTMetaPageData *metad = BTPageGetMeta(page);
3329 :
3330 0 : if (!P_ISMETA(opaque) ||
3331 0 : metad->btm_magic != BTREE_MAGIC)
3332 0 : ereport(ERROR,
3333 : (errcode(ERRCODE_INDEX_CORRUPTED),
3334 : errmsg("index \"%s\" meta page is corrupt",
3335 : RelationGetRelationName(state->rel))));
3336 :
3337 0 : if (metad->btm_version < BTREE_MIN_VERSION ||
3338 0 : metad->btm_version > BTREE_VERSION)
3339 0 : ereport(ERROR,
3340 : (errcode(ERRCODE_INDEX_CORRUPTED),
3341 : errmsg("version mismatch in index \"%s\": file version %d, "
3342 : "current version %d, minimum supported version %d",
3343 : RelationGetRelationName(state->rel),
3344 : metad->btm_version, BTREE_VERSION,
3345 : BTREE_MIN_VERSION)));
3346 :
3347 : /* Finished with metapage checks */
3348 0 : return page;
3349 0 : }
3350 :
3351 : /*
3352 : * Deleted pages that still use the old 32-bit XID representation have no
3353 : * sane "level" field because they type pun the field, but all other pages
3354 : * (including pages deleted on Postgres 14+) have a valid value.
3355 : */
3356 0 : if (!P_ISDELETED(opaque) || P_HAS_FULLXID(opaque))
3357 : {
3358 : /* Okay, no reason not to trust btpo_level field from page */
3359 :
3360 0 : if (P_ISLEAF(opaque) && opaque->btpo_level != 0)
3361 0 : ereport(ERROR,
3362 : (errcode(ERRCODE_INDEX_CORRUPTED),
3363 : errmsg_internal("invalid leaf page level %u for block %u in index \"%s\"",
3364 : opaque->btpo_level, blocknum,
3365 : RelationGetRelationName(state->rel))));
3366 :
3367 0 : if (!P_ISLEAF(opaque) && opaque->btpo_level == 0)
3368 0 : ereport(ERROR,
3369 : (errcode(ERRCODE_INDEX_CORRUPTED),
3370 : errmsg_internal("invalid internal page level 0 for block %u in index \"%s\"",
3371 : blocknum,
3372 : RelationGetRelationName(state->rel))));
3373 0 : }
3374 :
3375 : /*
3376 : * Sanity checks for number of items on page.
3377 : *
3378 : * As noted at the beginning of _bt_binsrch(), an internal page must have
3379 : * children, since there must always be a negative infinity downlink
3380 : * (there may also be a highkey). In the case of non-rightmost leaf
3381 : * pages, there must be at least a highkey. The exceptions are deleted
3382 : * pages, which contain no items.
3383 : *
3384 : * This is correct when pages are half-dead, since internal pages are
3385 : * never half-dead, and leaf pages must have a high key when half-dead
3386 : * (the rightmost page can never be deleted). It's also correct with
3387 : * fully deleted pages: _bt_unlink_halfdead_page() doesn't change anything
3388 : * about the target page other than setting the page as fully dead, and
3389 : * setting its xact field. In particular, it doesn't change the sibling
3390 : * links in the deletion target itself, since they're required when index
3391 : * scans land on the deletion target, and then need to move right (or need
3392 : * to move left, in the case of backward index scans).
3393 : */
3394 0 : maxoffset = PageGetMaxOffsetNumber(page);
3395 0 : if (maxoffset > MaxIndexTuplesPerPage)
3396 0 : ereport(ERROR,
3397 : (errcode(ERRCODE_INDEX_CORRUPTED),
3398 : errmsg("Number of items on block %u of index \"%s\" exceeds MaxIndexTuplesPerPage (%u)",
3399 : blocknum, RelationGetRelationName(state->rel),
3400 : MaxIndexTuplesPerPage)));
3401 :
3402 0 : if (!P_ISLEAF(opaque) && !P_ISDELETED(opaque) && maxoffset < P_FIRSTDATAKEY(opaque))
3403 0 : ereport(ERROR,
3404 : (errcode(ERRCODE_INDEX_CORRUPTED),
3405 : errmsg("internal block %u in index \"%s\" lacks high key and/or at least one downlink",
3406 : blocknum, RelationGetRelationName(state->rel))));
3407 :
3408 0 : if (P_ISLEAF(opaque) && !P_ISDELETED(opaque) && !P_RIGHTMOST(opaque) && maxoffset < P_HIKEY)
3409 0 : ereport(ERROR,
3410 : (errcode(ERRCODE_INDEX_CORRUPTED),
3411 : errmsg("non-rightmost leaf block %u in index \"%s\" lacks high key item",
3412 : blocknum, RelationGetRelationName(state->rel))));
3413 :
3414 : /*
3415 : * In general, internal pages are never marked half-dead, except on
3416 : * versions of Postgres prior to 9.4, where it can be valid transient
3417 : * state. This state is nonetheless treated as corruption by VACUUM on
3418 : * from version 9.4 on, so do the same here. See _bt_pagedel() for full
3419 : * details.
3420 : */
3421 0 : if (!P_ISLEAF(opaque) && P_ISHALFDEAD(opaque))
3422 0 : ereport(ERROR,
3423 : (errcode(ERRCODE_INDEX_CORRUPTED),
3424 : errmsg("internal page block %u in index \"%s\" is half-dead",
3425 : blocknum, RelationGetRelationName(state->rel)),
3426 : errhint("This can be caused by an interrupted VACUUM in version 9.3 or older, before upgrade. Please REINDEX it.")));
3427 :
3428 : /*
3429 : * Check that internal pages have no garbage items, and that no page has
3430 : * an invalid combination of deletion-related page level flags
3431 : */
3432 0 : if (!P_ISLEAF(opaque) && P_HAS_GARBAGE(opaque))
3433 0 : ereport(ERROR,
3434 : (errcode(ERRCODE_INDEX_CORRUPTED),
3435 : errmsg_internal("internal page block %u in index \"%s\" has garbage items",
3436 : blocknum, RelationGetRelationName(state->rel))));
3437 :
3438 0 : if (P_HAS_FULLXID(opaque) && !P_ISDELETED(opaque))
3439 0 : ereport(ERROR,
3440 : (errcode(ERRCODE_INDEX_CORRUPTED),
3441 : errmsg_internal("full transaction id page flag appears in non-deleted block %u in index \"%s\"",
3442 : blocknum, RelationGetRelationName(state->rel))));
3443 :
3444 0 : if (P_ISDELETED(opaque) && P_ISHALFDEAD(opaque))
3445 0 : ereport(ERROR,
3446 : (errcode(ERRCODE_INDEX_CORRUPTED),
3447 : errmsg_internal("deleted page block %u in index \"%s\" is half-dead",
3448 : blocknum, RelationGetRelationName(state->rel))));
3449 :
3450 0 : return page;
3451 0 : }
3452 :
3453 : /*
3454 : * _bt_mkscankey() wrapper that automatically prevents insertion scankey from
3455 : * being considered greater than the pivot tuple that its values originated
3456 : * from (or some other identical pivot tuple) in the common case where there
3457 : * are truncated/minus infinity attributes. Without this extra step, there
3458 : * are forms of corruption that amcheck could theoretically fail to report.
3459 : *
3460 : * For example, invariant_g_offset() might miss a cross-page invariant failure
3461 : * on an internal level if the scankey built from the first item on the
3462 : * target's right sibling page happened to be equal to (not greater than) the
3463 : * last item on target page. The !backward tiebreaker in _bt_compare() might
3464 : * otherwise cause amcheck to assume (rather than actually verify) that the
3465 : * scankey is greater.
3466 : */
3467 : static inline BTScanInsert
3468 0 : bt_mkscankey_pivotsearch(Relation rel, IndexTuple itup)
3469 : {
3470 0 : BTScanInsert skey;
3471 :
3472 0 : skey = _bt_mkscankey(rel, itup);
3473 0 : skey->backward = true;
3474 :
3475 0 : return skey;
3476 0 : }
3477 :
3478 : /*
3479 : * PageGetItemId() wrapper that validates returned line pointer.
3480 : *
3481 : * Buffer page/page item access macros generally trust that line pointers are
3482 : * not corrupt, which might cause problems for verification itself. For
3483 : * example, there is no bounds checking in PageGetItem(). Passing it a
3484 : * corrupt line pointer can cause it to return a tuple/pointer that is unsafe
3485 : * to dereference.
3486 : *
3487 : * Validating line pointers before tuples avoids undefined behavior and
3488 : * assertion failures with corrupt indexes, making the verification process
3489 : * more robust and predictable.
3490 : */
3491 : static ItemId
3492 0 : PageGetItemIdCareful(BtreeCheckState *state, BlockNumber block, Page page,
3493 : OffsetNumber offset)
3494 : {
3495 0 : ItemId itemid = PageGetItemId(page, offset);
3496 :
3497 0 : if (ItemIdGetOffset(itemid) + ItemIdGetLength(itemid) >
3498 : BLCKSZ - MAXALIGN(sizeof(BTPageOpaqueData)))
3499 0 : ereport(ERROR,
3500 : (errcode(ERRCODE_INDEX_CORRUPTED),
3501 : errmsg("line pointer points past end of tuple space in index \"%s\"",
3502 : RelationGetRelationName(state->rel)),
3503 : errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3504 : block, offset, ItemIdGetOffset(itemid),
3505 : ItemIdGetLength(itemid),
3506 : ItemIdGetFlags(itemid))));
3507 :
3508 : /*
3509 : * Verify that line pointer isn't LP_REDIRECT or LP_UNUSED, since nbtree
3510 : * never uses either. Verify that line pointer has storage, too, since
3511 : * even LP_DEAD items should within nbtree.
3512 : */
3513 0 : if (ItemIdIsRedirected(itemid) || !ItemIdIsUsed(itemid) ||
3514 0 : ItemIdGetLength(itemid) == 0)
3515 0 : ereport(ERROR,
3516 : (errcode(ERRCODE_INDEX_CORRUPTED),
3517 : errmsg("invalid line pointer storage in index \"%s\"",
3518 : RelationGetRelationName(state->rel)),
3519 : errdetail_internal("Index tid=(%u,%u) lp_off=%u, lp_len=%u lp_flags=%u.",
3520 : block, offset, ItemIdGetOffset(itemid),
3521 : ItemIdGetLength(itemid),
3522 : ItemIdGetFlags(itemid))));
3523 :
3524 0 : return itemid;
3525 0 : }
3526 :
3527 : /*
3528 : * BTreeTupleGetHeapTID() wrapper that enforces that a heap TID is present in
3529 : * cases where that is mandatory (i.e. for non-pivot tuples)
3530 : */
3531 : static inline ItemPointer
3532 0 : BTreeTupleGetHeapTIDCareful(BtreeCheckState *state, IndexTuple itup,
3533 : bool nonpivot)
3534 : {
3535 0 : ItemPointer htid;
3536 :
3537 : /*
3538 : * Caller determines whether this is supposed to be a pivot or non-pivot
3539 : * tuple using page type and item offset number. Verify that tuple
3540 : * metadata agrees with this.
3541 : */
3542 0 : Assert(state->heapkeyspace);
3543 0 : if (BTreeTupleIsPivot(itup) && nonpivot)
3544 0 : ereport(ERROR,
3545 : (errcode(ERRCODE_INDEX_CORRUPTED),
3546 : errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected pivot tuple",
3547 : state->targetblock,
3548 : RelationGetRelationName(state->rel))));
3549 :
3550 0 : if (!BTreeTupleIsPivot(itup) && !nonpivot)
3551 0 : ereport(ERROR,
3552 : (errcode(ERRCODE_INDEX_CORRUPTED),
3553 : errmsg_internal("block %u or its right sibling block or child block in index \"%s\" has unexpected non-pivot tuple",
3554 : state->targetblock,
3555 : RelationGetRelationName(state->rel))));
3556 :
3557 0 : htid = BTreeTupleGetHeapTID(itup);
3558 0 : if (!ItemPointerIsValid(htid) && nonpivot)
3559 0 : ereport(ERROR,
3560 : (errcode(ERRCODE_INDEX_CORRUPTED),
3561 : errmsg("block %u or its right sibling block or child block in index \"%s\" contains non-pivot tuple that lacks a heap TID",
3562 : state->targetblock,
3563 : RelationGetRelationName(state->rel))));
3564 :
3565 0 : return htid;
3566 0 : }
3567 :
3568 : /*
3569 : * Return the "pointed to" TID for itup, which is used to generate a
3570 : * descriptive error message. itup must be a "data item" tuple (it wouldn't
3571 : * make much sense to call here with a high key tuple, since there won't be a
3572 : * valid downlink/block number to display).
3573 : *
3574 : * Returns either a heap TID (which will be the first heap TID in posting list
3575 : * if itup is posting list tuple), or a TID that contains downlink block
3576 : * number, plus some encoded metadata (e.g., the number of attributes present
3577 : * in itup).
3578 : */
3579 : static inline ItemPointer
3580 0 : BTreeTupleGetPointsToTID(IndexTuple itup)
3581 : {
3582 : /*
3583 : * Rely on the assumption that !heapkeyspace internal page data items will
3584 : * correctly return TID with downlink here -- BTreeTupleGetHeapTID() won't
3585 : * recognize it as a pivot tuple, but everything still works out because
3586 : * the t_tid field is still returned
3587 : */
3588 0 : if (!BTreeTupleIsPivot(itup))
3589 0 : return BTreeTupleGetHeapTID(itup);
3590 :
3591 : /* Pivot tuple returns TID with downlink block (heapkeyspace variant) */
3592 0 : return &itup->t_tid;
3593 0 : }
|