Branch data Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * gininsert.c
4 : : * insert routines for the postgres inverted index access method.
5 : : *
6 : : *
7 : : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : : * Portions Copyright (c) 1994, Regents of the University of California
9 : : *
10 : : * IDENTIFICATION
11 : : * src/backend/access/gin/gininsert.c
12 : : *-------------------------------------------------------------------------
13 : : */
14 : :
15 : : #include "postgres.h"
16 : :
17 : : #include "access/gin_private.h"
18 : : #include "access/gin_tuple.h"
19 : : #include "access/parallel.h"
20 : : #include "access/table.h"
21 : : #include "access/tableam.h"
22 : : #include "access/xloginsert.h"
23 : : #include "catalog/index.h"
24 : : #include "catalog/pg_collation.h"
25 : : #include "commands/progress.h"
26 : : #include "miscadmin.h"
27 : : #include "nodes/execnodes.h"
28 : : #include "pgstat.h"
29 : : #include "storage/bufmgr.h"
30 : : #include "storage/predicate.h"
31 : : #include "tcop/tcopprot.h"
32 : : #include "utils/datum.h"
33 : : #include "utils/memutils.h"
34 : : #include "utils/builtins.h"
35 : : #include "utils/rel.h"
36 : : #include "utils/typcache.h"
37 : :
38 : :
39 : : /* Magic numbers for parallel state sharing */
40 : : #define PARALLEL_KEY_GIN_SHARED UINT64CONST(0xB000000000000001)
41 : : #define PARALLEL_KEY_TUPLESORT UINT64CONST(0xB000000000000002)
42 : : #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xB000000000000003)
43 : : #define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xB000000000000004)
44 : : #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xB000000000000005)
45 : :
46 : : /*
47 : : * Status for index builds performed in parallel. This is allocated in a
48 : : * dynamic shared memory segment.
49 : : */
50 : : typedef struct GinBuildShared
51 : : {
52 : : /*
53 : : * These fields are not modified during the build. They primarily exist
54 : : * for the benefit of worker processes that need to create state
55 : : * corresponding to that used by the leader.
56 : : */
57 : : Oid heaprelid;
58 : : Oid indexrelid;
59 : : bool isconcurrent;
60 : : int scantuplesortstates;
61 : :
62 : : /*
63 : : * workersdonecv is used to monitor the progress of workers. All parallel
64 : : * participants must indicate that they are done before leader can use
65 : : * results built by the workers (and before leader can write the data into
66 : : * the index).
67 : : */
68 : : ConditionVariable workersdonecv;
69 : :
70 : : /*
71 : : * mutex protects all following fields
72 : : *
73 : : * These fields contain status information of interest to GIN index builds
74 : : * that must work just the same when an index is built in parallel.
75 : : */
76 : : slock_t mutex;
77 : :
78 : : /*
79 : : * Mutable state that is maintained by workers, and reported back to
80 : : * leader at end of the scans.
81 : : *
82 : : * nparticipantsdone is number of worker processes finished.
83 : : *
84 : : * reltuples is the total number of input heap tuples.
85 : : *
86 : : * indtuples is the total number of tuples that made it into the index.
87 : : */
88 : : int nparticipantsdone;
89 : : double reltuples;
90 : : double indtuples;
91 : :
92 : : /*
93 : : * ParallelTableScanDescData data follows. Can't directly embed here, as
94 : : * implementations of the parallel table scan desc interface might need
95 : : * stronger alignment.
96 : : */
97 : : } GinBuildShared;
98 : :
99 : : /*
100 : : * Return pointer to a GinBuildShared's parallel table scan.
101 : : *
102 : : * c.f. shm_toc_allocate as to why BUFFERALIGN is used, rather than just
103 : : * MAXALIGN.
104 : : */
105 : : #define ParallelTableScanFromGinBuildShared(shared) \
106 : : (ParallelTableScanDesc) ((char *) (shared) + BUFFERALIGN(sizeof(GinBuildShared)))
107 : :
108 : : /*
109 : : * Status for leader in parallel index build.
110 : : */
111 : : typedef struct GinLeader
112 : : {
113 : : /* parallel context itself */
114 : : ParallelContext *pcxt;
115 : :
116 : : /*
117 : : * nparticipanttuplesorts is the exact number of worker processes
118 : : * successfully launched, plus one leader process if it participates as a
119 : : * worker (only DISABLE_LEADER_PARTICIPATION builds avoid leader
120 : : * participating as a worker).
121 : : */
122 : : int nparticipanttuplesorts;
123 : :
124 : : /*
125 : : * Leader process convenience pointers to shared state (leader avoids TOC
126 : : * lookups).
127 : : *
128 : : * GinBuildShared is the shared state for entire build. sharedsort is the
129 : : * shared, tuplesort-managed state passed to each process tuplesort.
130 : : * snapshot is the snapshot used by the scan iff an MVCC snapshot is
131 : : * required.
132 : : */
133 : : GinBuildShared *ginshared;
134 : : Sharedsort *sharedsort;
135 : : Snapshot snapshot;
136 : : WalUsage *walusage;
137 : : BufferUsage *bufferusage;
138 : : } GinLeader;
139 : :
140 : : typedef struct
141 : : {
142 : : GinState ginstate;
143 : : double indtuples;
144 : : GinStatsData buildStats;
145 : : MemoryContext tmpCtx;
146 : : MemoryContext funcCtx;
147 : : BuildAccumulator accum;
148 : : ItemPointerData tid;
149 : : int work_mem;
150 : :
151 : : /*
152 : : * bs_leader is only present when a parallel index build is performed, and
153 : : * only in the leader process.
154 : : */
155 : : GinLeader *bs_leader;
156 : :
157 : : /* number of participating workers (including leader) */
158 : : int bs_num_workers;
159 : :
160 : : /* used to pass information from workers to leader */
161 : : double bs_numtuples;
162 : : double bs_reltuples;
163 : :
164 : : /*
165 : : * The sortstate is used by workers (including the leader). It has to be
166 : : * part of the build state, because that's the only thing passed to the
167 : : * build callback etc.
168 : : */
169 : : Tuplesortstate *bs_sortstate;
170 : :
171 : : /*
172 : : * The sortstate used only within a single worker for the first merge pass
173 : : * happening there. In principle it doesn't need to be part of the build
174 : : * state and we could pass it around directly, but it's more convenient
175 : : * this way. And it's part of the build state, after all.
176 : : */
177 : : Tuplesortstate *bs_worker_sort;
178 : : } GinBuildState;
179 : :
180 : :
181 : : /* parallel index builds */
182 : : static void _gin_begin_parallel(GinBuildState *buildstate, Relation heap, Relation index,
183 : : bool isconcurrent, int request);
184 : : static void _gin_end_parallel(GinLeader *ginleader, GinBuildState *state);
185 : : static Size _gin_parallel_estimate_shared(Relation heap, Snapshot snapshot);
186 : : static double _gin_parallel_heapscan(GinBuildState *state);
187 : : static double _gin_parallel_merge(GinBuildState *state);
188 : : static void _gin_leader_participate_as_worker(GinBuildState *buildstate,
189 : : Relation heap, Relation index);
190 : : static void _gin_parallel_scan_and_build(GinBuildState *state,
191 : : GinBuildShared *ginshared,
192 : : Sharedsort *sharedsort,
193 : : Relation heap, Relation index,
194 : : int sortmem, bool progress);
195 : :
196 : : static ItemPointer _gin_parse_tuple_items(GinTuple *a);
197 : : static Datum _gin_parse_tuple_key(GinTuple *a);
198 : :
199 : : static GinTuple *_gin_build_tuple(OffsetNumber attrnum, unsigned char category,
200 : : Datum key, int16 typlen, bool typbyval,
201 : : ItemPointerData *items, uint32 nitems,
202 : : Size *len);
203 : :
204 : : /*
205 : : * Adds array of item pointers to tuple's posting list, or
206 : : * creates posting tree and tuple pointing to tree in case
207 : : * of not enough space. Max size of tuple is defined in
208 : : * GinFormTuple(). Returns a new, modified index tuple.
209 : : * items[] must be in sorted order with no duplicates.
210 : : */
211 : : static IndexTuple
212 : 3660 : addItemPointersToLeafTuple(GinState *ginstate,
213 : : IndexTuple old,
214 : : ItemPointerData *items, uint32 nitem,
215 : : GinStatsData *buildStats, Buffer buffer)
216 : : {
217 : 3660 : OffsetNumber attnum;
218 : 3660 : Datum key;
219 : 3660 : GinNullCategory category;
220 : 3660 : IndexTuple res;
221 : 3660 : ItemPointerData *newItems,
222 : : *oldItems;
223 : 3660 : int oldNPosting,
224 : : newNPosting,
225 : : nwritten;
226 : 3660 : GinPostingList *compressedList;
227 : :
228 [ + - ]: 3660 : Assert(!GinIsPostingTree(old));
229 : :
230 : 3660 : attnum = gintuple_get_attrnum(ginstate, old);
231 : 3660 : key = gintuple_get_key(ginstate, old, &category);
232 : :
233 : : /* merge the old and new posting lists */
234 : 3660 : oldItems = ginReadTuple(ginstate, attnum, old, &oldNPosting);
235 : :
236 : 7320 : newItems = ginMergeItemPointers(items, nitem,
237 : 3660 : oldItems, oldNPosting,
238 : : &newNPosting);
239 : :
240 : : /* Compress the posting list, and try to a build tuple with room for it */
241 : 3660 : res = NULL;
242 : 3660 : compressedList = ginCompressPostingList(newItems, newNPosting, GinMaxItemSize, &nwritten);
243 [ - + ]: 3660 : if (nwritten == newNPosting)
244 : : {
245 : 7320 : res = GinFormTuple(ginstate, attnum, key, category,
246 : 3660 : (char *) compressedList,
247 : 3660 : SizeOfGinPostingList(compressedList),
248 : 3660 : newNPosting,
249 : : false);
250 : 3660 : }
251 : :
252 : 3660 : pfree(newItems);
253 : 3660 : pfree(compressedList);
254 : :
255 [ + + ]: 3660 : if (!res)
256 : : {
257 : : /* posting list would be too big, convert to posting tree */
258 : 1 : BlockNumber postingRoot;
259 : :
260 : : /*
261 : : * Initialize posting tree with the old tuple's posting list. It's
262 : : * surely small enough to fit on one posting-tree page, and should
263 : : * already be in order with no duplicates.
264 : : */
265 : 2 : postingRoot = createPostingTree(ginstate->index,
266 : 1 : oldItems,
267 : 1 : oldNPosting,
268 : 1 : buildStats,
269 : 1 : buffer);
270 : :
271 : : /* Now insert the TIDs-to-be-added into the posting tree */
272 : 2 : ginInsertItemPointers(ginstate->index, postingRoot,
273 : 1 : items, nitem,
274 : 1 : buildStats);
275 : :
276 : : /* And build a new posting-tree-only result tuple */
277 : 1 : res = GinFormTuple(ginstate, attnum, key, category, NULL, 0, 0, true);
278 : 1 : GinSetPostingTree(res, postingRoot);
279 : 1 : }
280 : 3660 : pfree(oldItems);
281 : :
282 : 7320 : return res;
283 : 3660 : }
284 : :
285 : : /*
286 : : * Build a fresh leaf tuple, either posting-list or posting-tree format
287 : : * depending on whether the given items list will fit.
288 : : * items[] must be in sorted order with no duplicates.
289 : : *
290 : : * This is basically the same logic as in addItemPointersToLeafTuple,
291 : : * but working from slightly different input.
292 : : */
293 : : static IndexTuple
294 : 74494 : buildFreshLeafTuple(GinState *ginstate,
295 : : OffsetNumber attnum, Datum key, GinNullCategory category,
296 : : ItemPointerData *items, uint32 nitem,
297 : : GinStatsData *buildStats, Buffer buffer)
298 : : {
299 : 74494 : IndexTuple res = NULL;
300 : 74494 : GinPostingList *compressedList;
301 : 74494 : int nwritten;
302 : :
303 : : /* try to build a posting list tuple with all the items */
304 : 74494 : compressedList = ginCompressPostingList(items, nitem, GinMaxItemSize, &nwritten);
305 [ + + ]: 74494 : if (nwritten == nitem)
306 : : {
307 : 148978 : res = GinFormTuple(ginstate, attnum, key, category,
308 : 74489 : (char *) compressedList,
309 : 74489 : SizeOfGinPostingList(compressedList),
310 : 74489 : nitem, false);
311 : 74489 : }
312 : 74494 : pfree(compressedList);
313 : :
314 [ + + ]: 74494 : if (!res)
315 : : {
316 : : /* posting list would be too big, build posting tree */
317 : 5 : BlockNumber postingRoot;
318 : :
319 : : /*
320 : : * Build posting-tree-only result tuple. We do this first so as to
321 : : * fail quickly if the key is too big.
322 : : */
323 : 5 : res = GinFormTuple(ginstate, attnum, key, category, NULL, 0, 0, true);
324 : :
325 : : /*
326 : : * Initialize a new posting tree with the TIDs.
327 : : */
328 : 10 : postingRoot = createPostingTree(ginstate->index, items, nitem,
329 : 5 : buildStats, buffer);
330 : :
331 : : /* And save the root link in the result tuple */
332 : 5 : GinSetPostingTree(res, postingRoot);
333 : 5 : }
334 : :
335 : 148988 : return res;
336 : 74494 : }
337 : :
338 : : /*
339 : : * Insert one or more heap TIDs associated with the given key value.
340 : : * This will either add a single key entry, or enlarge a pre-existing entry.
341 : : *
342 : : * During an index build, buildStats is non-null and the counters
343 : : * it contains should be incremented as needed.
344 : : */
345 : : void
346 : 81496 : ginEntryInsert(GinState *ginstate,
347 : : OffsetNumber attnum, Datum key, GinNullCategory category,
348 : : ItemPointerData *items, uint32 nitem,
349 : : GinStatsData *buildStats)
350 : : {
351 : 81496 : GinBtreeData btree;
352 : 81496 : GinBtreeEntryInsertData insertdata;
353 : 81496 : GinBtreeStack *stack;
354 : 81496 : IndexTuple itup;
355 : 81496 : Page page;
356 : :
357 : 81496 : insertdata.isDelete = false;
358 : :
359 : 81496 : ginPrepareEntryScan(&btree, attnum, key, category, ginstate);
360 : 81496 : btree.isBuild = (buildStats != NULL);
361 : :
362 : 81496 : stack = ginFindLeafPage(&btree, false, false);
363 : 81496 : page = BufferGetPage(stack->buffer);
364 : :
365 [ + + ]: 81496 : if (btree.findItem(&btree, stack))
366 : : {
367 : : /* found pre-existing entry */
368 : 7002 : itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, stack->off));
369 : :
370 [ + + ]: 7002 : if (GinIsPostingTree(itup))
371 : : {
372 : : /* add entries to existing posting tree */
373 : 3342 : BlockNumber rootPostingTree = GinGetPostingTree(itup);
374 : :
375 : : /* release all stack */
376 : 3342 : LockBuffer(stack->buffer, GIN_UNLOCK);
377 : 3342 : freeGinBtreeStack(stack);
378 : :
379 : : /* insert into posting tree */
380 : 6684 : ginInsertItemPointers(ginstate->index, rootPostingTree,
381 : 3342 : items, nitem,
382 : 3342 : buildStats);
383 : : return;
384 : 3342 : }
385 : :
386 : 7320 : CheckForSerializableConflictIn(ginstate->index, NULL,
387 : 3660 : BufferGetBlockNumber(stack->buffer));
388 : : /* modify an existing leaf entry */
389 : 7320 : itup = addItemPointersToLeafTuple(ginstate, itup,
390 : 3660 : items, nitem, buildStats, stack->buffer);
391 : :
392 : 3660 : insertdata.isDelete = true;
393 : 3660 : }
394 : : else
395 : : {
396 : 148988 : CheckForSerializableConflictIn(ginstate->index, NULL,
397 : 74494 : BufferGetBlockNumber(stack->buffer));
398 : : /* no match, so construct a new leaf entry */
399 : 148988 : itup = buildFreshLeafTuple(ginstate, attnum, key, category,
400 : 74494 : items, nitem, buildStats, stack->buffer);
401 : :
402 : : /*
403 : : * nEntries counts leaf tuples, so increment it only when we make a
404 : : * new one.
405 : : */
406 [ + + ]: 74494 : if (buildStats)
407 : 14488 : buildStats->nEntries++;
408 : : }
409 : :
410 : : /* Insert the new or modified leaf tuple */
411 : 78154 : insertdata.entry = itup;
412 : 78154 : ginInsertValue(&btree, stack, &insertdata, buildStats);
413 : 78154 : pfree(itup);
414 [ - + ]: 81496 : }
415 : :
416 : : /*
417 : : * Extract index entries for a single indexable item, and add them to the
418 : : * BuildAccumulator's state.
419 : : *
420 : : * This function is used only during initial index creation.
421 : : */
422 : : static void
423 : 15064 : ginHeapTupleBulkInsert(GinBuildState *buildstate, OffsetNumber attnum,
424 : : Datum value, bool isNull,
425 : : ItemPointer heapptr)
426 : : {
427 : 15064 : Datum *entries;
428 : 15064 : GinNullCategory *categories;
429 : 15064 : int32 nentries;
430 : 15064 : MemoryContext oldCtx;
431 : :
432 : 15064 : oldCtx = MemoryContextSwitchTo(buildstate->funcCtx);
433 : 30128 : entries = ginExtractEntries(buildstate->accum.ginstate, attnum,
434 : 15064 : value, isNull,
435 : : &nentries, &categories);
436 : 15064 : MemoryContextSwitchTo(oldCtx);
437 : :
438 : 30128 : ginInsertBAEntries(&buildstate->accum, heapptr, attnum,
439 : 15064 : entries, categories, nentries);
440 : :
441 : 15064 : buildstate->indtuples += nentries;
442 : :
443 : 15064 : MemoryContextReset(buildstate->funcCtx);
444 : 15064 : }
445 : :
446 : : static void
447 : 14961 : ginBuildCallback(Relation index, ItemPointer tid, Datum *values,
448 : : bool *isnull, bool tupleIsAlive, void *state)
449 : : {
450 : 14961 : GinBuildState *buildstate = (GinBuildState *) state;
451 : 14961 : MemoryContext oldCtx;
452 : 14961 : int i;
453 : :
454 : 14961 : oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx);
455 : :
456 [ + + ]: 30025 : for (i = 0; i < buildstate->ginstate.origTupdesc->natts; i++)
457 : 30128 : ginHeapTupleBulkInsert(buildstate, (OffsetNumber) (i + 1),
458 : 15064 : values[i], isnull[i], tid);
459 : :
460 : : /* If we've maxed out our available memory, dump everything to the index */
461 [ + - ]: 14961 : if (buildstate->accum.allocatedMemory >= maintenance_work_mem * (Size) 1024)
462 : : {
463 : 0 : ItemPointerData *list;
464 : 0 : Datum key;
465 : 0 : GinNullCategory category;
466 : 0 : uint32 nlist;
467 : 0 : OffsetNumber attnum;
468 : :
469 : 0 : ginBeginBAScan(&buildstate->accum);
470 [ # # # # ]: 0 : while ((list = ginGetBAEntry(&buildstate->accum,
471 : 0 : &attnum, &key, &category, &nlist)) != NULL)
472 : : {
473 : : /* there could be many entries, so be willing to abort here */
474 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
475 : 0 : ginEntryInsert(&buildstate->ginstate, attnum, key, category,
476 : 0 : list, nlist, &buildstate->buildStats);
477 : : }
478 : :
479 : 0 : MemoryContextReset(buildstate->tmpCtx);
480 : 0 : ginInitBA(&buildstate->accum);
481 : 0 : }
482 : :
483 : 14961 : MemoryContextSwitchTo(oldCtx);
484 : 14961 : }
485 : :
486 : : /*
487 : : * ginFlushBuildState
488 : : * Write all data from BuildAccumulator into the tuplesort.
489 : : *
490 : : * The number of TIDs written to the tuplesort at once is limited, to reduce
491 : : * the amount of memory needed when merging the intermediate results later.
492 : : * The leader will see up to two chunks per worker, so calculate the limit to
493 : : * not need more than MaxAllocSize overall.
494 : : *
495 : : * We don't need to worry about overflowing maintenance_work_mem. We can't
496 : : * build chunks larger than work_mem, and that limit was set so that workers
497 : : * produce sufficiently small chunks.
498 : : */
499 : : static void
500 : 0 : ginFlushBuildState(GinBuildState *buildstate, Relation index)
501 : : {
502 : 0 : ItemPointerData *list;
503 : 0 : Datum key;
504 : 0 : GinNullCategory category;
505 : 0 : uint32 nlist;
506 : 0 : OffsetNumber attnum;
507 : 0 : TupleDesc tdesc = RelationGetDescr(index);
508 : 0 : uint32 maxlen;
509 : :
510 : : /* maximum number of TIDs per chunk (two chunks per worker) */
511 : 0 : maxlen = MaxAllocSize / sizeof(ItemPointerData);
512 : 0 : maxlen /= (2 * buildstate->bs_num_workers);
513 : :
514 : 0 : ginBeginBAScan(&buildstate->accum);
515 [ # # # # ]: 0 : while ((list = ginGetBAEntry(&buildstate->accum,
516 : 0 : &attnum, &key, &category, &nlist)) != NULL)
517 : : {
518 : : /* information about the key */
519 : 0 : CompactAttribute *attr = TupleDescCompactAttr(tdesc, (attnum - 1));
520 : :
521 : : /* start of the chunk */
522 : 0 : uint32 offset = 0;
523 : :
524 : : /* split the entry into smaller chunk with up to maxlen items */
525 [ # # ]: 0 : while (offset < nlist)
526 : : {
527 : : /* GIN tuple and tuple length */
528 : 0 : GinTuple *tup;
529 : 0 : Size tuplen;
530 [ # # ]: 0 : uint32 len = Min(maxlen, nlist - offset);
531 : :
532 : : /* there could be many entries, so be willing to abort here */
533 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
534 : :
535 : 0 : tup = _gin_build_tuple(attnum, category,
536 : 0 : key, attr->attlen, attr->attbyval,
537 : 0 : &list[offset], len,
538 : : &tuplen);
539 : :
540 : 0 : offset += len;
541 : :
542 : 0 : tuplesort_putgintuple(buildstate->bs_worker_sort, tup, tuplen);
543 : :
544 : 0 : pfree(tup);
545 : 0 : }
546 : 0 : }
547 : :
548 : 0 : MemoryContextReset(buildstate->tmpCtx);
549 : 0 : ginInitBA(&buildstate->accum);
550 : 0 : }
551 : :
552 : : /*
553 : : * ginBuildCallbackParallel
554 : : * Callback for the parallel index build.
555 : : *
556 : : * This is similar to the serial build callback ginBuildCallback, but
557 : : * instead of writing the accumulated entries into the index, each worker
558 : : * writes them into a (local) tuplesort.
559 : : *
560 : : * The worker then sorts and combines these entries, before writing them
561 : : * into a shared tuplesort for the leader (see _gin_parallel_scan_and_build
562 : : * for the whole process).
563 : : */
564 : : static void
565 : 0 : ginBuildCallbackParallel(Relation index, ItemPointer tid, Datum *values,
566 : : bool *isnull, bool tupleIsAlive, void *state)
567 : : {
568 : 0 : GinBuildState *buildstate = (GinBuildState *) state;
569 : 0 : MemoryContext oldCtx;
570 : 0 : int i;
571 : :
572 : 0 : oldCtx = MemoryContextSwitchTo(buildstate->tmpCtx);
573 : :
574 : : /*
575 : : * if scan wrapped around - flush accumulated entries and start anew
576 : : *
577 : : * With parallel scans, we don't have a guarantee the scan does not start
578 : : * half-way through the relation (serial builds disable sync scans and
579 : : * always start from block 0, parallel scans require allow_sync=true).
580 : : *
581 : : * Building the posting lists assumes the TIDs are monotonic and never go
582 : : * back, and the wrap around would break that. We handle that by detecting
583 : : * the wraparound, and flushing all entries. This means we'll later see
584 : : * two separate entries with non-overlapping TID lists (which can be
585 : : * combined by merge sort).
586 : : *
587 : : * To detect a wraparound, we remember the last TID seen by each worker
588 : : * (for any key). If the next TID seen by the worker is lower, the scan
589 : : * must have wrapped around.
590 : : */
591 [ # # ]: 0 : if (ItemPointerCompare(tid, &buildstate->tid) < 0)
592 : 0 : ginFlushBuildState(buildstate, index);
593 : :
594 : : /* remember the TID we're about to process */
595 : 0 : buildstate->tid = *tid;
596 : :
597 [ # # ]: 0 : for (i = 0; i < buildstate->ginstate.origTupdesc->natts; i++)
598 : 0 : ginHeapTupleBulkInsert(buildstate, (OffsetNumber) (i + 1),
599 : 0 : values[i], isnull[i], tid);
600 : :
601 : : /*
602 : : * If we've maxed out our available memory, dump everything to the
603 : : * tuplesort. We use half the per-worker fraction of maintenance_work_mem,
604 : : * the other half is used for the tuplesort.
605 : : */
606 [ # # ]: 0 : if (buildstate->accum.allocatedMemory >= buildstate->work_mem * (Size) 1024)
607 : 0 : ginFlushBuildState(buildstate, index);
608 : :
609 : 0 : MemoryContextSwitchTo(oldCtx);
610 : 0 : }
611 : :
612 : : IndexBuildResult *
613 : 17 : ginbuild(Relation heap, Relation index, IndexInfo *indexInfo)
614 : : {
615 : 17 : IndexBuildResult *result;
616 : 17 : double reltuples;
617 : 17 : GinBuildState buildstate;
618 : 17 : GinBuildState *state = &buildstate;
619 : 17 : Buffer RootBuffer,
620 : : MetaBuffer;
621 : 17 : ItemPointerData *list;
622 : 17 : Datum key;
623 : 17 : GinNullCategory category;
624 : 17 : uint32 nlist;
625 : 17 : MemoryContext oldCtx;
626 : 17 : OffsetNumber attnum;
627 : :
628 [ + - ]: 17 : if (RelationGetNumberOfBlocks(index) != 0)
629 [ # # # # ]: 0 : elog(ERROR, "index \"%s\" already contains data",
630 : : RelationGetRelationName(index));
631 : :
632 : 17 : initGinState(&buildstate.ginstate, index);
633 : 17 : buildstate.indtuples = 0;
634 : 17 : memset(&buildstate.buildStats, 0, sizeof(GinStatsData));
635 : :
636 : : /* Initialize fields for parallel build too. */
637 : 17 : buildstate.bs_numtuples = 0;
638 : 17 : buildstate.bs_reltuples = 0;
639 : 17 : buildstate.bs_leader = NULL;
640 : 17 : memset(&buildstate.tid, 0, sizeof(ItemPointerData));
641 : :
642 : : /* initialize the meta page */
643 : 17 : MetaBuffer = GinNewBuffer(index);
644 : :
645 : : /* initialize the root page */
646 : 17 : RootBuffer = GinNewBuffer(index);
647 : :
648 : 17 : START_CRIT_SECTION();
649 : 17 : GinInitMetabuffer(MetaBuffer);
650 : 17 : MarkBufferDirty(MetaBuffer);
651 : 17 : GinInitBuffer(RootBuffer, GIN_LEAF);
652 : 17 : MarkBufferDirty(RootBuffer);
653 : :
654 : :
655 : 17 : UnlockReleaseBuffer(MetaBuffer);
656 : 17 : UnlockReleaseBuffer(RootBuffer);
657 [ + - ]: 17 : END_CRIT_SECTION();
658 : :
659 : : /* count the root as first entry page */
660 : 17 : buildstate.buildStats.nEntryPages++;
661 : :
662 : : /*
663 : : * create a temporary memory context that is used to hold data not yet
664 : : * dumped out to the index
665 : : */
666 : 17 : buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
667 : : "Gin build temporary context",
668 : : ALLOCSET_DEFAULT_SIZES);
669 : :
670 : : /*
671 : : * create a temporary memory context that is used for calling
672 : : * ginExtractEntries(), and can be reset after each tuple
673 : : */
674 : 17 : buildstate.funcCtx = AllocSetContextCreate(CurrentMemoryContext,
675 : : "Gin build temporary context for user-defined function",
676 : : ALLOCSET_DEFAULT_SIZES);
677 : :
678 : 17 : buildstate.accum.ginstate = &buildstate.ginstate;
679 : 17 : ginInitBA(&buildstate.accum);
680 : :
681 : : /* Report table scan phase started */
682 : 17 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
683 : : PROGRESS_GIN_PHASE_INDEXBUILD_TABLESCAN);
684 : :
685 : : /*
686 : : * Attempt to launch parallel worker scan when required
687 : : *
688 : : * XXX plan_create_index_workers makes the number of workers dependent on
689 : : * maintenance_work_mem, requiring 32MB for each worker. For GIN that's
690 : : * reasonable too, because we sort the data just like btree. It does
691 : : * ignore the memory used to accumulate data in memory (set by work_mem),
692 : : * but there is no way to communicate that to plan_create_index_workers.
693 : : */
694 [ + - ]: 17 : if (indexInfo->ii_ParallelWorkers > 0)
695 : 0 : _gin_begin_parallel(state, heap, index, indexInfo->ii_Concurrent,
696 : 0 : indexInfo->ii_ParallelWorkers);
697 : :
698 : : /*
699 : : * If parallel build requested and at least one worker process was
700 : : * successfully launched, set up coordination state, wait for workers to
701 : : * complete. Then read all tuples from the shared tuplesort and insert
702 : : * them into the index.
703 : : *
704 : : * In serial mode, simply scan the table and build the index one index
705 : : * tuple at a time.
706 : : */
707 [ + - ]: 17 : if (state->bs_leader)
708 : : {
709 : 0 : SortCoordinate coordinate;
710 : :
711 : 0 : coordinate = palloc0_object(SortCoordinateData);
712 : 0 : coordinate->isWorker = false;
713 : 0 : coordinate->nParticipants =
714 : 0 : state->bs_leader->nparticipanttuplesorts;
715 : 0 : coordinate->sharedsort = state->bs_leader->sharedsort;
716 : :
717 : : /*
718 : : * Begin leader tuplesort.
719 : : *
720 : : * In cases where parallelism is involved, the leader receives the
721 : : * same share of maintenance_work_mem as a serial sort (it is
722 : : * generally treated in the same way as a serial sort once we return).
723 : : * Parallel worker Tuplesortstates will have received only a fraction
724 : : * of maintenance_work_mem, though.
725 : : *
726 : : * We rely on the lifetime of the Leader Tuplesortstate almost not
727 : : * overlapping with any worker Tuplesortstate's lifetime. There may
728 : : * be some small overlap, but that's okay because we rely on leader
729 : : * Tuplesortstate only allocating a small, fixed amount of memory
730 : : * here. When its tuplesort_performsort() is called (by our caller),
731 : : * and significant amounts of memory are likely to be used, all
732 : : * workers must have already freed almost all memory held by their
733 : : * Tuplesortstates (they are about to go away completely, too). The
734 : : * overall effect is that maintenance_work_mem always represents an
735 : : * absolute high watermark on the amount of memory used by a CREATE
736 : : * INDEX operation, regardless of the use of parallelism or any other
737 : : * factor.
738 : : */
739 : 0 : state->bs_sortstate =
740 : 0 : tuplesort_begin_index_gin(heap, index,
741 : 0 : maintenance_work_mem, coordinate,
742 : : TUPLESORT_NONE);
743 : :
744 : : /* scan the relation in parallel and merge per-worker results */
745 : 0 : reltuples = _gin_parallel_merge(state);
746 : :
747 : 0 : _gin_end_parallel(state->bs_leader, state);
748 : 0 : }
749 : : else /* no parallel index build */
750 : : {
751 : : /*
752 : : * Do the heap scan. We disallow sync scan here because
753 : : * dataPlaceToPage prefers to receive tuples in TID order.
754 : : */
755 : 17 : reltuples = table_index_build_scan(heap, index, indexInfo, false, true,
756 : : ginBuildCallback, &buildstate, NULL);
757 : :
758 : : /* dump remaining entries to the index */
759 : 17 : oldCtx = MemoryContextSwitchTo(buildstate.tmpCtx);
760 : 17 : ginBeginBAScan(&buildstate.accum);
761 [ + + + + ]: 14505 : while ((list = ginGetBAEntry(&buildstate.accum,
762 : 14505 : &attnum, &key, &category, &nlist)) != NULL)
763 : : {
764 : : /* there could be many entries, so be willing to abort here */
765 [ + - ]: 14488 : CHECK_FOR_INTERRUPTS();
766 : 28976 : ginEntryInsert(&buildstate.ginstate, attnum, key, category,
767 : 14488 : list, nlist, &buildstate.buildStats);
768 : : }
769 : 17 : MemoryContextSwitchTo(oldCtx);
770 : : }
771 : :
772 : 17 : MemoryContextDelete(buildstate.funcCtx);
773 : 17 : MemoryContextDelete(buildstate.tmpCtx);
774 : :
775 : : /*
776 : : * Update metapage stats
777 : : */
778 : 17 : buildstate.buildStats.nTotalPages = RelationGetNumberOfBlocks(index);
779 : 17 : ginUpdateStats(index, &buildstate.buildStats, true);
780 : :
781 : : /*
782 : : * We didn't write WAL records as we built the index, so if WAL-logging is
783 : : * required, write all pages to the WAL now.
784 : : */
785 [ + + + - : 17 : if (RelationNeedsWAL(index))
- + # # ]
786 : : {
787 : 0 : log_newpage_range(index, MAIN_FORKNUM,
788 : 0 : 0, RelationGetNumberOfBlocks(index),
789 : : true);
790 : 0 : }
791 : :
792 : : /*
793 : : * Return statistics
794 : : */
795 : 17 : result = palloc_object(IndexBuildResult);
796 : :
797 : 17 : result->heap_tuples = reltuples;
798 : 17 : result->index_tuples = buildstate.indtuples;
799 : :
800 : 34 : return result;
801 : 17 : }
802 : :
803 : : /*
804 : : * ginbuildempty() -- build an empty gin index in the initialization fork
805 : : */
806 : : void
807 : 1 : ginbuildempty(Relation index)
808 : : {
809 : 1 : Buffer RootBuffer,
810 : : MetaBuffer;
811 : :
812 : : /* An empty GIN index has two pages. */
813 : 1 : MetaBuffer = ExtendBufferedRel(BMR_REL(index), INIT_FORKNUM, NULL,
814 : : EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
815 : 1 : RootBuffer = ExtendBufferedRel(BMR_REL(index), INIT_FORKNUM, NULL,
816 : : EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
817 : :
818 : : /* Initialize and xlog metabuffer and root buffer. */
819 : 1 : START_CRIT_SECTION();
820 : 1 : GinInitMetabuffer(MetaBuffer);
821 : 1 : MarkBufferDirty(MetaBuffer);
822 : 1 : log_newpage_buffer(MetaBuffer, true);
823 : 1 : GinInitBuffer(RootBuffer, GIN_LEAF);
824 : 1 : MarkBufferDirty(RootBuffer);
825 : 1 : log_newpage_buffer(RootBuffer, false);
826 [ + - ]: 1 : END_CRIT_SECTION();
827 : :
828 : : /* Unlock and release the buffers. */
829 : 1 : UnlockReleaseBuffer(MetaBuffer);
830 : 1 : UnlockReleaseBuffer(RootBuffer);
831 : 1 : }
832 : :
833 : : /*
834 : : * Insert index entries for a single indexable item during "normal"
835 : : * (non-fast-update) insertion
836 : : */
837 : : static void
838 : 2000 : ginHeapTupleInsert(GinState *ginstate, OffsetNumber attnum,
839 : : Datum value, bool isNull,
840 : : ItemPointer item)
841 : : {
842 : 2000 : Datum *entries;
843 : 2000 : GinNullCategory *categories;
844 : 2000 : int32 i,
845 : : nentries;
846 : :
847 : 2000 : entries = ginExtractEntries(ginstate, attnum, value, isNull,
848 : : &nentries, &categories);
849 : :
850 [ + + ]: 7996 : for (i = 0; i < nentries; i++)
851 : 11992 : ginEntryInsert(ginstate, attnum, entries[i], categories[i],
852 : 5996 : item, 1, NULL);
853 : 2000 : }
854 : :
855 : : bool
856 : 45950 : gininsert(Relation index, Datum *values, bool *isnull,
857 : : ItemPointer ht_ctid, Relation heapRel,
858 : : IndexUniqueCheck checkUnique,
859 : : bool indexUnchanged,
860 : : IndexInfo *indexInfo)
861 : : {
862 : 45950 : GinState *ginstate = (GinState *) indexInfo->ii_AmCache;
863 : 45950 : MemoryContext oldCtx;
864 : 45950 : MemoryContext insertCtx;
865 : 45950 : int i;
866 : :
867 : : /* Initialize GinState cache if first call in this statement */
868 [ + + ]: 45950 : if (ginstate == NULL)
869 : : {
870 : 16 : oldCtx = MemoryContextSwitchTo(indexInfo->ii_Context);
871 : 16 : ginstate = palloc_object(GinState);
872 : 16 : initGinState(ginstate, index);
873 : 16 : indexInfo->ii_AmCache = ginstate;
874 : 16 : MemoryContextSwitchTo(oldCtx);
875 : 16 : }
876 : :
877 : 45950 : insertCtx = AllocSetContextCreate(CurrentMemoryContext,
878 : : "Gin insert temporary context",
879 : : ALLOCSET_DEFAULT_SIZES);
880 : :
881 : 45950 : oldCtx = MemoryContextSwitchTo(insertCtx);
882 : :
883 [ + - + + : 45950 : if (GinGetUseFastUpdate(index))
+ + ]
884 : : {
885 : 43950 : GinTupleCollector collector;
886 : :
887 : 43950 : memset(&collector, 0, sizeof(GinTupleCollector));
888 : :
889 [ + + ]: 107913 : for (i = 0; i < ginstate->origTupdesc->natts; i++)
890 : 127926 : ginHeapTupleFastCollect(ginstate, &collector,
891 : 63963 : (OffsetNumber) (i + 1),
892 : 63963 : values[i], isnull[i],
893 : 63963 : ht_ctid);
894 : :
895 : 43950 : ginHeapTupleFastInsert(ginstate, &collector);
896 : 43950 : }
897 : : else
898 : : {
899 [ + + ]: 4000 : for (i = 0; i < ginstate->origTupdesc->natts; i++)
900 : 4000 : ginHeapTupleInsert(ginstate, (OffsetNumber) (i + 1),
901 : 2000 : values[i], isnull[i],
902 : 2000 : ht_ctid);
903 : : }
904 : :
905 : 45950 : MemoryContextSwitchTo(oldCtx);
906 : 45950 : MemoryContextDelete(insertCtx);
907 : :
908 : 45950 : return false;
909 : 45950 : }
910 : :
911 : : /*
912 : : * Create parallel context, and launch workers for leader.
913 : : *
914 : : * buildstate argument should be initialized (with the exception of the
915 : : * tuplesort states, which may later be created based on shared
916 : : * state initially set up here).
917 : : *
918 : : * isconcurrent indicates if operation is CREATE INDEX CONCURRENTLY.
919 : : *
920 : : * request is the target number of parallel worker processes to launch.
921 : : *
922 : : * Sets buildstate's GinLeader, which caller must use to shut down parallel
923 : : * mode by passing it to _gin_end_parallel() at the very end of its index
924 : : * build. If not even a single worker process can be launched, this is
925 : : * never set, and caller should proceed with a serial index build.
926 : : */
927 : : static void
928 : 0 : _gin_begin_parallel(GinBuildState *buildstate, Relation heap, Relation index,
929 : : bool isconcurrent, int request)
930 : : {
931 : 0 : ParallelContext *pcxt;
932 : 0 : int scantuplesortstates;
933 : 0 : Snapshot snapshot;
934 : 0 : Size estginshared;
935 : 0 : Size estsort;
936 : 0 : GinBuildShared *ginshared;
937 : 0 : Sharedsort *sharedsort;
938 : 0 : GinLeader *ginleader = palloc0_object(GinLeader);
939 : 0 : WalUsage *walusage;
940 : 0 : BufferUsage *bufferusage;
941 : 0 : bool leaderparticipates = true;
942 : 0 : int querylen;
943 : :
944 : : #ifdef DISABLE_LEADER_PARTICIPATION
945 : : leaderparticipates = false;
946 : : #endif
947 : :
948 : : /*
949 : : * Enter parallel mode, and create context for parallel build of gin index
950 : : */
951 : 0 : EnterParallelMode();
952 [ # # ]: 0 : Assert(request > 0);
953 : 0 : pcxt = CreateParallelContext("postgres", "_gin_parallel_build_main",
954 : 0 : request);
955 : :
956 [ # # ]: 0 : scantuplesortstates = leaderparticipates ? request + 1 : request;
957 : :
958 : : /*
959 : : * Prepare for scan of the base relation. In a normal index build, we use
960 : : * SnapshotAny because we must retrieve all tuples and do our own time
961 : : * qual checks (because we have to index RECENTLY_DEAD tuples). In a
962 : : * concurrent build, we take a regular MVCC snapshot and index whatever's
963 : : * live according to that.
964 : : */
965 [ # # ]: 0 : if (!isconcurrent)
966 : 0 : snapshot = SnapshotAny;
967 : : else
968 : 0 : snapshot = RegisterSnapshot(GetTransactionSnapshot());
969 : :
970 : : /*
971 : : * Estimate size for our own PARALLEL_KEY_GIN_SHARED workspace.
972 : : */
973 : 0 : estginshared = _gin_parallel_estimate_shared(heap, snapshot);
974 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, estginshared);
975 : 0 : estsort = tuplesort_estimate_shared(scantuplesortstates);
976 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, estsort);
977 : :
978 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 2);
979 : :
980 : : /*
981 : : * Estimate space for WalUsage and BufferUsage -- PARALLEL_KEY_WAL_USAGE
982 : : * and PARALLEL_KEY_BUFFER_USAGE.
983 : : *
984 : : * If there are no extensions loaded that care, we could skip this. We
985 : : * have no way of knowing whether anyone's looking at pgWalUsage or
986 : : * pgBufferUsage, so do it unconditionally.
987 : : */
988 : 0 : shm_toc_estimate_chunk(&pcxt->estimator,
989 : : mul_size(sizeof(WalUsage), pcxt->nworkers));
990 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
991 : 0 : shm_toc_estimate_chunk(&pcxt->estimator,
992 : : mul_size(sizeof(BufferUsage), pcxt->nworkers));
993 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
994 : :
995 : : /* Finally, estimate PARALLEL_KEY_QUERY_TEXT space */
996 [ # # ]: 0 : if (debug_query_string)
997 : : {
998 : 0 : querylen = strlen(debug_query_string);
999 : 0 : shm_toc_estimate_chunk(&pcxt->estimator, querylen + 1);
1000 : 0 : shm_toc_estimate_keys(&pcxt->estimator, 1);
1001 : 0 : }
1002 : : else
1003 : 0 : querylen = 0; /* keep compiler quiet */
1004 : :
1005 : : /* Everyone's had a chance to ask for space, so now create the DSM */
1006 : 0 : InitializeParallelDSM(pcxt);
1007 : :
1008 : : /* If no DSM segment was available, back out (do serial build) */
1009 [ # # ]: 0 : if (pcxt->seg == NULL)
1010 : : {
1011 [ # # # # ]: 0 : if (IsMVCCSnapshot(snapshot))
1012 : 0 : UnregisterSnapshot(snapshot);
1013 : 0 : DestroyParallelContext(pcxt);
1014 : 0 : ExitParallelMode();
1015 : 0 : return;
1016 : : }
1017 : :
1018 : : /* Store shared build state, for which we reserved space */
1019 : 0 : ginshared = (GinBuildShared *) shm_toc_allocate(pcxt->toc, estginshared);
1020 : : /* Initialize immutable state */
1021 : 0 : ginshared->heaprelid = RelationGetRelid(heap);
1022 : 0 : ginshared->indexrelid = RelationGetRelid(index);
1023 : 0 : ginshared->isconcurrent = isconcurrent;
1024 : 0 : ginshared->scantuplesortstates = scantuplesortstates;
1025 : :
1026 : 0 : ConditionVariableInit(&ginshared->workersdonecv);
1027 : 0 : SpinLockInit(&ginshared->mutex);
1028 : :
1029 : : /* Initialize mutable state */
1030 : 0 : ginshared->nparticipantsdone = 0;
1031 : 0 : ginshared->reltuples = 0.0;
1032 : 0 : ginshared->indtuples = 0.0;
1033 : :
1034 : 0 : table_parallelscan_initialize(heap,
1035 : 0 : ParallelTableScanFromGinBuildShared(ginshared),
1036 : 0 : snapshot);
1037 : :
1038 : : /*
1039 : : * Store shared tuplesort-private state, for which we reserved space.
1040 : : * Then, initialize opaque state using tuplesort routine.
1041 : : */
1042 : 0 : sharedsort = (Sharedsort *) shm_toc_allocate(pcxt->toc, estsort);
1043 : 0 : tuplesort_initialize_shared(sharedsort, scantuplesortstates,
1044 : 0 : pcxt->seg);
1045 : :
1046 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_GIN_SHARED, ginshared);
1047 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLESORT, sharedsort);
1048 : :
1049 : : /* Store query string for workers */
1050 [ # # ]: 0 : if (debug_query_string)
1051 : : {
1052 : 0 : char *sharedquery;
1053 : :
1054 : 0 : sharedquery = (char *) shm_toc_allocate(pcxt->toc, querylen + 1);
1055 : 0 : memcpy(sharedquery, debug_query_string, querylen + 1);
1056 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, sharedquery);
1057 : 0 : }
1058 : :
1059 : : /*
1060 : : * Allocate space for each worker's WalUsage and BufferUsage; no need to
1061 : : * initialize.
1062 : : */
1063 : 0 : walusage = shm_toc_allocate(pcxt->toc,
1064 : 0 : mul_size(sizeof(WalUsage), pcxt->nworkers));
1065 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage);
1066 : 0 : bufferusage = shm_toc_allocate(pcxt->toc,
1067 : 0 : mul_size(sizeof(BufferUsage), pcxt->nworkers));
1068 : 0 : shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufferusage);
1069 : :
1070 : : /* Launch workers, saving status for leader/caller */
1071 : 0 : LaunchParallelWorkers(pcxt);
1072 : 0 : ginleader->pcxt = pcxt;
1073 : 0 : ginleader->nparticipanttuplesorts = pcxt->nworkers_launched;
1074 [ # # ]: 0 : if (leaderparticipates)
1075 : 0 : ginleader->nparticipanttuplesorts++;
1076 : 0 : ginleader->ginshared = ginshared;
1077 : 0 : ginleader->sharedsort = sharedsort;
1078 : 0 : ginleader->snapshot = snapshot;
1079 : 0 : ginleader->walusage = walusage;
1080 : 0 : ginleader->bufferusage = bufferusage;
1081 : :
1082 : : /* If no workers were successfully launched, back out (do serial build) */
1083 [ # # ]: 0 : if (pcxt->nworkers_launched == 0)
1084 : : {
1085 : 0 : _gin_end_parallel(ginleader, NULL);
1086 : 0 : return;
1087 : : }
1088 : :
1089 : : /* Save leader state now that it's clear build will be parallel */
1090 : 0 : buildstate->bs_leader = ginleader;
1091 : :
1092 : : /* Join heap scan ourselves */
1093 [ # # ]: 0 : if (leaderparticipates)
1094 : 0 : _gin_leader_participate_as_worker(buildstate, heap, index);
1095 : :
1096 : : /*
1097 : : * Caller needs to wait for all launched workers when we return. Make
1098 : : * sure that the failure-to-start case will not hang forever.
1099 : : */
1100 : 0 : WaitForParallelWorkersToAttach(pcxt);
1101 [ # # ]: 0 : }
1102 : :
1103 : : /*
1104 : : * Shut down workers, destroy parallel context, and end parallel mode.
1105 : : */
1106 : : static void
1107 : 0 : _gin_end_parallel(GinLeader *ginleader, GinBuildState *state)
1108 : : {
1109 : 0 : int i;
1110 : :
1111 : : /* Shutdown worker processes */
1112 : 0 : WaitForParallelWorkersToFinish(ginleader->pcxt);
1113 : :
1114 : : /*
1115 : : * Next, accumulate WAL usage. (This must wait for the workers to finish,
1116 : : * or we might get incomplete data.)
1117 : : */
1118 [ # # ]: 0 : for (i = 0; i < ginleader->pcxt->nworkers_launched; i++)
1119 : 0 : InstrAccumParallelQuery(&ginleader->bufferusage[i], &ginleader->walusage[i]);
1120 : :
1121 : : /* Free last reference to MVCC snapshot, if one was used */
1122 [ # # # # ]: 0 : if (IsMVCCSnapshot(ginleader->snapshot))
1123 : 0 : UnregisterSnapshot(ginleader->snapshot);
1124 : 0 : DestroyParallelContext(ginleader->pcxt);
1125 : 0 : ExitParallelMode();
1126 : 0 : }
1127 : :
1128 : : /*
1129 : : * Within leader, wait for end of heap scan.
1130 : : *
1131 : : * When called, parallel heap scan started by _gin_begin_parallel() will
1132 : : * already be underway within worker processes (when leader participates
1133 : : * as a worker, we should end up here just as workers are finishing).
1134 : : *
1135 : : * Returns the total number of heap tuples scanned.
1136 : : */
1137 : : static double
1138 : 0 : _gin_parallel_heapscan(GinBuildState *state)
1139 : : {
1140 : 0 : GinBuildShared *ginshared = state->bs_leader->ginshared;
1141 : 0 : int nparticipanttuplesorts;
1142 : :
1143 : 0 : nparticipanttuplesorts = state->bs_leader->nparticipanttuplesorts;
1144 : 0 : for (;;)
1145 : : {
1146 [ # # ]: 0 : SpinLockAcquire(&ginshared->mutex);
1147 [ # # ]: 0 : if (ginshared->nparticipantsdone == nparticipanttuplesorts)
1148 : : {
1149 : : /* copy the data into leader state */
1150 : 0 : state->bs_reltuples = ginshared->reltuples;
1151 : 0 : state->bs_numtuples = ginshared->indtuples;
1152 : :
1153 : 0 : SpinLockRelease(&ginshared->mutex);
1154 : 0 : break;
1155 : : }
1156 : 0 : SpinLockRelease(&ginshared->mutex);
1157 : :
1158 : 0 : ConditionVariableSleep(&ginshared->workersdonecv,
1159 : : WAIT_EVENT_PARALLEL_CREATE_INDEX_SCAN);
1160 : : }
1161 : :
1162 : 0 : ConditionVariableCancelSleep();
1163 : :
1164 : 0 : return state->bs_reltuples;
1165 : 0 : }
1166 : :
1167 : : /*
1168 : : * Buffer used to accumulate TIDs from multiple GinTuples for the same key
1169 : : * (we read these from the tuplesort, sorted by the key).
1170 : : *
1171 : : * This is similar to BuildAccumulator in that it's used to collect TIDs
1172 : : * in memory before inserting them into the index, but it's much simpler
1173 : : * as it only deals with a single index key at a time.
1174 : : *
1175 : : * When adding TIDs to the buffer, we make sure to keep them sorted, both
1176 : : * during the initial table scan (and detecting when the scan wraps around),
1177 : : * and during merging (where we do mergesort).
1178 : : */
1179 : : typedef struct GinBuffer
1180 : : {
1181 : : OffsetNumber attnum;
1182 : : GinNullCategory category;
1183 : : Datum key; /* 0 if no key (and keylen == 0) */
1184 : : Size keylen; /* number of bytes (not typlen) */
1185 : :
1186 : : /* type info */
1187 : : int16 typlen;
1188 : : bool typbyval;
1189 : :
1190 : : /* Number of TIDs to collect before attempt to write some out. */
1191 : : int maxitems;
1192 : :
1193 : : /* array of TID values */
1194 : : int nitems;
1195 : : int nfrozen;
1196 : : SortSupport ssup; /* for sorting/comparing keys */
1197 : : ItemPointerData *items;
1198 : : } GinBuffer;
1199 : :
1200 : : /*
1201 : : * Check that TID array contains valid values, and that it's sorted (if we
1202 : : * expect it to be).
1203 : : */
1204 : : static void
1205 : 0 : AssertCheckItemPointers(GinBuffer *buffer)
1206 : : {
1207 : : #ifdef USE_ASSERT_CHECKING
1208 : : /* we should not have a buffer with no TIDs to sort */
1209 [ # # ]: 0 : Assert(buffer->items != NULL);
1210 [ # # ]: 0 : Assert(buffer->nitems > 0);
1211 : :
1212 [ # # ]: 0 : for (int i = 0; i < buffer->nitems; i++)
1213 : : {
1214 [ # # ]: 0 : Assert(ItemPointerIsValid(&buffer->items[i]));
1215 : :
1216 : : /* don't check ordering for the first TID item */
1217 [ # # ]: 0 : if (i == 0)
1218 : 0 : continue;
1219 : :
1220 [ # # ]: 0 : Assert(ItemPointerCompare(&buffer->items[i - 1], &buffer->items[i]) < 0);
1221 : 0 : }
1222 : : #endif
1223 : 0 : }
1224 : :
1225 : : /*
1226 : : * GinBuffer checks
1227 : : *
1228 : : * Make sure the nitems/items fields are consistent (either the array is empty
1229 : : * or not empty, the fields need to agree). If there are items, check ordering.
1230 : : */
1231 : : static void
1232 : 0 : AssertCheckGinBuffer(GinBuffer *buffer)
1233 : : {
1234 : : #ifdef USE_ASSERT_CHECKING
1235 : : /* if we have any items, the array must exist */
1236 [ # # # # ]: 0 : Assert(!((buffer->nitems > 0) && (buffer->items == NULL)));
1237 : :
1238 : : /*
1239 : : * The buffer may be empty, in which case we must not call the check of
1240 : : * item pointers, because that assumes non-emptiness.
1241 : : */
1242 [ # # ]: 0 : if (buffer->nitems == 0)
1243 : 0 : return;
1244 : :
1245 : : /* Make sure the item pointers are valid and sorted. */
1246 : 0 : AssertCheckItemPointers(buffer);
1247 : : #endif
1248 : 0 : }
1249 : :
1250 : : /*
1251 : : * GinBufferInit
1252 : : * Initialize buffer to store tuples for a GIN index.
1253 : : *
1254 : : * Initialize the buffer used to accumulate TID for a single key at a time
1255 : : * (we process the data sorted), so we know when we received all data for
1256 : : * a given key.
1257 : : *
1258 : : * Initializes sort support procedures for all index attributes.
1259 : : */
1260 : : static GinBuffer *
1261 : 0 : GinBufferInit(Relation index)
1262 : : {
1263 : 0 : GinBuffer *buffer = palloc0_object(GinBuffer);
1264 : 0 : int i,
1265 : : nKeys;
1266 : 0 : TupleDesc desc = RelationGetDescr(index);
1267 : :
1268 : : /*
1269 : : * How many items can we fit into the memory limit? We don't want to end
1270 : : * with too many TIDs. and 64kB seems more than enough. But maybe this
1271 : : * should be tied to maintenance_work_mem or something like that?
1272 : : */
1273 : 0 : buffer->maxitems = (64 * 1024L) / sizeof(ItemPointerData);
1274 : :
1275 : 0 : nKeys = IndexRelationGetNumberOfKeyAttributes(index);
1276 : :
1277 : 0 : buffer->ssup = palloc0_array(SortSupportData, nKeys);
1278 : :
1279 : : /*
1280 : : * Lookup ordering operator for the index key data type, and initialize
1281 : : * the sort support function.
1282 : : */
1283 [ # # ]: 0 : for (i = 0; i < nKeys; i++)
1284 : : {
1285 : 0 : Oid cmpFunc;
1286 : 0 : SortSupport sortKey = &buffer->ssup[i];
1287 : 0 : Form_pg_attribute att = TupleDescAttr(desc, i);
1288 : :
1289 : 0 : sortKey->ssup_cxt = CurrentMemoryContext;
1290 : 0 : sortKey->ssup_collation = index->rd_indcollation[i];
1291 : :
1292 [ # # ]: 0 : if (!OidIsValid(sortKey->ssup_collation))
1293 : 0 : sortKey->ssup_collation = DEFAULT_COLLATION_OID;
1294 : :
1295 : 0 : sortKey->ssup_nulls_first = false;
1296 : 0 : sortKey->ssup_attno = i + 1;
1297 : 0 : sortKey->abbreviate = false;
1298 : :
1299 [ # # ]: 0 : Assert(sortKey->ssup_attno != 0);
1300 : :
1301 : : /*
1302 : : * If the compare proc isn't specified in the opclass definition, look
1303 : : * up the index key type's default btree comparator.
1304 : : */
1305 : 0 : cmpFunc = index_getprocid(index, i + 1, GIN_COMPARE_PROC);
1306 [ # # ]: 0 : if (cmpFunc == InvalidOid)
1307 : : {
1308 : 0 : TypeCacheEntry *typentry;
1309 : :
1310 : 0 : typentry = lookup_type_cache(att->atttypid,
1311 : : TYPECACHE_CMP_PROC_FINFO);
1312 [ # # ]: 0 : if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid))
1313 [ # # # # ]: 0 : ereport(ERROR,
1314 : : (errcode(ERRCODE_UNDEFINED_FUNCTION),
1315 : : errmsg("could not identify a comparison function for type %s",
1316 : : format_type_be(att->atttypid))));
1317 : :
1318 : 0 : cmpFunc = typentry->cmp_proc_finfo.fn_oid;
1319 : 0 : }
1320 : :
1321 : 0 : PrepareSortSupportComparisonShim(cmpFunc, sortKey);
1322 : 0 : }
1323 : :
1324 : 0 : return buffer;
1325 : 0 : }
1326 : :
1327 : : /* Is the buffer empty, i.e. has no TID values in the array? */
1328 : : static bool
1329 : 0 : GinBufferIsEmpty(GinBuffer *buffer)
1330 : : {
1331 : 0 : return (buffer->nitems == 0);
1332 : : }
1333 : :
1334 : : /*
1335 : : * GinBufferKeyEquals
1336 : : * Can the buffer store TIDs for the provided GIN tuple (same key)?
1337 : : *
1338 : : * Compare if the tuple matches the already accumulated data in the GIN
1339 : : * buffer. Compare scalar fields first, before the actual key.
1340 : : *
1341 : : * Returns true if the key matches, and the TID belongs to the buffer, or
1342 : : * false if the key does not match.
1343 : : */
1344 : : static bool
1345 : 0 : GinBufferKeyEquals(GinBuffer *buffer, GinTuple *tup)
1346 : : {
1347 : 0 : int r;
1348 : 0 : Datum tupkey;
1349 : :
1350 : 0 : AssertCheckGinBuffer(buffer);
1351 : :
1352 [ # # ]: 0 : if (tup->attrnum != buffer->attnum)
1353 : 0 : return false;
1354 : :
1355 : : /* same attribute should have the same type info */
1356 [ # # ]: 0 : Assert(tup->typbyval == buffer->typbyval);
1357 [ # # ]: 0 : Assert(tup->typlen == buffer->typlen);
1358 : :
1359 [ # # ]: 0 : if (tup->category != buffer->category)
1360 : 0 : return false;
1361 : :
1362 : : /*
1363 : : * For NULL/empty keys, this means equality, for normal keys we need to
1364 : : * compare the actual key value.
1365 : : */
1366 [ # # ]: 0 : if (buffer->category != GIN_CAT_NORM_KEY)
1367 : 0 : return true;
1368 : :
1369 : : /*
1370 : : * For the tuple, get either the first sizeof(Datum) bytes for byval
1371 : : * types, or a pointer to the beginning of the data array.
1372 : : */
1373 [ # # ]: 0 : tupkey = (buffer->typbyval) ? *(Datum *) tup->data : PointerGetDatum(tup->data);
1374 : :
1375 : 0 : r = ApplySortComparator(buffer->key, false,
1376 : 0 : tupkey, false,
1377 : 0 : &buffer->ssup[buffer->attnum - 1]);
1378 : :
1379 : 0 : return (r == 0);
1380 : 0 : }
1381 : :
1382 : : /*
1383 : : * GinBufferShouldTrim
1384 : : * Should we trim the list of item pointers?
1385 : : *
1386 : : * By trimming we understand writing out and removing the tuple IDs that
1387 : : * we know can't change by future merges. We can deduce the TID up to which
1388 : : * this is guaranteed from the "first" TID in each GIN tuple, which provides
1389 : : * a "horizon" (for a given key) thanks to the sort.
1390 : : *
1391 : : * We don't want to do this too often - compressing longer TID lists is more
1392 : : * efficient. But we also don't want to accumulate too many TIDs, for two
1393 : : * reasons. First, it consumes memory and we might exceed maintenance_work_mem
1394 : : * (or whatever limit applies), even if that's unlikely because TIDs are very
1395 : : * small so we can fit a lot of them. Second, and more importantly, long TID
1396 : : * lists are an issue if the scan wraps around, because a key may get a very
1397 : : * wide list (with min/max TID for that key), forcing "full" mergesorts for
1398 : : * every list merged into it (instead of the efficient append).
1399 : : *
1400 : : * So we look at two things when deciding if to trim - if the resulting list
1401 : : * (after adding TIDs from the new tuple) would be too long, and if there is
1402 : : * enough TIDs to trim (with values less than "first" TID from the new tuple),
1403 : : * we do the trim. By enough we mean at least 128 TIDs (mostly an arbitrary
1404 : : * number).
1405 : : *
1406 : : * We try freezing TIDs at the beginning of the list first, before attempting
1407 : : * to trim the buffer. This may allow trimming the data earlier, reducing the
1408 : : * memory usage and excluding it from the mergesort.
1409 : : */
1410 : : static bool
1411 : 0 : GinBufferShouldTrim(GinBuffer *buffer, GinTuple *tup)
1412 : : {
1413 : : /*
1414 : : * Check if the last TID in the current list is frozen. This is the case
1415 : : * when merging non-overlapping lists, e.g. in each parallel worker.
1416 : : */
1417 [ # # # # ]: 0 : if ((buffer->nitems > 0) &&
1418 : 0 : (ItemPointerCompare(&buffer->items[buffer->nitems - 1],
1419 : 0 : GinTupleGetFirst(tup)) == 0))
1420 : 0 : buffer->nfrozen = buffer->nitems;
1421 : :
1422 : : /*
1423 : : * Now find the last TID we know to be frozen, i.e. the last TID right
1424 : : * before the new GIN tuple.
1425 : : *
1426 : : * Start with the first not-yet-frozen tuple, and walk until we find the
1427 : : * first TID that's higher. If we already know the whole list is frozen
1428 : : * (i.e. nfrozen == nitems), this does nothing.
1429 : : *
1430 : : * XXX This might do a binary search for sufficiently long lists, but it
1431 : : * does not seem worth the complexity. Overlapping lists should be rare
1432 : : * common, TID comparisons are cheap, and we should quickly freeze most of
1433 : : * the list.
1434 : : */
1435 [ # # ]: 0 : for (int i = buffer->nfrozen; i < buffer->nitems; i++)
1436 : : {
1437 : : /* Is the TID after the first TID of the new tuple? Can't freeze. */
1438 : 0 : if (ItemPointerCompare(&buffer->items[i],
1439 [ # # # # ]: 0 : GinTupleGetFirst(tup)) > 0)
1440 : 0 : break;
1441 : :
1442 : 0 : buffer->nfrozen++;
1443 : 0 : }
1444 : :
1445 : : /* not enough TIDs to trim (1024 is somewhat arbitrary number) */
1446 [ # # ]: 0 : if (buffer->nfrozen < 1024)
1447 : 0 : return false;
1448 : :
1449 : : /* no need to trim if we have not hit the memory limit yet */
1450 [ # # ]: 0 : if ((buffer->nitems + tup->nitems) < buffer->maxitems)
1451 : 0 : return false;
1452 : :
1453 : : /*
1454 : : * OK, we have enough frozen TIDs to flush, and we have hit the memory
1455 : : * limit, so it's time to write it out.
1456 : : */
1457 : 0 : return true;
1458 : 0 : }
1459 : :
1460 : : /*
1461 : : * GinBufferStoreTuple
1462 : : * Add data (especially TID list) from a GIN tuple to the buffer.
1463 : : *
1464 : : * The buffer is expected to be empty (in which case it's initialized), or
1465 : : * having the same key. The TID values from the tuple are combined with the
1466 : : * stored values using a merge sort.
1467 : : *
1468 : : * The tuples (for the same key) are expected to be sorted by first TID. But
1469 : : * this does not guarantee the lists do not overlap, especially in the leader,
1470 : : * because the workers process interleaving data. There should be no overlaps
1471 : : * in a single worker - it could happen when the parallel scan wraps around,
1472 : : * but we detect that and flush the data (see ginBuildCallbackParallel).
1473 : : *
1474 : : * By sorting the GinTuple not only by key, but also by the first TID, we make
1475 : : * it more less likely the lists will overlap during merge. We merge them using
1476 : : * mergesort, but it's cheaper to just append one list to the other.
1477 : : *
1478 : : * How often can the lists overlap? There should be no overlaps in workers,
1479 : : * and in the leader we can see overlaps between lists built by different
1480 : : * workers. But the workers merge the items as much as possible, so there
1481 : : * should not be too many.
1482 : : */
1483 : : static void
1484 : 0 : GinBufferStoreTuple(GinBuffer *buffer, GinTuple *tup)
1485 : : {
1486 : 0 : ItemPointerData *items;
1487 : 0 : Datum key;
1488 : :
1489 : 0 : AssertCheckGinBuffer(buffer);
1490 : :
1491 : 0 : key = _gin_parse_tuple_key(tup);
1492 : 0 : items = _gin_parse_tuple_items(tup);
1493 : :
1494 : : /* if the buffer is empty, set the fields (and copy the key) */
1495 [ # # ]: 0 : if (GinBufferIsEmpty(buffer))
1496 : : {
1497 : 0 : buffer->category = tup->category;
1498 : 0 : buffer->keylen = tup->keylen;
1499 : 0 : buffer->attnum = tup->attrnum;
1500 : :
1501 : 0 : buffer->typlen = tup->typlen;
1502 : 0 : buffer->typbyval = tup->typbyval;
1503 : :
1504 [ # # ]: 0 : if (tup->category == GIN_CAT_NORM_KEY)
1505 : 0 : buffer->key = datumCopy(key, buffer->typbyval, buffer->typlen);
1506 : : else
1507 : 0 : buffer->key = (Datum) 0;
1508 : 0 : }
1509 : :
1510 : : /* add the new TIDs into the buffer, combine using merge-sort */
1511 : : {
1512 : 0 : int nnew;
1513 : 0 : ItemPointer new;
1514 : :
1515 : : /*
1516 : : * Resize the array - we do this first, because we'll dereference the
1517 : : * first unfrozen TID, which would fail if the array is NULL. We'll
1518 : : * still pass 0 as number of elements in that array though.
1519 : : */
1520 [ # # ]: 0 : if (buffer->items == NULL)
1521 : 0 : buffer->items = palloc((buffer->nitems + tup->nitems) * sizeof(ItemPointerData));
1522 : : else
1523 : 0 : buffer->items = repalloc(buffer->items,
1524 : 0 : (buffer->nitems + tup->nitems) * sizeof(ItemPointerData));
1525 : :
1526 : 0 : new = ginMergeItemPointers(&buffer->items[buffer->nfrozen], /* first unfrozen */
1527 : 0 : (buffer->nitems - buffer->nfrozen), /* num of unfrozen */
1528 : 0 : items, tup->nitems, &nnew);
1529 : :
1530 [ # # ]: 0 : Assert(nnew == (tup->nitems + (buffer->nitems - buffer->nfrozen)));
1531 : :
1532 : 0 : memcpy(&buffer->items[buffer->nfrozen], new,
1533 : : nnew * sizeof(ItemPointerData));
1534 : :
1535 : 0 : pfree(new);
1536 : :
1537 : 0 : buffer->nitems += tup->nitems;
1538 : :
1539 : 0 : AssertCheckItemPointers(buffer);
1540 : 0 : }
1541 : :
1542 : : /* free the decompressed TID list */
1543 : 0 : pfree(items);
1544 : 0 : }
1545 : :
1546 : : /*
1547 : : * GinBufferReset
1548 : : * Reset the buffer into a state as if it contains no data.
1549 : : */
1550 : : static void
1551 : 0 : GinBufferReset(GinBuffer *buffer)
1552 : : {
1553 [ # # ]: 0 : Assert(!GinBufferIsEmpty(buffer));
1554 : :
1555 : : /* release byref values, do nothing for by-val ones */
1556 [ # # # # ]: 0 : if ((buffer->category == GIN_CAT_NORM_KEY) && !buffer->typbyval)
1557 : 0 : pfree(DatumGetPointer(buffer->key));
1558 : :
1559 : : /*
1560 : : * Not required, but makes it more likely to trigger NULL dereference if
1561 : : * using the value incorrectly, etc.
1562 : : */
1563 : 0 : buffer->key = (Datum) 0;
1564 : :
1565 : 0 : buffer->attnum = 0;
1566 : 0 : buffer->category = 0;
1567 : 0 : buffer->keylen = 0;
1568 : 0 : buffer->nitems = 0;
1569 : 0 : buffer->nfrozen = 0;
1570 : :
1571 : 0 : buffer->typlen = 0;
1572 : 0 : buffer->typbyval = 0;
1573 : 0 : }
1574 : :
1575 : : /*
1576 : : * GinBufferTrim
1577 : : * Discard the "frozen" part of the TID list (which should have been
1578 : : * written to disk/index before this call).
1579 : : */
1580 : : static void
1581 : 0 : GinBufferTrim(GinBuffer *buffer)
1582 : : {
1583 [ # # ]: 0 : Assert((buffer->nfrozen > 0) && (buffer->nfrozen <= buffer->nitems));
1584 : :
1585 : 0 : memmove(&buffer->items[0], &buffer->items[buffer->nfrozen],
1586 : : sizeof(ItemPointerData) * (buffer->nitems - buffer->nfrozen));
1587 : :
1588 : 0 : buffer->nitems -= buffer->nfrozen;
1589 : 0 : buffer->nfrozen = 0;
1590 : 0 : }
1591 : :
1592 : : /*
1593 : : * GinBufferFree
1594 : : * Release memory associated with the GinBuffer (including TID array).
1595 : : */
1596 : : static void
1597 : 0 : GinBufferFree(GinBuffer *buffer)
1598 : : {
1599 [ # # ]: 0 : if (buffer->items)
1600 : 0 : pfree(buffer->items);
1601 : :
1602 : : /* release byref values, do nothing for by-val ones */
1603 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer) &&
1604 [ # # # # ]: 0 : (buffer->category == GIN_CAT_NORM_KEY) && !buffer->typbyval)
1605 : 0 : pfree(DatumGetPointer(buffer->key));
1606 : :
1607 : 0 : pfree(buffer);
1608 : 0 : }
1609 : :
1610 : : /*
1611 : : * GinBufferCanAddKey
1612 : : * Check if a given GIN tuple can be added to the current buffer.
1613 : : *
1614 : : * Returns true if the buffer is either empty or for the same index key.
1615 : : */
1616 : : static bool
1617 : 0 : GinBufferCanAddKey(GinBuffer *buffer, GinTuple *tup)
1618 : : {
1619 : : /* empty buffer can accept data for any key */
1620 [ # # ]: 0 : if (GinBufferIsEmpty(buffer))
1621 : 0 : return true;
1622 : :
1623 : : /* otherwise just data for the same key */
1624 : 0 : return GinBufferKeyEquals(buffer, tup);
1625 : 0 : }
1626 : :
1627 : : /*
1628 : : * Within leader, wait for end of heap scan and merge per-worker results.
1629 : : *
1630 : : * After waiting for all workers to finish, merge the per-worker results into
1631 : : * the complete index. The results from each worker are sorted by block number
1632 : : * (start of the page range). While combining the per-worker results we merge
1633 : : * summaries for the same page range, and also fill-in empty summaries for
1634 : : * ranges without any tuples.
1635 : : *
1636 : : * Returns the total number of heap tuples scanned.
1637 : : */
1638 : : static double
1639 : 0 : _gin_parallel_merge(GinBuildState *state)
1640 : : {
1641 : 0 : GinTuple *tup;
1642 : 0 : Size tuplen;
1643 : 0 : double reltuples = 0;
1644 : 0 : GinBuffer *buffer;
1645 : :
1646 : : /* GIN tuples from workers, merged by leader */
1647 : 0 : double numtuples = 0;
1648 : :
1649 : : /* wait for workers to scan table and produce partial results */
1650 : 0 : reltuples = _gin_parallel_heapscan(state);
1651 : :
1652 : : /* Execute the sort */
1653 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1654 : : PROGRESS_GIN_PHASE_PERFORMSORT_2);
1655 : :
1656 : : /* do the actual sort in the leader */
1657 : 0 : tuplesort_performsort(state->bs_sortstate);
1658 : :
1659 : : /*
1660 : : * Initialize buffer to combine entries for the same key.
1661 : : *
1662 : : * The leader is allowed to use the whole maintenance_work_mem buffer to
1663 : : * combine data. The parallel workers already completed.
1664 : : */
1665 : 0 : buffer = GinBufferInit(state->ginstate.index);
1666 : :
1667 : : /*
1668 : : * Set the progress target for the next phase. Reset the block number
1669 : : * values set by table_index_build_scan
1670 : : */
1671 : : {
1672 : 0 : const int progress_index[] = {
1673 : : PROGRESS_CREATEIDX_SUBPHASE,
1674 : : PROGRESS_CREATEIDX_TUPLES_TOTAL,
1675 : : PROGRESS_SCAN_BLOCKS_TOTAL,
1676 : : PROGRESS_SCAN_BLOCKS_DONE
1677 : : };
1678 : 0 : const int64 progress_vals[] = {
1679 : : PROGRESS_GIN_PHASE_MERGE_2,
1680 : 0 : state->bs_numtuples,
1681 : : 0, 0
1682 : : };
1683 : :
1684 : 0 : pgstat_progress_update_multi_param(4, progress_index, progress_vals);
1685 : 0 : }
1686 : :
1687 : : /*
1688 : : * Read the GIN tuples from the shared tuplesort, sorted by category and
1689 : : * key. That probably gives us order matching how data is organized in the
1690 : : * index.
1691 : : *
1692 : : * We don't insert the GIN tuples right away, but instead accumulate as
1693 : : * many TIDs for the same key as possible, and then insert that at once.
1694 : : * This way we don't need to decompress/recompress the posting lists, etc.
1695 : : */
1696 [ # # ]: 0 : while ((tup = tuplesort_getgintuple(state->bs_sortstate, &tuplen, true)) != NULL)
1697 : : {
1698 : 0 : MemoryContext oldCtx;
1699 : :
1700 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
1701 : :
1702 : : /*
1703 : : * If the buffer can accept the new GIN tuple, just store it there and
1704 : : * we're done. If it's a different key (or maybe too much data) flush
1705 : : * the current contents into the index first.
1706 : : */
1707 [ # # ]: 0 : if (!GinBufferCanAddKey(buffer, tup))
1708 : : {
1709 : : /*
1710 : : * Buffer is not empty and it's storing a different key - flush
1711 : : * the data into the insert, and start a new entry for current
1712 : : * GinTuple.
1713 : : */
1714 : 0 : AssertCheckItemPointers(buffer);
1715 : :
1716 : 0 : oldCtx = MemoryContextSwitchTo(state->tmpCtx);
1717 : :
1718 : 0 : ginEntryInsert(&state->ginstate,
1719 : 0 : buffer->attnum, buffer->key, buffer->category,
1720 : 0 : buffer->items, buffer->nitems, &state->buildStats);
1721 : :
1722 : 0 : MemoryContextSwitchTo(oldCtx);
1723 : 0 : MemoryContextReset(state->tmpCtx);
1724 : :
1725 : : /* discard the existing data */
1726 : 0 : GinBufferReset(buffer);
1727 : 0 : }
1728 : :
1729 : : /*
1730 : : * We're about to add a GIN tuple to the buffer - check the memory
1731 : : * limit first, and maybe write out some of the data into the index
1732 : : * first, if needed (and possible). We only flush the part of the TID
1733 : : * list that we know won't change, and only if there's enough data for
1734 : : * compression to work well.
1735 : : */
1736 [ # # ]: 0 : if (GinBufferShouldTrim(buffer, tup))
1737 : : {
1738 [ # # ]: 0 : Assert(buffer->nfrozen > 0);
1739 : :
1740 : : /*
1741 : : * Buffer is not empty and it's storing a different key - flush
1742 : : * the data into the insert, and start a new entry for current
1743 : : * GinTuple.
1744 : : */
1745 : 0 : AssertCheckItemPointers(buffer);
1746 : :
1747 : 0 : oldCtx = MemoryContextSwitchTo(state->tmpCtx);
1748 : :
1749 : 0 : ginEntryInsert(&state->ginstate,
1750 : 0 : buffer->attnum, buffer->key, buffer->category,
1751 : 0 : buffer->items, buffer->nfrozen, &state->buildStats);
1752 : :
1753 : 0 : MemoryContextSwitchTo(oldCtx);
1754 : 0 : MemoryContextReset(state->tmpCtx);
1755 : :
1756 : : /* truncate the data we've just discarded */
1757 : 0 : GinBufferTrim(buffer);
1758 : 0 : }
1759 : :
1760 : : /*
1761 : : * Remember data for the current tuple (either remember the new key,
1762 : : * or append if to the existing data).
1763 : : */
1764 : 0 : GinBufferStoreTuple(buffer, tup);
1765 : :
1766 : : /* Report progress */
1767 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
1768 : 0 : ++numtuples);
1769 : 0 : }
1770 : :
1771 : : /* flush data remaining in the buffer (for the last key) */
1772 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer))
1773 : : {
1774 : 0 : AssertCheckItemPointers(buffer);
1775 : :
1776 : 0 : ginEntryInsert(&state->ginstate,
1777 : 0 : buffer->attnum, buffer->key, buffer->category,
1778 : 0 : buffer->items, buffer->nitems, &state->buildStats);
1779 : :
1780 : : /* discard the existing data */
1781 : 0 : GinBufferReset(buffer);
1782 : :
1783 : : /* Report progress */
1784 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_TUPLES_DONE,
1785 : 0 : ++numtuples);
1786 : 0 : }
1787 : :
1788 : : /* release all the memory */
1789 : 0 : GinBufferFree(buffer);
1790 : :
1791 : 0 : tuplesort_end(state->bs_sortstate);
1792 : :
1793 : 0 : return reltuples;
1794 : 0 : }
1795 : :
1796 : : /*
1797 : : * Returns size of shared memory required to store state for a parallel
1798 : : * gin index build based on the snapshot its parallel scan will use.
1799 : : */
1800 : : static Size
1801 : 0 : _gin_parallel_estimate_shared(Relation heap, Snapshot snapshot)
1802 : : {
1803 : : /* c.f. shm_toc_allocate as to why BUFFERALIGN is used */
1804 : 0 : return add_size(BUFFERALIGN(sizeof(GinBuildShared)),
1805 : 0 : table_parallelscan_estimate(heap, snapshot));
1806 : : }
1807 : :
1808 : : /*
1809 : : * Within leader, participate as a parallel worker.
1810 : : */
1811 : : static void
1812 : 0 : _gin_leader_participate_as_worker(GinBuildState *buildstate, Relation heap, Relation index)
1813 : : {
1814 : 0 : GinLeader *ginleader = buildstate->bs_leader;
1815 : 0 : int sortmem;
1816 : :
1817 : : /*
1818 : : * Might as well use reliable figure when doling out maintenance_work_mem
1819 : : * (when requested number of workers were not launched, this will be
1820 : : * somewhat higher than it is for other workers).
1821 : : */
1822 : 0 : sortmem = maintenance_work_mem / ginleader->nparticipanttuplesorts;
1823 : :
1824 : : /* Perform work common to all participants */
1825 : 0 : _gin_parallel_scan_and_build(buildstate, ginleader->ginshared,
1826 : 0 : ginleader->sharedsort, heap, index,
1827 : 0 : sortmem, true);
1828 : 0 : }
1829 : :
1830 : : /*
1831 : : * _gin_process_worker_data
1832 : : * First phase of the key merging, happening in the worker.
1833 : : *
1834 : : * Depending on the number of distinct keys, the TID lists produced by the
1835 : : * callback may be very short (due to frequent evictions in the callback).
1836 : : * But combining many tiny lists is expensive, so we try to do as much as
1837 : : * possible in the workers and only then pass the results to the leader.
1838 : : *
1839 : : * We read the tuples sorted by the key, and merge them into larger lists.
1840 : : * At the moment there's no memory limit, so this will just produce one
1841 : : * huge (sorted) list per key in each worker. Which means the leader will
1842 : : * do a very limited number of mergesorts, which is good.
1843 : : */
1844 : : static void
1845 : 0 : _gin_process_worker_data(GinBuildState *state, Tuplesortstate *worker_sort,
1846 : : bool progress)
1847 : : {
1848 : 0 : GinTuple *tup;
1849 : 0 : Size tuplen;
1850 : :
1851 : 0 : GinBuffer *buffer;
1852 : :
1853 : : /*
1854 : : * Initialize buffer to combine entries for the same key.
1855 : : *
1856 : : * The workers are limited to the same amount of memory as during the sort
1857 : : * in ginBuildCallbackParallel. But this probably should be the 32MB used
1858 : : * during planning, just like there.
1859 : : */
1860 : 0 : buffer = GinBufferInit(state->ginstate.index);
1861 : :
1862 : : /* sort the raw per-worker data */
1863 [ # # ]: 0 : if (progress)
1864 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1865 : : PROGRESS_GIN_PHASE_PERFORMSORT_1);
1866 : :
1867 : 0 : tuplesort_performsort(state->bs_worker_sort);
1868 : :
1869 : : /* reset the number of GIN tuples produced by this worker */
1870 : 0 : state->bs_numtuples = 0;
1871 : :
1872 [ # # ]: 0 : if (progress)
1873 : 0 : pgstat_progress_update_param(PROGRESS_CREATEIDX_SUBPHASE,
1874 : : PROGRESS_GIN_PHASE_MERGE_1);
1875 : :
1876 : : /*
1877 : : * Read the GIN tuples from the shared tuplesort, sorted by the key, and
1878 : : * merge them into larger chunks for the leader to combine.
1879 : : */
1880 [ # # ]: 0 : while ((tup = tuplesort_getgintuple(worker_sort, &tuplen, true)) != NULL)
1881 : : {
1882 : :
1883 [ # # ]: 0 : CHECK_FOR_INTERRUPTS();
1884 : :
1885 : : /*
1886 : : * If the buffer can accept the new GIN tuple, just store it there and
1887 : : * we're done. If it's a different key (or maybe too much data) flush
1888 : : * the current contents into the index first.
1889 : : */
1890 [ # # ]: 0 : if (!GinBufferCanAddKey(buffer, tup))
1891 : : {
1892 : 0 : GinTuple *ntup;
1893 : 0 : Size ntuplen;
1894 : :
1895 : : /*
1896 : : * Buffer is not empty and it's storing a different key - flush
1897 : : * the data into the insert, and start a new entry for current
1898 : : * GinTuple.
1899 : : */
1900 : 0 : AssertCheckItemPointers(buffer);
1901 : :
1902 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1903 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1904 : 0 : buffer->items, buffer->nitems, &ntuplen);
1905 : :
1906 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1907 : 0 : state->bs_numtuples++;
1908 : :
1909 : 0 : pfree(ntup);
1910 : :
1911 : : /* discard the existing data */
1912 : 0 : GinBufferReset(buffer);
1913 : 0 : }
1914 : :
1915 : : /*
1916 : : * We're about to add a GIN tuple to the buffer - check the memory
1917 : : * limit first, and maybe write out some of the data into the index
1918 : : * first, if needed (and possible). We only flush the part of the TID
1919 : : * list that we know won't change, and only if there's enough data for
1920 : : * compression to work well.
1921 : : */
1922 [ # # ]: 0 : if (GinBufferShouldTrim(buffer, tup))
1923 : : {
1924 : 0 : GinTuple *ntup;
1925 : 0 : Size ntuplen;
1926 : :
1927 [ # # ]: 0 : Assert(buffer->nfrozen > 0);
1928 : :
1929 : : /*
1930 : : * Buffer is not empty and it's storing a different key - flush
1931 : : * the data into the insert, and start a new entry for current
1932 : : * GinTuple.
1933 : : */
1934 : 0 : AssertCheckItemPointers(buffer);
1935 : :
1936 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1937 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1938 : 0 : buffer->items, buffer->nfrozen, &ntuplen);
1939 : :
1940 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1941 : :
1942 : 0 : pfree(ntup);
1943 : :
1944 : : /* truncate the data we've just discarded */
1945 : 0 : GinBufferTrim(buffer);
1946 : 0 : }
1947 : :
1948 : : /*
1949 : : * Remember data for the current tuple (either remember the new key,
1950 : : * or append if to the existing data).
1951 : : */
1952 : 0 : GinBufferStoreTuple(buffer, tup);
1953 : : }
1954 : :
1955 : : /* flush data remaining in the buffer (for the last key) */
1956 [ # # ]: 0 : if (!GinBufferIsEmpty(buffer))
1957 : : {
1958 : 0 : GinTuple *ntup;
1959 : 0 : Size ntuplen;
1960 : :
1961 : 0 : AssertCheckItemPointers(buffer);
1962 : :
1963 : 0 : ntup = _gin_build_tuple(buffer->attnum, buffer->category,
1964 : 0 : buffer->key, buffer->typlen, buffer->typbyval,
1965 : 0 : buffer->items, buffer->nitems, &ntuplen);
1966 : :
1967 : 0 : tuplesort_putgintuple(state->bs_sortstate, ntup, ntuplen);
1968 : 0 : state->bs_numtuples++;
1969 : :
1970 : 0 : pfree(ntup);
1971 : :
1972 : : /* discard the existing data */
1973 : 0 : GinBufferReset(buffer);
1974 : 0 : }
1975 : :
1976 : : /* release all the memory */
1977 : 0 : GinBufferFree(buffer);
1978 : :
1979 : 0 : tuplesort_end(worker_sort);
1980 : 0 : }
1981 : :
1982 : : /*
1983 : : * Perform a worker's portion of a parallel GIN index build sort.
1984 : : *
1985 : : * This generates a tuplesort for the worker portion of the table.
1986 : : *
1987 : : * sortmem is the amount of working memory to use within each worker,
1988 : : * expressed in KBs.
1989 : : *
1990 : : * When this returns, workers are done, and need only release resources.
1991 : : *
1992 : : * Before feeding data into a shared tuplesort (for the leader process),
1993 : : * the workers process data in two phases.
1994 : : *
1995 : : * 1) A worker reads a portion of rows from the table, accumulates entries
1996 : : * in memory, and flushes them into a private tuplesort (e.g. because of
1997 : : * using too much memory).
1998 : : *
1999 : : * 2) The private tuplesort gets sorted (by key and TID), the worker reads
2000 : : * the data again, and combines the entries as much as possible. This has
2001 : : * to happen eventually, and this way it's done in workers in parallel.
2002 : : *
2003 : : * Finally, the combined entries are written into the shared tuplesort, so
2004 : : * that the leader can process them.
2005 : : *
2006 : : * How well this works (compared to just writing entries into the shared
2007 : : * tuplesort) depends on the data set. For large tables with many distinct
2008 : : * keys this helps a lot. With many distinct keys it's likely the buffers has
2009 : : * to be flushed often, generating many entries with the same key and short
2010 : : * TID lists. These entries need to be sorted and merged at some point,
2011 : : * before writing them to the index. The merging is quite expensive, it can
2012 : : * easily be ~50% of a serial build, and doing as much of it in the workers
2013 : : * means it's parallelized. The leader still has to merge results from the
2014 : : * workers, but it's much more efficient to merge few large entries than
2015 : : * many tiny ones.
2016 : : *
2017 : : * This also reduces the amount of data the workers pass to the leader through
2018 : : * the shared tuplesort. OTOH the workers need more space for the private sort,
2019 : : * possibly up to 2x of the data, if no entries be merged in a worker. But this
2020 : : * is very unlikely, and the only consequence is inefficiency, so we ignore it.
2021 : : */
2022 : : static void
2023 : 0 : _gin_parallel_scan_and_build(GinBuildState *state,
2024 : : GinBuildShared *ginshared, Sharedsort *sharedsort,
2025 : : Relation heap, Relation index,
2026 : : int sortmem, bool progress)
2027 : : {
2028 : 0 : SortCoordinate coordinate;
2029 : 0 : TableScanDesc scan;
2030 : 0 : double reltuples;
2031 : 0 : IndexInfo *indexInfo;
2032 : :
2033 : : /* Initialize local tuplesort coordination state */
2034 : 0 : coordinate = palloc0_object(SortCoordinateData);
2035 : 0 : coordinate->isWorker = true;
2036 : 0 : coordinate->nParticipants = -1;
2037 : 0 : coordinate->sharedsort = sharedsort;
2038 : :
2039 : : /* remember how much space is allowed for the accumulated entries */
2040 : 0 : state->work_mem = (sortmem / 2);
2041 : :
2042 : : /* remember how many workers participate in the build */
2043 : 0 : state->bs_num_workers = ginshared->scantuplesortstates;
2044 : :
2045 : : /* Begin "partial" tuplesort */
2046 : 0 : state->bs_sortstate = tuplesort_begin_index_gin(heap, index,
2047 : 0 : state->work_mem,
2048 : 0 : coordinate,
2049 : : TUPLESORT_NONE);
2050 : :
2051 : : /* Local per-worker sort of raw-data */
2052 : 0 : state->bs_worker_sort = tuplesort_begin_index_gin(heap, index,
2053 : 0 : state->work_mem,
2054 : : NULL,
2055 : : TUPLESORT_NONE);
2056 : :
2057 : : /* Join parallel scan */
2058 : 0 : indexInfo = BuildIndexInfo(index);
2059 : 0 : indexInfo->ii_Concurrent = ginshared->isconcurrent;
2060 : :
2061 : 0 : scan = table_beginscan_parallel(heap,
2062 : 0 : ParallelTableScanFromGinBuildShared(ginshared));
2063 : :
2064 : 0 : reltuples = table_index_build_scan(heap, index, indexInfo, true, progress,
2065 : 0 : ginBuildCallbackParallel, state, scan);
2066 : :
2067 : : /* write remaining accumulated entries */
2068 : 0 : ginFlushBuildState(state, index);
2069 : :
2070 : : /*
2071 : : * Do the first phase of in-worker processing - sort the data produced by
2072 : : * the callback, and combine them into much larger chunks and place that
2073 : : * into the shared tuplestore for leader to process.
2074 : : */
2075 : 0 : _gin_process_worker_data(state, state->bs_worker_sort, progress);
2076 : :
2077 : : /* sort the GIN tuples built by this worker */
2078 : 0 : tuplesort_performsort(state->bs_sortstate);
2079 : :
2080 : 0 : state->bs_reltuples += reltuples;
2081 : :
2082 : : /*
2083 : : * Done. Record ambuild statistics.
2084 : : */
2085 [ # # ]: 0 : SpinLockAcquire(&ginshared->mutex);
2086 : 0 : ginshared->nparticipantsdone++;
2087 : 0 : ginshared->reltuples += state->bs_reltuples;
2088 : 0 : ginshared->indtuples += state->bs_numtuples;
2089 : 0 : SpinLockRelease(&ginshared->mutex);
2090 : :
2091 : : /* Notify leader */
2092 : 0 : ConditionVariableSignal(&ginshared->workersdonecv);
2093 : :
2094 : 0 : tuplesort_end(state->bs_sortstate);
2095 : 0 : }
2096 : :
2097 : : /*
2098 : : * Perform work within a launched parallel process.
2099 : : */
2100 : : void
2101 : 0 : _gin_parallel_build_main(dsm_segment *seg, shm_toc *toc)
2102 : : {
2103 : 0 : char *sharedquery;
2104 : 0 : GinBuildShared *ginshared;
2105 : 0 : Sharedsort *sharedsort;
2106 : 0 : GinBuildState buildstate;
2107 : 0 : Relation heapRel;
2108 : 0 : Relation indexRel;
2109 : 0 : LOCKMODE heapLockmode;
2110 : 0 : LOCKMODE indexLockmode;
2111 : 0 : WalUsage *walusage;
2112 : 0 : BufferUsage *bufferusage;
2113 : 0 : int sortmem;
2114 : :
2115 : : /*
2116 : : * The only possible status flag that can be set to the parallel worker is
2117 : : * PROC_IN_SAFE_IC.
2118 : : */
2119 [ # # # # ]: 0 : Assert((MyProc->statusFlags == 0) ||
2120 : : (MyProc->statusFlags == PROC_IN_SAFE_IC));
2121 : :
2122 : : /* Set debug_query_string for individual workers first */
2123 : 0 : sharedquery = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, true);
2124 : 0 : debug_query_string = sharedquery;
2125 : :
2126 : : /* Report the query string from leader */
2127 : 0 : pgstat_report_activity(STATE_RUNNING, debug_query_string);
2128 : :
2129 : : /* Look up gin shared state */
2130 : 0 : ginshared = shm_toc_lookup(toc, PARALLEL_KEY_GIN_SHARED, false);
2131 : :
2132 : : /* Open relations using lock modes known to be obtained by index.c */
2133 [ # # ]: 0 : if (!ginshared->isconcurrent)
2134 : : {
2135 : 0 : heapLockmode = ShareLock;
2136 : 0 : indexLockmode = AccessExclusiveLock;
2137 : 0 : }
2138 : : else
2139 : : {
2140 : 0 : heapLockmode = ShareUpdateExclusiveLock;
2141 : 0 : indexLockmode = RowExclusiveLock;
2142 : : }
2143 : :
2144 : : /* Open relations within worker */
2145 : 0 : heapRel = table_open(ginshared->heaprelid, heapLockmode);
2146 : 0 : indexRel = index_open(ginshared->indexrelid, indexLockmode);
2147 : :
2148 : : /* initialize the GIN build state */
2149 : 0 : initGinState(&buildstate.ginstate, indexRel);
2150 : 0 : buildstate.indtuples = 0;
2151 : 0 : memset(&buildstate.buildStats, 0, sizeof(GinStatsData));
2152 : 0 : memset(&buildstate.tid, 0, sizeof(ItemPointerData));
2153 : :
2154 : : /*
2155 : : * create a temporary memory context that is used to hold data not yet
2156 : : * dumped out to the index
2157 : : */
2158 : 0 : buildstate.tmpCtx = AllocSetContextCreate(CurrentMemoryContext,
2159 : : "Gin build temporary context",
2160 : : ALLOCSET_DEFAULT_SIZES);
2161 : :
2162 : : /*
2163 : : * create a temporary memory context that is used for calling
2164 : : * ginExtractEntries(), and can be reset after each tuple
2165 : : */
2166 : 0 : buildstate.funcCtx = AllocSetContextCreate(CurrentMemoryContext,
2167 : : "Gin build temporary context for user-defined function",
2168 : : ALLOCSET_DEFAULT_SIZES);
2169 : :
2170 : 0 : buildstate.accum.ginstate = &buildstate.ginstate;
2171 : 0 : ginInitBA(&buildstate.accum);
2172 : :
2173 : :
2174 : : /* Look up shared state private to tuplesort.c */
2175 : 0 : sharedsort = shm_toc_lookup(toc, PARALLEL_KEY_TUPLESORT, false);
2176 : 0 : tuplesort_attach_shared(sharedsort, seg);
2177 : :
2178 : : /* Prepare to track buffer usage during parallel execution */
2179 : 0 : InstrStartParallelQuery();
2180 : :
2181 : : /*
2182 : : * Might as well use reliable figure when doling out maintenance_work_mem
2183 : : * (when requested number of workers were not launched, this will be
2184 : : * somewhat higher than it is for other workers).
2185 : : */
2186 : 0 : sortmem = maintenance_work_mem / ginshared->scantuplesortstates;
2187 : :
2188 : 0 : _gin_parallel_scan_and_build(&buildstate, ginshared, sharedsort,
2189 : 0 : heapRel, indexRel, sortmem, false);
2190 : :
2191 : : /* Report WAL/buffer usage during parallel execution */
2192 : 0 : bufferusage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
2193 : 0 : walusage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
2194 : 0 : InstrEndParallelQuery(&bufferusage[ParallelWorkerNumber],
2195 : 0 : &walusage[ParallelWorkerNumber]);
2196 : :
2197 : 0 : index_close(indexRel, indexLockmode);
2198 : 0 : table_close(heapRel, heapLockmode);
2199 : 0 : }
2200 : :
2201 : : /*
2202 : : * Used to keep track of compressed TID lists when building a GIN tuple.
2203 : : */
2204 : : typedef struct
2205 : : {
2206 : : dlist_node node; /* linked list pointers */
2207 : : GinPostingList *seg;
2208 : : } GinSegmentInfo;
2209 : :
2210 : : /*
2211 : : * _gin_build_tuple
2212 : : * Serialize the state for an index key into a tuple for tuplesort.
2213 : : *
2214 : : * The tuple has a number of scalar fields (mostly matching the build state),
2215 : : * and then a data array that stores the key first, and then the TID list.
2216 : : *
2217 : : * For by-reference data types, we store the actual data. For by-val types
2218 : : * we simply copy the whole Datum, so that we don't have to care about stuff
2219 : : * like endianness etc. We could make it a little bit smaller, but it's not
2220 : : * worth it - it's a tiny fraction of the data, and we need to MAXALIGN the
2221 : : * start of the TID list anyway. So we wouldn't save anything. (This would
2222 : : * not be a good idea for the permanent in-index data, since we'd prefer
2223 : : * that that not depend on sizeof(Datum). But this is just a transient
2224 : : * representation to use while sorting the data.)
2225 : : *
2226 : : * The TID list is serialized as compressed - it's highly compressible, and
2227 : : * we already have ginCompressPostingList for this purpose. The list may be
2228 : : * pretty long, so we compress it into multiple segments and then copy all
2229 : : * of that into the GIN tuple.
2230 : : */
2231 : : static GinTuple *
2232 : 0 : _gin_build_tuple(OffsetNumber attrnum, unsigned char category,
2233 : : Datum key, int16 typlen, bool typbyval,
2234 : : ItemPointerData *items, uint32 nitems,
2235 : : Size *len)
2236 : : {
2237 : 0 : GinTuple *tuple;
2238 : 0 : char *ptr;
2239 : :
2240 : 0 : Size tuplen;
2241 : 0 : int keylen;
2242 : :
2243 : 0 : dlist_mutable_iter iter;
2244 : 0 : dlist_head segments;
2245 : 0 : int ncompressed;
2246 : 0 : Size compresslen;
2247 : :
2248 : : /*
2249 : : * Calculate how long is the key value. Only keys with GIN_CAT_NORM_KEY
2250 : : * have actual non-empty key. We include varlena headers and \0 bytes for
2251 : : * strings, to make it easier to access the data in-line.
2252 : : *
2253 : : * For byval types we simply copy the whole Datum. We could store just the
2254 : : * necessary bytes, but this is simpler to work with and not worth the
2255 : : * extra complexity. Moreover we still need to do the MAXALIGN to allow
2256 : : * direct access to items pointers.
2257 : : *
2258 : : * XXX Note that for byval types we store the whole datum, no matter what
2259 : : * the typlen value is.
2260 : : */
2261 [ # # ]: 0 : if (category != GIN_CAT_NORM_KEY)
2262 : 0 : keylen = 0;
2263 [ # # ]: 0 : else if (typbyval)
2264 : 0 : keylen = sizeof(Datum);
2265 [ # # ]: 0 : else if (typlen > 0)
2266 : 0 : keylen = typlen;
2267 [ # # ]: 0 : else if (typlen == -1)
2268 : 0 : keylen = VARSIZE_ANY(DatumGetPointer(key));
2269 [ # # ]: 0 : else if (typlen == -2)
2270 : 0 : keylen = strlen(DatumGetPointer(key)) + 1;
2271 : : else
2272 [ # # # # ]: 0 : elog(ERROR, "unexpected typlen value (%d)", typlen);
2273 : :
2274 : : /* compress the item pointers */
2275 : 0 : ncompressed = 0;
2276 : 0 : compresslen = 0;
2277 : 0 : dlist_init(&segments);
2278 : :
2279 : : /* generate compressed segments of TID list chunks */
2280 [ # # ]: 0 : while (ncompressed < nitems)
2281 : : {
2282 : 0 : int cnt;
2283 : 0 : GinSegmentInfo *seginfo = palloc_object(GinSegmentInfo);
2284 : :
2285 : 0 : seginfo->seg = ginCompressPostingList(&items[ncompressed],
2286 : 0 : (nitems - ncompressed),
2287 : : UINT16_MAX,
2288 : : &cnt);
2289 : :
2290 : 0 : ncompressed += cnt;
2291 : 0 : compresslen += SizeOfGinPostingList(seginfo->seg);
2292 : :
2293 : 0 : dlist_push_tail(&segments, &seginfo->node);
2294 : 0 : }
2295 : :
2296 : : /*
2297 : : * Determine GIN tuple length with all the data included. Be careful about
2298 : : * alignment, to allow direct access to compressed segments (those require
2299 : : * only SHORTALIGN).
2300 : : */
2301 : 0 : tuplen = SHORTALIGN(offsetof(GinTuple, data) + keylen) + compresslen;
2302 : :
2303 : 0 : *len = tuplen;
2304 : :
2305 : : /*
2306 : : * Allocate space for the whole GIN tuple.
2307 : : *
2308 : : * The palloc0 is needed - writetup_index_gin will write the whole tuple
2309 : : * to disk, so we need to make sure the padding bytes are defined
2310 : : * (otherwise valgrind would report this).
2311 : : */
2312 : 0 : tuple = palloc0(tuplen);
2313 : :
2314 : 0 : tuple->tuplen = tuplen;
2315 : 0 : tuple->attrnum = attrnum;
2316 : 0 : tuple->category = category;
2317 : 0 : tuple->keylen = keylen;
2318 : 0 : tuple->nitems = nitems;
2319 : :
2320 : : /* key type info */
2321 : 0 : tuple->typlen = typlen;
2322 : 0 : tuple->typbyval = typbyval;
2323 : :
2324 : : /*
2325 : : * Copy the key and items into the tuple. First the key value, which we
2326 : : * can simply copy right at the beginning of the data array.
2327 : : */
2328 [ # # ]: 0 : if (category == GIN_CAT_NORM_KEY)
2329 : : {
2330 [ # # ]: 0 : if (typbyval)
2331 : : {
2332 : 0 : memcpy(tuple->data, &key, sizeof(Datum));
2333 : 0 : }
2334 [ # # ]: 0 : else if (typlen > 0) /* byref, fixed length */
2335 : : {
2336 : 0 : memcpy(tuple->data, DatumGetPointer(key), typlen);
2337 : 0 : }
2338 [ # # ]: 0 : else if (typlen == -1)
2339 : : {
2340 : 0 : memcpy(tuple->data, DatumGetPointer(key), keylen);
2341 : 0 : }
2342 [ # # ]: 0 : else if (typlen == -2)
2343 : : {
2344 : 0 : memcpy(tuple->data, DatumGetPointer(key), keylen);
2345 : 0 : }
2346 : 0 : }
2347 : :
2348 : : /* finally, copy the TIDs into the array */
2349 : 0 : ptr = (char *) tuple + SHORTALIGN(offsetof(GinTuple, data) + keylen);
2350 : :
2351 : : /* copy in the compressed data, and free the segments */
2352 [ # # # # ]: 0 : dlist_foreach_modify(iter, &segments)
2353 : : {
2354 : 0 : GinSegmentInfo *seginfo = dlist_container(GinSegmentInfo, node, iter.cur);
2355 : :
2356 : 0 : memcpy(ptr, seginfo->seg, SizeOfGinPostingList(seginfo->seg));
2357 : :
2358 : 0 : ptr += SizeOfGinPostingList(seginfo->seg);
2359 : :
2360 : 0 : dlist_delete(&seginfo->node);
2361 : :
2362 : 0 : pfree(seginfo->seg);
2363 : 0 : pfree(seginfo);
2364 : 0 : }
2365 : :
2366 : 0 : return tuple;
2367 : 0 : }
2368 : :
2369 : : /*
2370 : : * _gin_parse_tuple_key
2371 : : * Return a Datum representing the key stored in the tuple.
2372 : : *
2373 : : * Most of the tuple fields are directly accessible, the only thing that
2374 : : * needs more care is the key and the TID list.
2375 : : *
2376 : : * For the key, this returns a regular Datum representing it. It's either the
2377 : : * actual key value, or a pointer to the beginning of the data array (which is
2378 : : * where the data was copied by _gin_build_tuple).
2379 : : */
2380 : : static Datum
2381 : 0 : _gin_parse_tuple_key(GinTuple *a)
2382 : : {
2383 : 0 : Datum key;
2384 : :
2385 [ # # ]: 0 : if (a->category != GIN_CAT_NORM_KEY)
2386 : 0 : return (Datum) 0;
2387 : :
2388 [ # # ]: 0 : if (a->typbyval)
2389 : : {
2390 : 0 : memcpy(&key, a->data, a->keylen);
2391 : 0 : return key;
2392 : : }
2393 : :
2394 : 0 : return PointerGetDatum(a->data);
2395 : 0 : }
2396 : :
2397 : : /*
2398 : : * _gin_parse_tuple_items
2399 : : * Return a pointer to a palloc'd array of decompressed TID array.
2400 : : */
2401 : : static ItemPointer
2402 : 0 : _gin_parse_tuple_items(GinTuple *a)
2403 : : {
2404 : 0 : int len;
2405 : 0 : char *ptr;
2406 : 0 : int ndecoded;
2407 : 0 : ItemPointer items;
2408 : :
2409 : 0 : len = a->tuplen - SHORTALIGN(offsetof(GinTuple, data) + a->keylen);
2410 : 0 : ptr = (char *) a + SHORTALIGN(offsetof(GinTuple, data) + a->keylen);
2411 : :
2412 : 0 : items = ginPostingListDecodeAllSegments((GinPostingList *) ptr, len, &ndecoded);
2413 : :
2414 [ # # ]: 0 : Assert(ndecoded == a->nitems);
2415 : :
2416 : 0 : return items;
2417 : 0 : }
2418 : :
2419 : : /*
2420 : : * _gin_compare_tuples
2421 : : * Compare GIN tuples, used by tuplesort during parallel index build.
2422 : : *
2423 : : * The scalar fields (attrnum, category) are compared first, the key value is
2424 : : * compared last. The comparisons are done using type-specific sort support
2425 : : * functions.
2426 : : *
2427 : : * If the key value matches, we compare the first TID value in the TID list,
2428 : : * which means the tuples are merged in an order in which they are most
2429 : : * likely to be simply concatenated. (This "first" TID will also allow us
2430 : : * to determine a point up to which the list is fully determined and can be
2431 : : * written into the index to enforce a memory limit etc.)
2432 : : */
2433 : : int
2434 : 0 : _gin_compare_tuples(GinTuple *a, GinTuple *b, SortSupport ssup)
2435 : : {
2436 : 0 : int r;
2437 : 0 : Datum keya,
2438 : : keyb;
2439 : :
2440 [ # # ]: 0 : if (a->attrnum < b->attrnum)
2441 : 0 : return -1;
2442 : :
2443 [ # # ]: 0 : if (a->attrnum > b->attrnum)
2444 : 0 : return 1;
2445 : :
2446 [ # # ]: 0 : if (a->category < b->category)
2447 : 0 : return -1;
2448 : :
2449 [ # # ]: 0 : if (a->category > b->category)
2450 : 0 : return 1;
2451 : :
2452 [ # # ]: 0 : if (a->category == GIN_CAT_NORM_KEY)
2453 : : {
2454 : 0 : keya = _gin_parse_tuple_key(a);
2455 : 0 : keyb = _gin_parse_tuple_key(b);
2456 : :
2457 : 0 : r = ApplySortComparator(keya, false,
2458 : 0 : keyb, false,
2459 : 0 : &ssup[a->attrnum - 1]);
2460 : :
2461 : : /* if the key is the same, consider the first TID in the array */
2462 [ # # ]: 0 : return (r != 0) ? r : ItemPointerCompare(GinTupleGetFirst(a),
2463 : 0 : GinTupleGetFirst(b));
2464 : : }
2465 : :
2466 : 0 : return ItemPointerCompare(GinTupleGetFirst(a),
2467 : 0 : GinTupleGetFirst(b));
2468 : 0 : }
|