Line data Source code
1 : /*
2 : * contrib/btree_gist/btree_uuid.c
3 : */
4 : #include "postgres.h"
5 :
6 : #include "btree_gist.h"
7 : #include "btree_utils_num.h"
8 : #include "port/pg_bswap.h"
9 : #include "utils/rel.h"
10 : #include "utils/sortsupport.h"
11 : #include "utils/uuid.h"
12 :
13 : typedef struct
14 : {
15 : pg_uuid_t lower,
16 : upper;
17 : } uuidKEY;
18 :
19 :
20 : /* GiST support functions */
21 0 : PG_FUNCTION_INFO_V1(gbt_uuid_compress);
22 0 : PG_FUNCTION_INFO_V1(gbt_uuid_fetch);
23 0 : PG_FUNCTION_INFO_V1(gbt_uuid_union);
24 0 : PG_FUNCTION_INFO_V1(gbt_uuid_picksplit);
25 0 : PG_FUNCTION_INFO_V1(gbt_uuid_consistent);
26 0 : PG_FUNCTION_INFO_V1(gbt_uuid_penalty);
27 0 : PG_FUNCTION_INFO_V1(gbt_uuid_same);
28 0 : PG_FUNCTION_INFO_V1(gbt_uuid_sortsupport);
29 :
30 :
31 : static int
32 0 : uuid_internal_cmp(const pg_uuid_t *arg1, const pg_uuid_t *arg2)
33 : {
34 0 : return memcmp(arg1->data, arg2->data, UUID_LEN);
35 : }
36 :
37 : static bool
38 0 : gbt_uuidgt(const void *a, const void *b, FmgrInfo *flinfo)
39 : {
40 0 : return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) > 0;
41 : }
42 :
43 : static bool
44 0 : gbt_uuidge(const void *a, const void *b, FmgrInfo *flinfo)
45 : {
46 0 : return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) >= 0;
47 : }
48 :
49 : static bool
50 0 : gbt_uuideq(const void *a, const void *b, FmgrInfo *flinfo)
51 : {
52 0 : return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) == 0;
53 : }
54 :
55 : static bool
56 0 : gbt_uuidle(const void *a, const void *b, FmgrInfo *flinfo)
57 : {
58 0 : return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) <= 0;
59 : }
60 :
61 : static bool
62 0 : gbt_uuidlt(const void *a, const void *b, FmgrInfo *flinfo)
63 : {
64 0 : return uuid_internal_cmp((const pg_uuid_t *) a, (const pg_uuid_t *) b) < 0;
65 : }
66 :
67 : static int
68 0 : gbt_uuidkey_cmp(const void *a, const void *b, FmgrInfo *flinfo)
69 : {
70 0 : uuidKEY *ia = (uuidKEY *) (((const Nsrt *) a)->t);
71 0 : uuidKEY *ib = (uuidKEY *) (((const Nsrt *) b)->t);
72 0 : int res;
73 :
74 0 : res = uuid_internal_cmp(&ia->lower, &ib->lower);
75 0 : if (res == 0)
76 0 : res = uuid_internal_cmp(&ia->upper, &ib->upper);
77 0 : return res;
78 0 : }
79 :
80 :
81 : static const gbtree_ninfo tinfo =
82 : {
83 : gbt_t_uuid,
84 : UUID_LEN,
85 : 32, /* sizeof(gbtreekey32) */
86 : gbt_uuidgt,
87 : gbt_uuidge,
88 : gbt_uuideq,
89 : gbt_uuidle,
90 : gbt_uuidlt,
91 : gbt_uuidkey_cmp,
92 : NULL
93 : };
94 :
95 :
96 : /**************************************************
97 : * GiST support functions
98 : **************************************************/
99 :
100 : Datum
101 0 : gbt_uuid_compress(PG_FUNCTION_ARGS)
102 : {
103 0 : GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
104 0 : GISTENTRY *retval;
105 :
106 0 : if (entry->leafkey)
107 : {
108 0 : char *r = (char *) palloc(2 * UUID_LEN);
109 0 : pg_uuid_t *key = DatumGetUUIDP(entry->key);
110 :
111 0 : retval = palloc_object(GISTENTRY);
112 :
113 0 : memcpy(r, key, UUID_LEN);
114 0 : memcpy(r + UUID_LEN, key, UUID_LEN);
115 0 : gistentryinit(*retval, PointerGetDatum(r),
116 : entry->rel, entry->page,
117 : entry->offset, false);
118 0 : }
119 : else
120 0 : retval = entry;
121 :
122 0 : PG_RETURN_POINTER(retval);
123 0 : }
124 :
125 : Datum
126 0 : gbt_uuid_fetch(PG_FUNCTION_ARGS)
127 : {
128 0 : GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
129 :
130 0 : PG_RETURN_POINTER(gbt_num_fetch(entry, &tinfo));
131 0 : }
132 :
133 : Datum
134 0 : gbt_uuid_consistent(PG_FUNCTION_ARGS)
135 : {
136 0 : GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
137 0 : pg_uuid_t *query = PG_GETARG_UUID_P(1);
138 0 : StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
139 : #ifdef NOT_USED
140 : Oid subtype = PG_GETARG_OID(3);
141 : #endif
142 0 : bool *recheck = (bool *) PG_GETARG_POINTER(4);
143 0 : uuidKEY *kkk = (uuidKEY *) DatumGetPointer(entry->key);
144 0 : GBT_NUMKEY_R key;
145 :
146 : /* All cases served by this function are exact */
147 0 : *recheck = false;
148 :
149 0 : key.lower = (GBT_NUMKEY *) &kkk->lower;
150 0 : key.upper = (GBT_NUMKEY *) &kkk->upper;
151 :
152 0 : PG_RETURN_BOOL(gbt_num_consistent(&key, query, &strategy,
153 : GIST_LEAF(entry), &tinfo,
154 : fcinfo->flinfo));
155 0 : }
156 :
157 : Datum
158 0 : gbt_uuid_union(PG_FUNCTION_ARGS)
159 : {
160 0 : GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
161 0 : void *out = palloc(sizeof(uuidKEY));
162 :
163 0 : *(int *) PG_GETARG_POINTER(1) = sizeof(uuidKEY);
164 0 : PG_RETURN_POINTER(gbt_num_union(out, entryvec, &tinfo, fcinfo->flinfo));
165 0 : }
166 :
167 : /*
168 : * Convert a uuid to a "double" value for estimating sizes of ranges.
169 : */
170 : static double
171 0 : uuid_2_double(const pg_uuid_t *u)
172 : {
173 0 : uint64 uu[2];
174 0 : const double two64 = 18446744073709551616.0; /* 2^64 */
175 :
176 : /* Source data may not be suitably aligned, so copy */
177 0 : memcpy(uu, u->data, UUID_LEN);
178 :
179 : /*
180 : * uuid values should be considered as big-endian numbers, since that
181 : * corresponds to how memcmp will compare them. On a little-endian
182 : * machine, byte-swap each half so we can use native uint64 arithmetic.
183 : */
184 : #ifndef WORDS_BIGENDIAN
185 0 : uu[0] = pg_bswap64(uu[0]);
186 0 : uu[1] = pg_bswap64(uu[1]);
187 : #endif
188 :
189 : /*
190 : * 2^128 is about 3.4e38, which in theory could exceed the range of
191 : * "double" (POSIX only requires 1e37). To avoid any risk of overflow,
192 : * put the decimal point between the two halves rather than treating the
193 : * uuid value as a 128-bit integer.
194 : */
195 0 : return (double) uu[0] + (double) uu[1] / two64;
196 0 : }
197 :
198 : Datum
199 0 : gbt_uuid_penalty(PG_FUNCTION_ARGS)
200 : {
201 0 : uuidKEY *origentry = (uuidKEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(0))->key);
202 0 : uuidKEY *newentry = (uuidKEY *) DatumGetPointer(((GISTENTRY *) PG_GETARG_POINTER(1))->key);
203 0 : float *result = (float *) PG_GETARG_POINTER(2);
204 0 : double olower,
205 : oupper,
206 : nlower,
207 : nupper;
208 :
209 0 : olower = uuid_2_double(&origentry->lower);
210 0 : oupper = uuid_2_double(&origentry->upper);
211 0 : nlower = uuid_2_double(&newentry->lower);
212 0 : nupper = uuid_2_double(&newentry->upper);
213 :
214 0 : penalty_num(result, olower, oupper, nlower, nupper);
215 :
216 0 : PG_RETURN_POINTER(result);
217 0 : }
218 :
219 : Datum
220 0 : gbt_uuid_picksplit(PG_FUNCTION_ARGS)
221 : {
222 0 : PG_RETURN_POINTER(gbt_num_picksplit((GistEntryVector *) PG_GETARG_POINTER(0),
223 : (GIST_SPLITVEC *) PG_GETARG_POINTER(1),
224 : &tinfo, fcinfo->flinfo));
225 : }
226 :
227 : Datum
228 0 : gbt_uuid_same(PG_FUNCTION_ARGS)
229 : {
230 0 : uuidKEY *b1 = (uuidKEY *) PG_GETARG_POINTER(0);
231 0 : uuidKEY *b2 = (uuidKEY *) PG_GETARG_POINTER(1);
232 0 : bool *result = (bool *) PG_GETARG_POINTER(2);
233 :
234 0 : *result = gbt_num_same((void *) b1, (void *) b2, &tinfo, fcinfo->flinfo);
235 0 : PG_RETURN_POINTER(result);
236 0 : }
237 :
238 : static int
239 0 : gbt_uuid_ssup_cmp(Datum x, Datum y, SortSupport ssup)
240 : {
241 0 : uuidKEY *arg1 = (uuidKEY *) DatumGetPointer(x);
242 0 : uuidKEY *arg2 = (uuidKEY *) DatumGetPointer(y);
243 :
244 : /* for leaf items we expect lower == upper, so only compare lower */
245 0 : return uuid_internal_cmp(&arg1->lower, &arg2->lower);
246 0 : }
247 :
248 : Datum
249 0 : gbt_uuid_sortsupport(PG_FUNCTION_ARGS)
250 : {
251 0 : SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
252 :
253 0 : ssup->comparator = gbt_uuid_ssup_cmp;
254 0 : ssup->ssup_extra = NULL;
255 :
256 0 : PG_RETURN_VOID();
257 0 : }
|