LCOV - code coverage report
Current view: top level - src/backend/optimizer/path - costsize.c (source / functions) Coverage Total Hit
Test: Code coverage Lines: 97.6 % 2495 2434
Test Date: 2026-01-26 10:56:24 Functions: 98.6 % 74 73
Legend: Lines:     hit not hit
Branches: + taken - not taken # not executed
Branches: 82.4 % 1129 930

             Branch data     Line data    Source code
       1                 :             : /*-------------------------------------------------------------------------
       2                 :             :  *
       3                 :             :  * costsize.c
       4                 :             :  *        Routines to compute (and set) relation sizes and path costs
       5                 :             :  *
       6                 :             :  * Path costs are measured in arbitrary units established by these basic
       7                 :             :  * parameters:
       8                 :             :  *
       9                 :             :  *      seq_page_cost           Cost of a sequential page fetch
      10                 :             :  *      random_page_cost        Cost of a non-sequential page fetch
      11                 :             :  *      cpu_tuple_cost          Cost of typical CPU time to process a tuple
      12                 :             :  *      cpu_index_tuple_cost  Cost of typical CPU time to process an index tuple
      13                 :             :  *      cpu_operator_cost       Cost of CPU time to execute an operator or function
      14                 :             :  *      parallel_tuple_cost Cost of CPU time to pass a tuple from worker to leader backend
      15                 :             :  *      parallel_setup_cost Cost of setting up shared memory for parallelism
      16                 :             :  *
      17                 :             :  * We expect that the kernel will typically do some amount of read-ahead
      18                 :             :  * optimization; this in conjunction with seek costs means that seq_page_cost
      19                 :             :  * is normally considerably less than random_page_cost.  (However, if the
      20                 :             :  * database is fully cached in RAM, it is reasonable to set them equal.)
      21                 :             :  *
      22                 :             :  * We also use a rough estimate "effective_cache_size" of the number of
      23                 :             :  * disk pages in Postgres + OS-level disk cache.  (We can't simply use
      24                 :             :  * NBuffers for this purpose because that would ignore the effects of
      25                 :             :  * the kernel's disk cache.)
      26                 :             :  *
      27                 :             :  * Obviously, taking constants for these values is an oversimplification,
      28                 :             :  * but it's tough enough to get any useful estimates even at this level of
      29                 :             :  * detail.  Note that all of these parameters are user-settable, in case
      30                 :             :  * the default values are drastically off for a particular platform.
      31                 :             :  *
      32                 :             :  * seq_page_cost and random_page_cost can also be overridden for an individual
      33                 :             :  * tablespace, in case some data is on a fast disk and other data is on a slow
      34                 :             :  * disk.  Per-tablespace overrides never apply to temporary work files such as
      35                 :             :  * an external sort or a materialize node that overflows work_mem.
      36                 :             :  *
      37                 :             :  * We compute two separate costs for each path:
      38                 :             :  *              total_cost: total estimated cost to fetch all tuples
      39                 :             :  *              startup_cost: cost that is expended before first tuple is fetched
      40                 :             :  * In some scenarios, such as when there is a LIMIT or we are implementing
      41                 :             :  * an EXISTS(...) sub-select, it is not necessary to fetch all tuples of the
      42                 :             :  * path's result.  A caller can estimate the cost of fetching a partial
      43                 :             :  * result by interpolating between startup_cost and total_cost.  In detail:
      44                 :             :  *              actual_cost = startup_cost +
      45                 :             :  *                      (total_cost - startup_cost) * tuples_to_fetch / path->rows;
      46                 :             :  * Note that a base relation's rows count (and, by extension, plan_rows for
      47                 :             :  * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
      48                 :             :  * that this equation works properly.  (Note: while path->rows is never zero
      49                 :             :  * for ordinary relations, it is zero for paths for provably-empty relations,
      50                 :             :  * so beware of division-by-zero.)      The LIMIT is applied as a top-level
      51                 :             :  * plan node.
      52                 :             :  *
      53                 :             :  * Each path stores the total number of disabled nodes that exist at or
      54                 :             :  * below that point in the plan tree. This is regarded as a component of
      55                 :             :  * the cost, and paths with fewer disabled nodes should be regarded as
      56                 :             :  * cheaper than those with more. Disabled nodes occur when the user sets
      57                 :             :  * a GUC like enable_seqscan=false. We can't necessarily respect such a
      58                 :             :  * setting in every part of the plan tree, but we want to respect in as many
      59                 :             :  * parts of the plan tree as possible. Simpler schemes like storing a Boolean
      60                 :             :  * here rather than a count fail to do that. We used to disable nodes by
      61                 :             :  * adding a large constant to the startup cost, but that distorted planning
      62                 :             :  * in other ways.
      63                 :             :  *
      64                 :             :  * For largely historical reasons, most of the routines in this module use
      65                 :             :  * the passed result Path only to store their results (rows, startup_cost and
      66                 :             :  * total_cost) into.  All the input data they need is passed as separate
      67                 :             :  * parameters, even though much of it could be extracted from the Path.
      68                 :             :  * An exception is made for the cost_XXXjoin() routines, which expect all
      69                 :             :  * the other fields of the passed XXXPath to be filled in, and similarly
      70                 :             :  * cost_index() assumes the passed IndexPath is valid except for its output
      71                 :             :  * values.
      72                 :             :  *
      73                 :             :  *
      74                 :             :  * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
      75                 :             :  * Portions Copyright (c) 1994, Regents of the University of California
      76                 :             :  *
      77                 :             :  * IDENTIFICATION
      78                 :             :  *        src/backend/optimizer/path/costsize.c
      79                 :             :  *
      80                 :             :  *-------------------------------------------------------------------------
      81                 :             :  */
      82                 :             : 
      83                 :             : #include "postgres.h"
      84                 :             : 
      85                 :             : #include <limits.h>
      86                 :             : #include <math.h>
      87                 :             : 
      88                 :             : #include "access/amapi.h"
      89                 :             : #include "access/htup_details.h"
      90                 :             : #include "access/tsmapi.h"
      91                 :             : #include "executor/executor.h"
      92                 :             : #include "executor/nodeAgg.h"
      93                 :             : #include "executor/nodeHash.h"
      94                 :             : #include "executor/nodeMemoize.h"
      95                 :             : #include "miscadmin.h"
      96                 :             : #include "nodes/makefuncs.h"
      97                 :             : #include "nodes/nodeFuncs.h"
      98                 :             : #include "optimizer/clauses.h"
      99                 :             : #include "optimizer/cost.h"
     100                 :             : #include "optimizer/optimizer.h"
     101                 :             : #include "optimizer/pathnode.h"
     102                 :             : #include "optimizer/paths.h"
     103                 :             : #include "optimizer/placeholder.h"
     104                 :             : #include "optimizer/plancat.h"
     105                 :             : #include "optimizer/restrictinfo.h"
     106                 :             : #include "parser/parsetree.h"
     107                 :             : #include "utils/lsyscache.h"
     108                 :             : #include "utils/selfuncs.h"
     109                 :             : #include "utils/spccache.h"
     110                 :             : #include "utils/tuplesort.h"
     111                 :             : 
     112                 :             : 
     113                 :             : #define LOG2(x)  (log(x) / 0.693147180559945)
     114                 :             : 
     115                 :             : /*
     116                 :             :  * Append and MergeAppend nodes are less expensive than some other operations
     117                 :             :  * which use cpu_tuple_cost; instead of adding a separate GUC, estimate the
     118                 :             :  * per-tuple cost as cpu_tuple_cost multiplied by this value.
     119                 :             :  */
     120                 :             : #define APPEND_CPU_COST_MULTIPLIER 0.5
     121                 :             : 
     122                 :             : /*
     123                 :             :  * Maximum value for row estimates.  We cap row estimates to this to help
     124                 :             :  * ensure that costs based on these estimates remain within the range of what
     125                 :             :  * double can represent.  add_path() wouldn't act sanely given infinite or NaN
     126                 :             :  * cost values.
     127                 :             :  */
     128                 :             : #define MAXIMUM_ROWCOUNT 1e100
     129                 :             : 
     130                 :             : double          seq_page_cost = DEFAULT_SEQ_PAGE_COST;
     131                 :             : double          random_page_cost = DEFAULT_RANDOM_PAGE_COST;
     132                 :             : double          cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
     133                 :             : double          cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
     134                 :             : double          cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
     135                 :             : double          parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
     136                 :             : double          parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
     137                 :             : double          recursive_worktable_factor = DEFAULT_RECURSIVE_WORKTABLE_FACTOR;
     138                 :             : 
     139                 :             : int                     effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
     140                 :             : 
     141                 :             : Cost            disable_cost = 1.0e10;
     142                 :             : 
     143                 :             : int                     max_parallel_workers_per_gather = 2;
     144                 :             : 
     145                 :             : bool            enable_seqscan = true;
     146                 :             : bool            enable_indexscan = true;
     147                 :             : bool            enable_indexonlyscan = true;
     148                 :             : bool            enable_bitmapscan = true;
     149                 :             : bool            enable_tidscan = true;
     150                 :             : bool            enable_sort = true;
     151                 :             : bool            enable_incremental_sort = true;
     152                 :             : bool            enable_hashagg = true;
     153                 :             : bool            enable_nestloop = true;
     154                 :             : bool            enable_material = true;
     155                 :             : bool            enable_memoize = true;
     156                 :             : bool            enable_mergejoin = true;
     157                 :             : bool            enable_hashjoin = true;
     158                 :             : bool            enable_gathermerge = true;
     159                 :             : bool            enable_partitionwise_join = false;
     160                 :             : bool            enable_partitionwise_aggregate = false;
     161                 :             : bool            enable_parallel_append = true;
     162                 :             : bool            enable_parallel_hash = true;
     163                 :             : bool            enable_partition_pruning = true;
     164                 :             : bool            enable_presorted_aggregate = true;
     165                 :             : bool            enable_async_append = true;
     166                 :             : 
     167                 :             : typedef struct
     168                 :             : {
     169                 :             :         PlannerInfo *root;
     170                 :             :         QualCost        total;
     171                 :             : } cost_qual_eval_context;
     172                 :             : 
     173                 :             : static List *extract_nonindex_conditions(List *qual_clauses, List *indexclauses);
     174                 :             : static MergeScanSelCache *cached_scansel(PlannerInfo *root,
     175                 :             :                                                                                  RestrictInfo *rinfo,
     176                 :             :                                                                                  PathKey *pathkey);
     177                 :             : static void cost_rescan(PlannerInfo *root, Path *path,
     178                 :             :                                                 Cost *rescan_startup_cost, Cost *rescan_total_cost);
     179                 :             : static bool cost_qual_eval_walker(Node *node, cost_qual_eval_context *context);
     180                 :             : static void get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
     181                 :             :                                                                           ParamPathInfo *param_info,
     182                 :             :                                                                           QualCost *qpqual_cost);
     183                 :             : static bool has_indexed_join_quals(NestPath *path);
     184                 :             : static double approx_tuple_count(PlannerInfo *root, JoinPath *path,
     185                 :             :                                                                  List *quals);
     186                 :             : static double calc_joinrel_size_estimate(PlannerInfo *root,
     187                 :             :                                                                                  RelOptInfo *joinrel,
     188                 :             :                                                                                  RelOptInfo *outer_rel,
     189                 :             :                                                                                  RelOptInfo *inner_rel,
     190                 :             :                                                                                  double outer_rows,
     191                 :             :                                                                                  double inner_rows,
     192                 :             :                                                                                  SpecialJoinInfo *sjinfo,
     193                 :             :                                                                                  List *restrictlist);
     194                 :             : static Selectivity get_foreign_key_join_selectivity(PlannerInfo *root,
     195                 :             :                                                                                                         Relids outer_relids,
     196                 :             :                                                                                                         Relids inner_relids,
     197                 :             :                                                                                                         SpecialJoinInfo *sjinfo,
     198                 :             :                                                                                                         List **restrictlist);
     199                 :             : static Cost append_nonpartial_cost(List *subpaths, int numpaths,
     200                 :             :                                                                    int parallel_workers);
     201                 :             : static void set_rel_width(PlannerInfo *root, RelOptInfo *rel);
     202                 :             : static int32 get_expr_width(PlannerInfo *root, const Node *expr);
     203                 :             : static double relation_byte_size(double tuples, int width);
     204                 :             : static double page_size(double tuples, int width);
     205                 :             : static double get_parallel_divisor(Path *path);
     206                 :             : 
     207                 :             : 
     208                 :             : /*
     209                 :             :  * clamp_row_est
     210                 :             :  *              Force a row-count estimate to a sane value.
     211                 :             :  */
     212                 :             : double
     213                 :     2972748 : clamp_row_est(double nrows)
     214                 :             : {
     215                 :             :         /*
     216                 :             :          * Avoid infinite and NaN row estimates.  Costs derived from such values
     217                 :             :          * are going to be useless.  Also force the estimate to be at least one
     218                 :             :          * row, to make explain output look better and to avoid possible
     219                 :             :          * divide-by-zero when interpolating costs.  Make it an integer, too.
     220                 :             :          */
     221   [ +  +  -  +  :     2972748 :         if (nrows > MAXIMUM_ROWCOUNT || isnan(nrows))
             +  +  +  - ]
     222                 :     3963664 :                 nrows = MAXIMUM_ROWCOUNT;
     223         [ +  + ]:      990916 :         else if (nrows <= 1.0)
     224                 :      290807 :                 nrows = 1.0;
     225                 :             :         else
     226                 :      700109 :                 nrows = rint(nrows);
     227                 :             : 
     228                 :      990916 :         return nrows;
     229                 :             : }
     230                 :             : 
     231                 :             : /*
     232                 :             :  * clamp_width_est
     233                 :             :  *              Force a tuple-width estimate to a sane value.
     234                 :             :  *
     235                 :             :  * The planner represents datatype width and tuple width estimates as int32.
     236                 :             :  * When summing column width estimates to create a tuple width estimate,
     237                 :             :  * it's possible to reach integer overflow in edge cases.  To ensure sane
     238                 :             :  * behavior, we form such sums in int64 arithmetic and then apply this routine
     239                 :             :  * to clamp to int32 range.
     240                 :             :  */
     241                 :             : int32
     242                 :      194517 : clamp_width_est(int64 tuple_width)
     243                 :             : {
     244                 :             :         /*
     245                 :             :          * Anything more than MaxAllocSize is clearly bogus, since we could not
     246                 :             :          * create a tuple that large.
     247                 :             :          */
     248         [ -  + ]:      194517 :         if (tuple_width > MaxAllocSize)
     249                 :           0 :                 return (int32) MaxAllocSize;
     250                 :             : 
     251                 :             :         /*
     252                 :             :          * Unlike clamp_row_est, we just Assert that the value isn't negative,
     253                 :             :          * rather than masking such errors.
     254                 :             :          */
     255         [ +  - ]:      194517 :         Assert(tuple_width >= 0);
     256                 :             : 
     257                 :      194517 :         return (int32) tuple_width;
     258                 :      194517 : }
     259                 :             : 
     260                 :             : 
     261                 :             : /*
     262                 :             :  * cost_seqscan
     263                 :             :  *        Determines and returns the cost of scanning a relation sequentially.
     264                 :             :  *
     265                 :             :  * 'baserel' is the relation to be scanned
     266                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     267                 :             :  */
     268                 :             : void
     269                 :       47397 : cost_seqscan(Path *path, PlannerInfo *root,
     270                 :             :                          RelOptInfo *baserel, ParamPathInfo *param_info)
     271                 :             : {
     272                 :       47397 :         Cost            startup_cost = 0;
     273                 :       47397 :         Cost            cpu_run_cost;
     274                 :       47397 :         Cost            disk_run_cost;
     275                 :       47397 :         double          spc_seq_page_cost;
     276                 :       47397 :         QualCost        qpqual_cost;
     277                 :       47397 :         Cost            cpu_per_tuple;
     278                 :       47397 :         uint64          enable_mask = PGS_SEQSCAN;
     279                 :             : 
     280                 :             :         /* Should only be applied to base relations */
     281         [ +  - ]:       47397 :         Assert(baserel->relid > 0);
     282         [ +  - ]:       47397 :         Assert(baserel->rtekind == RTE_RELATION);
     283                 :             : 
     284                 :             :         /* Mark the path with the correct row estimate */
     285         [ +  + ]:       47397 :         if (param_info)
     286                 :         139 :                 path->rows = param_info->ppi_rows;
     287                 :             :         else
     288                 :       47258 :                 path->rows = baserel->rows;
     289                 :             : 
     290                 :             :         /* fetch estimated page cost for tablespace containing table */
     291                 :       47397 :         get_tablespace_page_costs(baserel->reltablespace,
     292                 :             :                                                           NULL,
     293                 :             :                                                           &spc_seq_page_cost);
     294                 :             : 
     295                 :             :         /*
     296                 :             :          * disk costs
     297                 :             :          */
     298                 :       47397 :         disk_run_cost = spc_seq_page_cost * baserel->pages;
     299                 :             : 
     300                 :             :         /* CPU costs */
     301                 :       47397 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     302                 :             : 
     303                 :       47397 :         startup_cost += qpqual_cost.startup;
     304                 :       47397 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     305                 :       47397 :         cpu_run_cost = cpu_per_tuple * baserel->tuples;
     306                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
     307                 :       47397 :         startup_cost += path->pathtarget->cost.startup;
     308                 :       47397 :         cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
     309                 :             : 
     310                 :             :         /* Adjust costing for parallelism, if used. */
     311         [ +  + ]:       47397 :         if (path->parallel_workers > 0)
     312                 :             :         {
     313                 :        4206 :                 double          parallel_divisor = get_parallel_divisor(path);
     314                 :             : 
     315                 :             :                 /* The CPU cost is divided among all the workers. */
     316                 :        4206 :                 cpu_run_cost /= parallel_divisor;
     317                 :             : 
     318                 :             :                 /*
     319                 :             :                  * It may be possible to amortize some of the I/O cost, but probably
     320                 :             :                  * not very much, because most operating systems already do aggressive
     321                 :             :                  * prefetching.  For now, we assume that the disk run cost can't be
     322                 :             :                  * amortized at all.
     323                 :             :                  */
     324                 :             : 
     325                 :             :                 /*
     326                 :             :                  * In the case of a parallel plan, the row count needs to represent
     327                 :             :                  * the number of tuples processed per worker.
     328                 :             :                  */
     329                 :        4206 :                 path->rows = clamp_row_est(path->rows / parallel_divisor);
     330                 :        4206 :         }
     331                 :             :         else
     332                 :       43191 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
     333                 :             : 
     334                 :       47397 :         path->disabled_nodes =
     335                 :       47397 :                 (baserel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
     336                 :       47397 :         path->startup_cost = startup_cost;
     337                 :       47397 :         path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
     338                 :       47397 : }
     339                 :             : 
     340                 :             : /*
     341                 :             :  * cost_samplescan
     342                 :             :  *        Determines and returns the cost of scanning a relation using sampling.
     343                 :             :  *
     344                 :             :  * 'baserel' is the relation to be scanned
     345                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     346                 :             :  */
     347                 :             : void
     348                 :          45 : cost_samplescan(Path *path, PlannerInfo *root,
     349                 :             :                                 RelOptInfo *baserel, ParamPathInfo *param_info)
     350                 :             : {
     351                 :          45 :         Cost            startup_cost = 0;
     352                 :          45 :         Cost            run_cost = 0;
     353                 :          45 :         RangeTblEntry *rte;
     354                 :          45 :         TableSampleClause *tsc;
     355                 :          45 :         TsmRoutine *tsm;
     356                 :          45 :         double          spc_seq_page_cost,
     357                 :             :                                 spc_random_page_cost,
     358                 :             :                                 spc_page_cost;
     359                 :          45 :         QualCost        qpqual_cost;
     360                 :          45 :         Cost            cpu_per_tuple;
     361                 :          45 :         uint64          enable_mask = 0;
     362                 :             : 
     363                 :             :         /* Should only be applied to base relations with tablesample clauses */
     364         [ +  - ]:          45 :         Assert(baserel->relid > 0);
     365         [ +  - ]:          45 :         rte = planner_rt_fetch(baserel->relid, root);
     366         [ +  - ]:          45 :         Assert(rte->rtekind == RTE_RELATION);
     367                 :          45 :         tsc = rte->tablesample;
     368         [ +  - ]:          45 :         Assert(tsc != NULL);
     369                 :          45 :         tsm = GetTsmRoutine(tsc->tsmhandler);
     370                 :             : 
     371                 :             :         /* Mark the path with the correct row estimate */
     372         [ +  + ]:          45 :         if (param_info)
     373                 :          12 :                 path->rows = param_info->ppi_rows;
     374                 :             :         else
     375                 :          33 :                 path->rows = baserel->rows;
     376                 :             : 
     377                 :             :         /* fetch estimated page cost for tablespace containing table */
     378                 :          45 :         get_tablespace_page_costs(baserel->reltablespace,
     379                 :             :                                                           &spc_random_page_cost,
     380                 :             :                                                           &spc_seq_page_cost);
     381                 :             : 
     382                 :             :         /* if NextSampleBlock is used, assume random access, else sequential */
     383         [ +  + ]:          45 :         spc_page_cost = (tsm->NextSampleBlock != NULL) ?
     384                 :          45 :                 spc_random_page_cost : spc_seq_page_cost;
     385                 :             : 
     386                 :             :         /*
     387                 :             :          * disk costs (recall that baserel->pages has already been set to the
     388                 :             :          * number of pages the sampling method will visit)
     389                 :             :          */
     390                 :          45 :         run_cost += spc_page_cost * baserel->pages;
     391                 :             : 
     392                 :             :         /*
     393                 :             :          * CPU costs (recall that baserel->tuples has already been set to the
     394                 :             :          * number of tuples the sampling method will select).  Note that we ignore
     395                 :             :          * execution cost of the TABLESAMPLE parameter expressions; they will be
     396                 :             :          * evaluated only once per scan, and in most usages they'll likely be
     397                 :             :          * simple constants anyway.  We also don't charge anything for the
     398                 :             :          * calculations the sampling method might do internally.
     399                 :             :          */
     400                 :          45 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
     401                 :             : 
     402                 :          45 :         startup_cost += qpqual_cost.startup;
     403                 :          45 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     404                 :          45 :         run_cost += cpu_per_tuple * baserel->tuples;
     405                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
     406                 :          45 :         startup_cost += path->pathtarget->cost.startup;
     407                 :          45 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
     408                 :             : 
     409         [ -  + ]:          45 :         if (path->parallel_workers == 0)
     410                 :          45 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
     411                 :             : 
     412                 :          45 :         path->disabled_nodes =
     413                 :          45 :                 (baserel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
     414                 :          45 :         path->startup_cost = startup_cost;
     415                 :          45 :         path->total_cost = startup_cost + run_cost;
     416                 :          45 : }
     417                 :             : 
     418                 :             : /*
     419                 :             :  * cost_gather
     420                 :             :  *        Determines and returns the cost of gather path.
     421                 :             :  *
     422                 :             :  * 'rel' is the relation to be operated upon
     423                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
     424                 :             :  * 'rows' may be used to point to a row estimate; if non-NULL, it overrides
     425                 :             :  * both 'rel' and 'param_info'.  This is useful when the path doesn't exactly
     426                 :             :  * correspond to any particular RelOptInfo.
     427                 :             :  */
     428                 :             : void
     429                 :        3645 : cost_gather(GatherPath *path, PlannerInfo *root,
     430                 :             :                         RelOptInfo *rel, ParamPathInfo *param_info,
     431                 :             :                         double *rows)
     432                 :             : {
     433                 :        3645 :         Cost            startup_cost = 0;
     434                 :        3645 :         Cost            run_cost = 0;
     435                 :             : 
     436                 :             :         /* Mark the path with the correct row estimate */
     437         [ +  + ]:        3645 :         if (rows)
     438                 :        1027 :                 path->path.rows = *rows;
     439         [ -  + ]:        2618 :         else if (param_info)
     440                 :           0 :                 path->path.rows = param_info->ppi_rows;
     441                 :             :         else
     442                 :        2618 :                 path->path.rows = rel->rows;
     443                 :             : 
     444                 :        3645 :         startup_cost = path->subpath->startup_cost;
     445                 :             : 
     446                 :        3645 :         run_cost = path->subpath->total_cost - path->subpath->startup_cost;
     447                 :             : 
     448                 :             :         /* Parallel setup and communication cost. */
     449                 :        3645 :         startup_cost += parallel_setup_cost;
     450                 :        3645 :         run_cost += parallel_tuple_cost * path->path.rows;
     451                 :             : 
     452                 :        7290 :         path->path.disabled_nodes = path->subpath->disabled_nodes
     453                 :        3645 :                 + ((rel->pgs_mask & PGS_GATHER) != 0 ? 0 : 1);
     454                 :        3645 :         path->path.startup_cost = startup_cost;
     455                 :        3645 :         path->path.total_cost = (startup_cost + run_cost);
     456                 :        3645 : }
     457                 :             : 
     458                 :             : /*
     459                 :             :  * cost_gather_merge
     460                 :             :  *        Determines and returns the cost of gather merge path.
     461                 :             :  *
     462                 :             :  * GatherMerge merges several pre-sorted input streams, using a heap that at
     463                 :             :  * any given instant holds the next tuple from each stream. If there are N
     464                 :             :  * streams, we need about N*log2(N) tuple comparisons to construct the heap at
     465                 :             :  * startup, and then for each output tuple, about log2(N) comparisons to
     466                 :             :  * replace the top heap entry with the next tuple from the same stream.
     467                 :             :  */
     468                 :             : void
     469                 :        2999 : cost_gather_merge(GatherMergePath *path, PlannerInfo *root,
     470                 :             :                                   RelOptInfo *rel, ParamPathInfo *param_info,
     471                 :             :                                   int input_disabled_nodes,
     472                 :             :                                   Cost input_startup_cost, Cost input_total_cost,
     473                 :             :                                   double *rows)
     474                 :             : {
     475                 :        2999 :         Cost            startup_cost = 0;
     476                 :        2999 :         Cost            run_cost = 0;
     477                 :        2999 :         Cost            comparison_cost;
     478                 :        2999 :         double          N;
     479                 :        2999 :         double          logN;
     480                 :             : 
     481                 :             :         /* Mark the path with the correct row estimate */
     482         [ +  + ]:        2999 :         if (rows)
     483                 :        1790 :                 path->path.rows = *rows;
     484         [ -  + ]:        1209 :         else if (param_info)
     485                 :           0 :                 path->path.rows = param_info->ppi_rows;
     486                 :             :         else
     487                 :        1209 :                 path->path.rows = rel->rows;
     488                 :             : 
     489                 :             :         /*
     490                 :             :          * Add one to the number of workers to account for the leader.  This might
     491                 :             :          * be overgenerous since the leader will do less work than other workers
     492                 :             :          * in typical cases, but we'll go with it for now.
     493                 :             :          */
     494         [ +  - ]:        2999 :         Assert(path->num_workers > 0);
     495                 :        2999 :         N = (double) path->num_workers + 1;
     496                 :        2999 :         logN = LOG2(N);
     497                 :             : 
     498                 :             :         /* Assumed cost per tuple comparison */
     499                 :        2999 :         comparison_cost = 2.0 * cpu_operator_cost;
     500                 :             : 
     501                 :             :         /* Heap creation cost */
     502                 :        2999 :         startup_cost += comparison_cost * N * logN;
     503                 :             : 
     504                 :             :         /* Per-tuple heap maintenance cost */
     505                 :        2999 :         run_cost += path->path.rows * comparison_cost * logN;
     506                 :             : 
     507                 :             :         /* small cost for heap management, like cost_merge_append */
     508                 :        2999 :         run_cost += cpu_operator_cost * path->path.rows;
     509                 :             : 
     510                 :             :         /*
     511                 :             :          * Parallel setup and communication cost.  Since Gather Merge, unlike
     512                 :             :          * Gather, requires us to block until a tuple is available from every
     513                 :             :          * worker, we bump the IPC cost up a little bit as compared with Gather.
     514                 :             :          * For lack of a better idea, charge an extra 5%.
     515                 :             :          */
     516                 :        2999 :         startup_cost += parallel_setup_cost;
     517                 :        2999 :         run_cost += parallel_tuple_cost * path->path.rows * 1.05;
     518                 :             : 
     519                 :        5998 :         path->path.disabled_nodes = path->subpath->disabled_nodes
     520                 :        2999 :                 + ((rel->pgs_mask & PGS_GATHER_MERGE) != 0 ? 0 : 1);
     521                 :        2999 :         path->path.startup_cost = startup_cost + input_startup_cost;
     522                 :        2999 :         path->path.total_cost = (startup_cost + run_cost + input_total_cost);
     523                 :        2999 : }
     524                 :             : 
     525                 :             : /*
     526                 :             :  * cost_index
     527                 :             :  *        Determines and returns the cost of scanning a relation using an index.
     528                 :             :  *
     529                 :             :  * 'path' describes the indexscan under consideration, and is complete
     530                 :             :  *              except for the fields to be set by this routine
     531                 :             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
     532                 :             :  *              estimates of caching behavior
     533                 :             :  *
     534                 :             :  * In addition to rows, startup_cost and total_cost, cost_index() sets the
     535                 :             :  * path's indextotalcost and indexselectivity fields.  These values will be
     536                 :             :  * needed if the IndexPath is used in a BitmapIndexScan.
     537                 :             :  *
     538                 :             :  * NOTE: path->indexquals must contain only clauses usable as index
     539                 :             :  * restrictions.  Any additional quals evaluated as qpquals may reduce the
     540                 :             :  * number of returned tuples, but they won't reduce the number of tuples
     541                 :             :  * we have to fetch from the table, so they don't reduce the scan cost.
     542                 :             :  */
     543                 :             : void
     544                 :       75698 : cost_index(IndexPath *path, PlannerInfo *root, double loop_count,
     545                 :             :                    bool partial_path)
     546                 :             : {
     547                 :       75698 :         IndexOptInfo *index = path->indexinfo;
     548                 :       75698 :         RelOptInfo *baserel = index->rel;
     549                 :       75698 :         bool            indexonly = (path->path.pathtype == T_IndexOnlyScan);
     550                 :       75698 :         amcostestimate_function amcostestimate;
     551                 :       75698 :         List       *qpquals;
     552                 :       75698 :         Cost            startup_cost = 0;
     553                 :       75698 :         Cost            run_cost = 0;
     554                 :       75698 :         Cost            cpu_run_cost = 0;
     555                 :       75698 :         Cost            indexStartupCost;
     556                 :       75698 :         Cost            indexTotalCost;
     557                 :       75698 :         Selectivity indexSelectivity;
     558                 :       75698 :         double          indexCorrelation,
     559                 :             :                                 csquared;
     560                 :       75698 :         double          spc_seq_page_cost,
     561                 :             :                                 spc_random_page_cost;
     562                 :       75698 :         Cost            min_IO_cost,
     563                 :             :                                 max_IO_cost;
     564                 :       75698 :         QualCost        qpqual_cost;
     565                 :       75698 :         Cost            cpu_per_tuple;
     566                 :       75698 :         double          tuples_fetched;
     567                 :       75698 :         double          pages_fetched;
     568                 :       75698 :         double          rand_heap_pages;
     569                 :       75698 :         double          index_pages;
     570                 :       75698 :         uint64          enable_mask;
     571                 :             : 
     572                 :             :         /* Should only be applied to base relations */
     573         [ +  - ]:       75698 :         Assert(IsA(baserel, RelOptInfo) &&
     574                 :             :                    IsA(index, IndexOptInfo));
     575         [ +  - ]:       75698 :         Assert(baserel->relid > 0);
     576         [ +  - ]:       75698 :         Assert(baserel->rtekind == RTE_RELATION);
     577                 :             : 
     578                 :             :         /*
     579                 :             :          * Mark the path with the correct row estimate, and identify which quals
     580                 :             :          * will need to be enforced as qpquals.  We need not check any quals that
     581                 :             :          * are implied by the index's predicate, so we can use indrestrictinfo not
     582                 :             :          * baserestrictinfo as the list of relevant restriction clauses for the
     583                 :             :          * rel.
     584                 :             :          */
     585         [ +  + ]:       75698 :         if (path->path.param_info)
     586                 :             :         {
     587                 :       14778 :                 path->path.rows = path->path.param_info->ppi_rows;
     588                 :             :                 /* qpquals come from the rel's restriction clauses and ppi_clauses */
     589                 :       44334 :                 qpquals = list_concat(extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     590                 :       14778 :                                                                                                                   path->indexclauses),
     591                 :       29556 :                                                           extract_nonindex_conditions(path->path.param_info->ppi_clauses,
     592                 :       14778 :                                                                                                                   path->indexclauses));
     593                 :       14778 :         }
     594                 :             :         else
     595                 :             :         {
     596                 :       60920 :                 path->path.rows = baserel->rows;
     597                 :             :                 /* qpquals come from just the rel's restriction clauses */
     598                 :      121840 :                 qpquals = extract_nonindex_conditions(path->indexinfo->indrestrictinfo,
     599                 :       60920 :                                                                                           path->indexclauses);
     600                 :             :         }
     601                 :             : 
     602                 :             :         /* is this scan type disabled? */
     603                 :      151396 :         enable_mask = (indexonly ? PGS_INDEXONLYSCAN : PGS_INDEXSCAN)
     604                 :       75698 :                 | (partial_path ? 0 : PGS_CONSIDER_NONPARTIAL);
     605                 :       75698 :         path->path.disabled_nodes =
     606                 :       75698 :                 (baserel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
     607                 :             : 
     608                 :             :         /*
     609                 :             :          * Call index-access-method-specific code to estimate the processing cost
     610                 :             :          * for scanning the index, as well as the selectivity of the index (ie,
     611                 :             :          * the fraction of main-table tuples we will have to retrieve) and its
     612                 :             :          * correlation to the main-table tuple order.  We need a cast here because
     613                 :             :          * pathnodes.h uses a weak function type to avoid including amapi.h.
     614                 :             :          */
     615                 :       75698 :         amcostestimate = (amcostestimate_function) index->amcostestimate;
     616                 :       75698 :         amcostestimate(root, path, loop_count,
     617                 :             :                                    &indexStartupCost, &indexTotalCost,
     618                 :             :                                    &indexSelectivity, &indexCorrelation,
     619                 :             :                                    &index_pages);
     620                 :             : 
     621                 :             :         /*
     622                 :             :          * Save amcostestimate's results for possible use in bitmap scan planning.
     623                 :             :          * We don't bother to save indexStartupCost or indexCorrelation, because a
     624                 :             :          * bitmap scan doesn't care about either.
     625                 :             :          */
     626                 :       75698 :         path->indextotalcost = indexTotalCost;
     627                 :       75698 :         path->indexselectivity = indexSelectivity;
     628                 :             : 
     629                 :             :         /* all costs for touching index itself included here */
     630                 :       75698 :         startup_cost += indexStartupCost;
     631                 :       75698 :         run_cost += indexTotalCost - indexStartupCost;
     632                 :             : 
     633                 :             :         /* estimate number of main-table tuples fetched */
     634                 :       75698 :         tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
     635                 :             : 
     636                 :             :         /* fetch estimated page costs for tablespace containing table */
     637                 :       75698 :         get_tablespace_page_costs(baserel->reltablespace,
     638                 :             :                                                           &spc_random_page_cost,
     639                 :             :                                                           &spc_seq_page_cost);
     640                 :             : 
     641                 :             :         /*----------
     642                 :             :          * Estimate number of main-table pages fetched, and compute I/O cost.
     643                 :             :          *
     644                 :             :          * When the index ordering is uncorrelated with the table ordering,
     645                 :             :          * we use an approximation proposed by Mackert and Lohman (see
     646                 :             :          * index_pages_fetched() for details) to compute the number of pages
     647                 :             :          * fetched, and then charge spc_random_page_cost per page fetched.
     648                 :             :          *
     649                 :             :          * When the index ordering is exactly correlated with the table ordering
     650                 :             :          * (just after a CLUSTER, for example), the number of pages fetched should
     651                 :             :          * be exactly selectivity * table_size.  What's more, all but the first
     652                 :             :          * will be sequential fetches, not the random fetches that occur in the
     653                 :             :          * uncorrelated case.  So if the number of pages is more than 1, we
     654                 :             :          * ought to charge
     655                 :             :          *              spc_random_page_cost + (pages_fetched - 1) * spc_seq_page_cost
     656                 :             :          * For partially-correlated indexes, we ought to charge somewhere between
     657                 :             :          * these two estimates.  We currently interpolate linearly between the
     658                 :             :          * estimates based on the correlation squared (XXX is that appropriate?).
     659                 :             :          *
     660                 :             :          * If it's an index-only scan, then we will not need to fetch any heap
     661                 :             :          * pages for which the visibility map shows all tuples are visible.
     662                 :             :          * Hence, reduce the estimated number of heap fetches accordingly.
     663                 :             :          * We use the measured fraction of the entire heap that is all-visible,
     664                 :             :          * which might not be particularly relevant to the subset of the heap
     665                 :             :          * that this query will fetch; but it's not clear how to do better.
     666                 :             :          *----------
     667                 :             :          */
     668         [ +  + ]:       75698 :         if (loop_count > 1)
     669                 :             :         {
     670                 :             :                 /*
     671                 :             :                  * For repeated indexscans, the appropriate estimate for the
     672                 :             :                  * uncorrelated case is to scale up the number of tuples fetched in
     673                 :             :                  * the Mackert and Lohman formula by the number of scans, so that we
     674                 :             :                  * estimate the number of pages fetched by all the scans; then
     675                 :             :                  * pro-rate the costs for one scan.  In this case we assume all the
     676                 :             :                  * fetches are random accesses.
     677                 :             :                  */
     678                 :       15618 :                 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
     679                 :        7809 :                                                                                         baserel->pages,
     680                 :        7809 :                                                                                         (double) index->pages,
     681                 :        7809 :                                                                                         root);
     682                 :             : 
     683         [ +  + ]:        7809 :                 if (indexonly)
     684                 :        1258 :                         pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     685                 :             : 
     686                 :        7809 :                 rand_heap_pages = pages_fetched;
     687                 :             : 
     688                 :        7809 :                 max_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     689                 :             : 
     690                 :             :                 /*
     691                 :             :                  * In the perfectly correlated case, the number of pages touched by
     692                 :             :                  * each scan is selectivity * table_size, and we can use the Mackert
     693                 :             :                  * and Lohman formula at the page level to estimate how much work is
     694                 :             :                  * saved by caching across scans.  We still assume all the fetches are
     695                 :             :                  * random, though, which is an overestimate that's hard to correct for
     696                 :             :                  * without double-counting the cache effects.  (But in most cases
     697                 :             :                  * where such a plan is actually interesting, only one page would get
     698                 :             :                  * fetched per scan anyway, so it shouldn't matter much.)
     699                 :             :                  */
     700                 :        7809 :                 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     701                 :             : 
     702                 :       15618 :                 pages_fetched = index_pages_fetched(pages_fetched * loop_count,
     703                 :        7809 :                                                                                         baserel->pages,
     704                 :        7809 :                                                                                         (double) index->pages,
     705                 :        7809 :                                                                                         root);
     706                 :             : 
     707         [ +  + ]:        7809 :                 if (indexonly)
     708                 :        1258 :                         pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     709                 :             : 
     710                 :        7809 :                 min_IO_cost = (pages_fetched * spc_random_page_cost) / loop_count;
     711                 :        7809 :         }
     712                 :             :         else
     713                 :             :         {
     714                 :             :                 /*
     715                 :             :                  * Normal case: apply the Mackert and Lohman formula, and then
     716                 :             :                  * interpolate between that and the correlation-derived result.
     717                 :             :                  */
     718                 :      135778 :                 pages_fetched = index_pages_fetched(tuples_fetched,
     719                 :       67889 :                                                                                         baserel->pages,
     720                 :       67889 :                                                                                         (double) index->pages,
     721                 :       67889 :                                                                                         root);
     722                 :             : 
     723         [ +  + ]:       67889 :                 if (indexonly)
     724                 :        7931 :                         pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     725                 :             : 
     726                 :       67889 :                 rand_heap_pages = pages_fetched;
     727                 :             : 
     728                 :             :                 /* max_IO_cost is for the perfectly uncorrelated case (csquared=0) */
     729                 :       67889 :                 max_IO_cost = pages_fetched * spc_random_page_cost;
     730                 :             : 
     731                 :             :                 /* min_IO_cost is for the perfectly correlated case (csquared=1) */
     732                 :       67889 :                 pages_fetched = ceil(indexSelectivity * (double) baserel->pages);
     733                 :             : 
     734         [ +  + ]:       67889 :                 if (indexonly)
     735                 :        7931 :                         pages_fetched = ceil(pages_fetched * (1.0 - baserel->allvisfrac));
     736                 :             : 
     737         [ +  + ]:       67889 :                 if (pages_fetched > 0)
     738                 :             :                 {
     739                 :       62101 :                         min_IO_cost = spc_random_page_cost;
     740         [ +  + ]:       62101 :                         if (pages_fetched > 1)
     741                 :       20866 :                                 min_IO_cost += (pages_fetched - 1) * spc_seq_page_cost;
     742                 :       62101 :                 }
     743                 :             :                 else
     744                 :        5788 :                         min_IO_cost = 0;
     745                 :             :         }
     746                 :             : 
     747         [ +  + ]:       75698 :         if (partial_path)
     748                 :             :         {
     749                 :             :                 /*
     750                 :             :                  * For index only scans compute workers based on number of index pages
     751                 :             :                  * fetched; the number of heap pages we fetch might be so small as to
     752                 :             :                  * effectively rule out parallelism, which we don't want to do.
     753                 :             :                  */
     754         [ +  + ]:       25382 :                 if (indexonly)
     755                 :        2722 :                         rand_heap_pages = -1;
     756                 :             : 
     757                 :             :                 /*
     758                 :             :                  * Estimate the number of parallel workers required to scan index. Use
     759                 :             :                  * the number of heap pages computed considering heap fetches won't be
     760                 :             :                  * sequential as for parallel scans the pages are accessed in random
     761                 :             :                  * order.
     762                 :             :                  */
     763                 :       50764 :                 path->path.parallel_workers = compute_parallel_worker(baserel,
     764                 :       25382 :                                                                                                                           rand_heap_pages,
     765                 :       25382 :                                                                                                                           index_pages,
     766                 :       25382 :                                                                                                                           max_parallel_workers_per_gather);
     767                 :             : 
     768                 :             :                 /*
     769                 :             :                  * Fall out if workers can't be assigned for parallel scan, because in
     770                 :             :                  * such a case this path will be rejected.  So there is no benefit in
     771                 :             :                  * doing extra computation.
     772                 :             :                  */
     773         [ +  + ]:       25382 :                 if (path->path.parallel_workers <= 0)
     774                 :       24122 :                         return;
     775                 :             : 
     776                 :        1260 :                 path->path.parallel_aware = true;
     777                 :        1260 :         }
     778                 :             : 
     779                 :             :         /*
     780                 :             :          * Now interpolate based on estimated index order correlation to get total
     781                 :             :          * disk I/O cost for main table accesses.
     782                 :             :          */
     783                 :       51576 :         csquared = indexCorrelation * indexCorrelation;
     784                 :             : 
     785                 :       51576 :         run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
     786                 :             : 
     787                 :             :         /*
     788                 :             :          * Estimate CPU costs per tuple.
     789                 :             :          *
     790                 :             :          * What we want here is cpu_tuple_cost plus the evaluation costs of any
     791                 :             :          * qual clauses that we have to evaluate as qpquals.
     792                 :             :          */
     793                 :       51576 :         cost_qual_eval(&qpqual_cost, qpquals, root);
     794                 :             : 
     795                 :       51576 :         startup_cost += qpqual_cost.startup;
     796                 :       51576 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
     797                 :             : 
     798                 :       51576 :         cpu_run_cost += cpu_per_tuple * tuples_fetched;
     799                 :             : 
     800                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
     801                 :       51576 :         startup_cost += path->path.pathtarget->cost.startup;
     802                 :       51576 :         cpu_run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
     803                 :             : 
     804                 :             :         /* Adjust costing for parallelism, if used. */
     805         [ +  + ]:       51576 :         if (path->path.parallel_workers > 0)
     806                 :             :         {
     807                 :        1260 :                 double          parallel_divisor = get_parallel_divisor(&path->path);
     808                 :             : 
     809                 :        1260 :                 path->path.rows = clamp_row_est(path->path.rows / parallel_divisor);
     810                 :             : 
     811                 :             :                 /* The CPU cost is divided among all the workers. */
     812                 :        1260 :                 cpu_run_cost /= parallel_divisor;
     813                 :        1260 :         }
     814                 :             : 
     815                 :       51576 :         run_cost += cpu_run_cost;
     816                 :             : 
     817                 :       51576 :         path->path.startup_cost = startup_cost;
     818                 :       51576 :         path->path.total_cost = startup_cost + run_cost;
     819         [ -  + ]:       75698 : }
     820                 :             : 
     821                 :             : /*
     822                 :             :  * extract_nonindex_conditions
     823                 :             :  *
     824                 :             :  * Given a list of quals to be enforced in an indexscan, extract the ones that
     825                 :             :  * will have to be applied as qpquals (ie, the index machinery won't handle
     826                 :             :  * them).  Here we detect only whether a qual clause is directly redundant
     827                 :             :  * with some indexclause.  If the index path is chosen for use, createplan.c
     828                 :             :  * will try a bit harder to get rid of redundant qual conditions; specifically
     829                 :             :  * it will see if quals can be proven to be implied by the indexquals.  But
     830                 :             :  * it does not seem worth the cycles to try to factor that in at this stage,
     831                 :             :  * since we're only trying to estimate qual eval costs.  Otherwise this must
     832                 :             :  * match the logic in create_indexscan_plan().
     833                 :             :  *
     834                 :             :  * qual_clauses, and the result, are lists of RestrictInfos.
     835                 :             :  * indexclauses is a list of IndexClauses.
     836                 :             :  */
     837                 :             : static List *
     838                 :       90476 : extract_nonindex_conditions(List *qual_clauses, List *indexclauses)
     839                 :             : {
     840                 :       90476 :         List       *result = NIL;
     841                 :       90476 :         ListCell   *lc;
     842                 :             : 
     843   [ +  +  +  +  :      181914 :         foreach(lc, qual_clauses)
                   +  + ]
     844                 :             :         {
     845                 :       91438 :                 RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
     846                 :             : 
     847         [ +  + ]:       91438 :                 if (rinfo->pseudoconstant)
     848                 :        1682 :                         continue;                       /* we may drop pseudoconstants here */
     849         [ +  + ]:       89756 :                 if (is_redundant_with_indexclauses(rinfo, indexclauses))
     850                 :       53151 :                         continue;                       /* dup or derived from same EquivalenceClass */
     851                 :             :                 /* ... skip the predicate proof attempt createplan.c will try ... */
     852                 :       36605 :                 result = lappend(result, rinfo);
     853      [ -  +  + ]:       91438 :         }
     854                 :      180952 :         return result;
     855                 :       90476 : }
     856                 :             : 
     857                 :             : /*
     858                 :             :  * index_pages_fetched
     859                 :             :  *        Estimate the number of pages actually fetched after accounting for
     860                 :             :  *        cache effects.
     861                 :             :  *
     862                 :             :  * We use an approximation proposed by Mackert and Lohman, "Index Scans
     863                 :             :  * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
     864                 :             :  * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
     865                 :             :  * The Mackert and Lohman approximation is that the number of pages
     866                 :             :  * fetched is
     867                 :             :  *      PF =
     868                 :             :  *              min(2TNs/(2T+Ns), T)                    when T <= b
     869                 :             :  *              2TNs/(2T+Ns)                                    when T > b and Ns <= 2Tb/(2T-b)
     870                 :             :  *              b + (Ns - 2Tb/(2T-b))*(T-b)/T   when T > b and Ns > 2Tb/(2T-b)
     871                 :             :  * where
     872                 :             :  *              T = # pages in table
     873                 :             :  *              N = # tuples in table
     874                 :             :  *              s = selectivity = fraction of table to be scanned
     875                 :             :  *              b = # buffer pages available (we include kernel space here)
     876                 :             :  *
     877                 :             :  * We assume that effective_cache_size is the total number of buffer pages
     878                 :             :  * available for the whole query, and pro-rate that space across all the
     879                 :             :  * tables in the query and the index currently under consideration.  (This
     880                 :             :  * ignores space needed for other indexes used by the query, but since we
     881                 :             :  * don't know which indexes will get used, we can't estimate that very well;
     882                 :             :  * and in any case counting all the tables may well be an overestimate, since
     883                 :             :  * depending on the join plan not all the tables may be scanned concurrently.)
     884                 :             :  *
     885                 :             :  * The product Ns is the number of tuples fetched; we pass in that
     886                 :             :  * product rather than calculating it here.  "pages" is the number of pages
     887                 :             :  * in the object under consideration (either an index or a table).
     888                 :             :  * "index_pages" is the amount to add to the total table space, which was
     889                 :             :  * computed for us by make_one_rel.
     890                 :             :  *
     891                 :             :  * Caller is expected to have ensured that tuples_fetched is greater than zero
     892                 :             :  * and rounded to integer (see clamp_row_est).  The result will likewise be
     893                 :             :  * greater than zero and integral.
     894                 :             :  */
     895                 :             : double
     896                 :      106023 : index_pages_fetched(double tuples_fetched, BlockNumber pages,
     897                 :             :                                         double index_pages, PlannerInfo *root)
     898                 :             : {
     899                 :      106023 :         double          pages_fetched;
     900                 :      106023 :         double          total_pages;
     901                 :      106023 :         double          T,
     902                 :             :                                 b;
     903                 :             : 
     904                 :             :         /* T is # pages in table, but don't allow it to be zero */
     905         [ +  + ]:      106023 :         T = (pages > 1) ? (double) pages : 1.0;
     906                 :             : 
     907                 :             :         /* Compute number of pages assumed to be competing for cache space */
     908                 :      106023 :         total_pages = root->total_table_pages + index_pages;
     909         [ +  + ]:      106023 :         total_pages = Max(total_pages, 1.0);
     910         [ +  - ]:      106023 :         Assert(T <= total_pages);
     911                 :             : 
     912                 :             :         /* b is pro-rated share of effective_cache_size */
     913                 :      106023 :         b = (double) effective_cache_size * T / total_pages;
     914                 :             : 
     915                 :             :         /* force it positive and integral */
     916         [ -  + ]:      106023 :         if (b <= 1.0)
     917                 :           0 :                 b = 1.0;
     918                 :             :         else
     919                 :      106023 :                 b = ceil(b);
     920                 :             : 
     921                 :             :         /* This part is the Mackert and Lohman formula */
     922         [ +  - ]:      106023 :         if (T <= b)
     923                 :             :         {
     924                 :      106023 :                 pages_fetched =
     925                 :      106023 :                         (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     926         [ +  + ]:      106023 :                 if (pages_fetched >= T)
     927                 :       64818 :                         pages_fetched = T;
     928                 :             :                 else
     929                 :       41205 :                         pages_fetched = ceil(pages_fetched);
     930                 :      106023 :         }
     931                 :             :         else
     932                 :             :         {
     933                 :           0 :                 double          lim;
     934                 :             : 
     935                 :           0 :                 lim = (2.0 * T * b) / (2.0 * T - b);
     936         [ #  # ]:           0 :                 if (tuples_fetched <= lim)
     937                 :             :                 {
     938                 :           0 :                         pages_fetched =
     939                 :           0 :                                 (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
     940                 :           0 :                 }
     941                 :             :                 else
     942                 :             :                 {
     943                 :           0 :                         pages_fetched =
     944                 :           0 :                                 b + (tuples_fetched - lim) * (T - b) / T;
     945                 :             :                 }
     946                 :           0 :                 pages_fetched = ceil(pages_fetched);
     947                 :           0 :         }
     948                 :      212046 :         return pages_fetched;
     949                 :      106023 : }
     950                 :             : 
     951                 :             : /*
     952                 :             :  * get_indexpath_pages
     953                 :             :  *              Determine the total size of the indexes used in a bitmap index path.
     954                 :             :  *
     955                 :             :  * Note: if the same index is used more than once in a bitmap tree, we will
     956                 :             :  * count it multiple times, which perhaps is the wrong thing ... but it's
     957                 :             :  * not completely clear, and detecting duplicates is difficult, so ignore it
     958                 :             :  * for now.
     959                 :             :  */
     960                 :             : static double
     961                 :       19366 : get_indexpath_pages(Path *bitmapqual)
     962                 :             : {
     963                 :       19366 :         double          result = 0;
     964                 :       19366 :         ListCell   *l;
     965                 :             : 
     966         [ +  + ]:       19366 :         if (IsA(bitmapqual, BitmapAndPath))
     967                 :             :         {
     968                 :        2620 :                 BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
     969                 :             : 
     970   [ +  -  +  +  :        7860 :                 foreach(l, apath->bitmapquals)
                   +  + ]
     971                 :             :                 {
     972                 :        5240 :                         result += get_indexpath_pages((Path *) lfirst(l));
     973                 :        5240 :                 }
     974                 :        2620 :         }
     975         [ +  + ]:       16746 :         else if (IsA(bitmapqual, BitmapOrPath))
     976                 :             :         {
     977                 :          11 :                 BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
     978                 :             : 
     979   [ +  -  +  +  :          35 :                 foreach(l, opath->bitmapquals)
                   +  + ]
     980                 :             :                 {
     981                 :          24 :                         result += get_indexpath_pages((Path *) lfirst(l));
     982                 :          24 :                 }
     983                 :          11 :         }
     984         [ +  - ]:       16735 :         else if (IsA(bitmapqual, IndexPath))
     985                 :             :         {
     986                 :       16735 :                 IndexPath  *ipath = (IndexPath *) bitmapqual;
     987                 :             : 
     988                 :       16735 :                 result = (double) ipath->indexinfo->pages;
     989                 :       16735 :         }
     990                 :             :         else
     991   [ #  #  #  # ]:           0 :                 elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
     992                 :             : 
     993                 :       38732 :         return result;
     994                 :       19366 : }
     995                 :             : 
     996                 :             : /*
     997                 :             :  * cost_bitmap_heap_scan
     998                 :             :  *        Determines and returns the cost of scanning a relation using a bitmap
     999                 :             :  *        index-then-heap plan.
    1000                 :             :  *
    1001                 :             :  * 'baserel' is the relation to be scanned
    1002                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1003                 :             :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
    1004                 :             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    1005                 :             :  *              estimates of caching behavior
    1006                 :             :  *
    1007                 :             :  * Note: the component IndexPaths in bitmapqual should have been costed
    1008                 :             :  * using the same loop_count.
    1009                 :             :  */
    1010                 :             : void
    1011                 :       50395 : cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel,
    1012                 :             :                                           ParamPathInfo *param_info,
    1013                 :             :                                           Path *bitmapqual, double loop_count)
    1014                 :             : {
    1015                 :       50395 :         Cost            startup_cost = 0;
    1016                 :       50395 :         Cost            run_cost = 0;
    1017                 :       50395 :         Cost            indexTotalCost;
    1018                 :       50395 :         QualCost        qpqual_cost;
    1019                 :       50395 :         Cost            cpu_per_tuple;
    1020                 :       50395 :         Cost            cost_per_page;
    1021                 :       50395 :         Cost            cpu_run_cost;
    1022                 :       50395 :         double          tuples_fetched;
    1023                 :       50395 :         double          pages_fetched;
    1024                 :       50395 :         double          spc_seq_page_cost,
    1025                 :             :                                 spc_random_page_cost;
    1026                 :       50395 :         double          T;
    1027                 :       50395 :         uint64          enable_mask = PGS_BITMAPSCAN;
    1028                 :             : 
    1029                 :             :         /* Should only be applied to base relations */
    1030         [ +  - ]:       50395 :         Assert(IsA(baserel, RelOptInfo));
    1031         [ +  - ]:       50395 :         Assert(baserel->relid > 0);
    1032         [ +  - ]:       50395 :         Assert(baserel->rtekind == RTE_RELATION);
    1033                 :             : 
    1034                 :             :         /* Mark the path with the correct row estimate */
    1035         [ +  + ]:       50395 :         if (param_info)
    1036                 :       23457 :                 path->rows = param_info->ppi_rows;
    1037                 :             :         else
    1038                 :       26938 :                 path->rows = baserel->rows;
    1039                 :             : 
    1040                 :      100790 :         pages_fetched = compute_bitmap_pages(root, baserel, bitmapqual,
    1041                 :       50395 :                                                                                  loop_count, &indexTotalCost,
    1042                 :             :                                                                                  &tuples_fetched);
    1043                 :             : 
    1044                 :       50395 :         startup_cost += indexTotalCost;
    1045         [ +  + ]:       50395 :         T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    1046                 :             : 
    1047                 :             :         /* Fetch estimated page costs for tablespace containing table. */
    1048                 :       50395 :         get_tablespace_page_costs(baserel->reltablespace,
    1049                 :             :                                                           &spc_random_page_cost,
    1050                 :             :                                                           &spc_seq_page_cost);
    1051                 :             : 
    1052                 :             :         /*
    1053                 :             :          * For small numbers of pages we should charge spc_random_page_cost
    1054                 :             :          * apiece, while if nearly all the table's pages are being read, it's more
    1055                 :             :          * appropriate to charge spc_seq_page_cost apiece.  The effect is
    1056                 :             :          * nonlinear, too. For lack of a better idea, interpolate like this to
    1057                 :             :          * determine the cost per page.
    1058                 :             :          */
    1059         [ +  + ]:       50395 :         if (pages_fetched >= 2.0)
    1060                 :       24502 :                 cost_per_page = spc_random_page_cost -
    1061                 :       12251 :                         (spc_random_page_cost - spc_seq_page_cost)
    1062                 :       12251 :                         * sqrt(pages_fetched / T);
    1063                 :             :         else
    1064                 :       38144 :                 cost_per_page = spc_random_page_cost;
    1065                 :             : 
    1066                 :       50395 :         run_cost += pages_fetched * cost_per_page;
    1067                 :             : 
    1068                 :             :         /*
    1069                 :             :          * Estimate CPU costs per tuple.
    1070                 :             :          *
    1071                 :             :          * Often the indexquals don't need to be rechecked at each tuple ... but
    1072                 :             :          * not always, especially not if there are enough tuples involved that the
    1073                 :             :          * bitmaps become lossy.  For the moment, just assume they will be
    1074                 :             :          * rechecked always.  This means we charge the full freight for all the
    1075                 :             :          * scan clauses.
    1076                 :             :          */
    1077                 :       50395 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1078                 :             : 
    1079                 :       50395 :         startup_cost += qpqual_cost.startup;
    1080                 :       50395 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1081                 :       50395 :         cpu_run_cost = cpu_per_tuple * tuples_fetched;
    1082                 :             : 
    1083                 :             :         /* Adjust costing for parallelism, if used. */
    1084         [ +  + ]:       50395 :         if (path->parallel_workers > 0)
    1085                 :             :         {
    1086                 :         291 :                 double          parallel_divisor = get_parallel_divisor(path);
    1087                 :             : 
    1088                 :             :                 /* The CPU cost is divided among all the workers. */
    1089                 :         291 :                 cpu_run_cost /= parallel_divisor;
    1090                 :             : 
    1091                 :         291 :                 path->rows = clamp_row_est(path->rows / parallel_divisor);
    1092                 :         291 :         }
    1093                 :             :         else
    1094                 :       50104 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1095                 :             : 
    1096                 :             : 
    1097                 :       50395 :         run_cost += cpu_run_cost;
    1098                 :             : 
    1099                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1100                 :       50395 :         startup_cost += path->pathtarget->cost.startup;
    1101                 :       50395 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1102                 :             : 
    1103                 :       50395 :         path->disabled_nodes =
    1104                 :       50395 :                 (baserel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
    1105                 :       50395 :         path->startup_cost = startup_cost;
    1106                 :       50395 :         path->total_cost = startup_cost + run_cost;
    1107                 :       50395 : }
    1108                 :             : 
    1109                 :             : /*
    1110                 :             :  * cost_bitmap_tree_node
    1111                 :             :  *              Extract cost and selectivity from a bitmap tree node (index/and/or)
    1112                 :             :  */
    1113                 :             : void
    1114                 :       93338 : cost_bitmap_tree_node(Path *path, Cost *cost, Selectivity *selec)
    1115                 :             : {
    1116         [ +  + ]:       93338 :         if (IsA(path, IndexPath))
    1117                 :             :         {
    1118                 :       88743 :                 *cost = ((IndexPath *) path)->indextotalcost;
    1119                 :       88743 :                 *selec = ((IndexPath *) path)->indexselectivity;
    1120                 :             : 
    1121                 :             :                 /*
    1122                 :             :                  * Charge a small amount per retrieved tuple to reflect the costs of
    1123                 :             :                  * manipulating the bitmap.  This is mostly to make sure that a bitmap
    1124                 :             :                  * scan doesn't look to be the same cost as an indexscan to retrieve a
    1125                 :             :                  * single tuple.
    1126                 :             :                  */
    1127                 :       88743 :                 *cost += 0.1 * cpu_operator_cost * path->rows;
    1128                 :       88743 :         }
    1129         [ +  + ]:        4595 :         else if (IsA(path, BitmapAndPath))
    1130                 :             :         {
    1131                 :        4386 :                 *cost = path->total_cost;
    1132                 :        4386 :                 *selec = ((BitmapAndPath *) path)->bitmapselectivity;
    1133                 :        4386 :         }
    1134         [ +  - ]:         209 :         else if (IsA(path, BitmapOrPath))
    1135                 :             :         {
    1136                 :         209 :                 *cost = path->total_cost;
    1137                 :         209 :                 *selec = ((BitmapOrPath *) path)->bitmapselectivity;
    1138                 :         209 :         }
    1139                 :             :         else
    1140                 :             :         {
    1141   [ #  #  #  # ]:           0 :                 elog(ERROR, "unrecognized node type: %d", nodeTag(path));
    1142                 :           0 :                 *cost = *selec = 0;             /* keep compiler quiet */
    1143                 :             :         }
    1144                 :       93338 : }
    1145                 :             : 
    1146                 :             : /*
    1147                 :             :  * cost_bitmap_and_node
    1148                 :             :  *              Estimate the cost of a BitmapAnd node
    1149                 :             :  *
    1150                 :             :  * Note that this considers only the costs of index scanning and bitmap
    1151                 :             :  * creation, not the eventual heap access.  In that sense the object isn't
    1152                 :             :  * truly a Path, but it has enough path-like properties (costs in particular)
    1153                 :             :  * to warrant treating it as one.  We don't bother to set the path rows field,
    1154                 :             :  * however.
    1155                 :             :  */
    1156                 :             : void
    1157                 :        4375 : cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
    1158                 :             : {
    1159                 :        4375 :         Cost            totalCost;
    1160                 :        4375 :         Selectivity selec;
    1161                 :        4375 :         ListCell   *l;
    1162                 :             : 
    1163                 :             :         /*
    1164                 :             :          * We estimate AND selectivity on the assumption that the inputs are
    1165                 :             :          * independent.  This is probably often wrong, but we don't have the info
    1166                 :             :          * to do better.
    1167                 :             :          *
    1168                 :             :          * The runtime cost of the BitmapAnd itself is estimated at 100x
    1169                 :             :          * cpu_operator_cost for each tbm_intersect needed.  Probably too small,
    1170                 :             :          * definitely too simplistic?
    1171                 :             :          */
    1172                 :        4375 :         totalCost = 0.0;
    1173                 :        4375 :         selec = 1.0;
    1174   [ +  -  +  +  :       13125 :         foreach(l, path->bitmapquals)
                   +  + ]
    1175                 :             :         {
    1176                 :        8750 :                 Path       *subpath = (Path *) lfirst(l);
    1177                 :        8750 :                 Cost            subCost;
    1178                 :        8750 :                 Selectivity subselec;
    1179                 :             : 
    1180                 :        8750 :                 cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1181                 :             : 
    1182                 :        8750 :                 selec *= subselec;
    1183                 :             : 
    1184                 :        8750 :                 totalCost += subCost;
    1185         [ +  + ]:        8750 :                 if (l != list_head(path->bitmapquals))
    1186                 :        4375 :                         totalCost += 100.0 * cpu_operator_cost;
    1187                 :        8750 :         }
    1188                 :        4375 :         path->bitmapselectivity = selec;
    1189                 :        4375 :         path->path.rows = 0;         /* per above, not used */
    1190                 :        4375 :         path->path.disabled_nodes = 0;
    1191                 :        4375 :         path->path.startup_cost = totalCost;
    1192                 :        4375 :         path->path.total_cost = totalCost;
    1193                 :        4375 : }
    1194                 :             : 
    1195                 :             : /*
    1196                 :             :  * cost_bitmap_or_node
    1197                 :             :  *              Estimate the cost of a BitmapOr node
    1198                 :             :  *
    1199                 :             :  * See comments for cost_bitmap_and_node.
    1200                 :             :  */
    1201                 :             : void
    1202                 :          98 : cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
    1203                 :             : {
    1204                 :          98 :         Cost            totalCost;
    1205                 :          98 :         Selectivity selec;
    1206                 :          98 :         ListCell   *l;
    1207                 :             : 
    1208                 :             :         /*
    1209                 :             :          * We estimate OR selectivity on the assumption that the inputs are
    1210                 :             :          * non-overlapping, since that's often the case in "x IN (list)" type
    1211                 :             :          * situations.  Of course, we clamp to 1.0 at the end.
    1212                 :             :          *
    1213                 :             :          * The runtime cost of the BitmapOr itself is estimated at 100x
    1214                 :             :          * cpu_operator_cost for each tbm_union needed.  Probably too small,
    1215                 :             :          * definitely too simplistic?  We are aware that the tbm_unions are
    1216                 :             :          * optimized out when the inputs are BitmapIndexScans.
    1217                 :             :          */
    1218                 :          98 :         totalCost = 0.0;
    1219                 :          98 :         selec = 0.0;
    1220   [ +  -  +  +  :         261 :         foreach(l, path->bitmapquals)
                   +  + ]
    1221                 :             :         {
    1222                 :         163 :                 Path       *subpath = (Path *) lfirst(l);
    1223                 :         163 :                 Cost            subCost;
    1224                 :         163 :                 Selectivity subselec;
    1225                 :             : 
    1226                 :         163 :                 cost_bitmap_tree_node(subpath, &subCost, &subselec);
    1227                 :             : 
    1228                 :         163 :                 selec += subselec;
    1229                 :             : 
    1230                 :         163 :                 totalCost += subCost;
    1231   [ +  +  +  - ]:         163 :                 if (l != list_head(path->bitmapquals) &&
    1232                 :          65 :                         !IsA(subpath, IndexPath))
    1233                 :           0 :                         totalCost += 100.0 * cpu_operator_cost;
    1234                 :         163 :         }
    1235         [ +  - ]:          98 :         path->bitmapselectivity = Min(selec, 1.0);
    1236                 :          98 :         path->path.rows = 0;         /* per above, not used */
    1237                 :          98 :         path->path.startup_cost = totalCost;
    1238                 :          98 :         path->path.total_cost = totalCost;
    1239                 :          98 : }
    1240                 :             : 
    1241                 :             : /*
    1242                 :             :  * cost_tidscan
    1243                 :             :  *        Determines and returns the cost of scanning a relation using TIDs.
    1244                 :             :  *
    1245                 :             :  * 'baserel' is the relation to be scanned
    1246                 :             :  * 'tidquals' is the list of TID-checkable quals
    1247                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1248                 :             :  */
    1249                 :             : void
    1250                 :         104 : cost_tidscan(Path *path, PlannerInfo *root,
    1251                 :             :                          RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
    1252                 :             : {
    1253                 :         104 :         Cost            startup_cost = 0;
    1254                 :         104 :         Cost            run_cost = 0;
    1255                 :         104 :         QualCost        qpqual_cost;
    1256                 :         104 :         Cost            cpu_per_tuple;
    1257                 :         104 :         QualCost        tid_qual_cost;
    1258                 :         104 :         double          ntuples;
    1259                 :         104 :         ListCell   *l;
    1260                 :         104 :         double          spc_random_page_cost;
    1261                 :         104 :         uint64          enable_mask = 0;
    1262                 :             : 
    1263                 :             :         /* Should only be applied to base relations */
    1264         [ +  - ]:         104 :         Assert(baserel->relid > 0);
    1265         [ +  - ]:         104 :         Assert(baserel->rtekind == RTE_RELATION);
    1266         [ +  - ]:         104 :         Assert(tidquals != NIL);
    1267                 :             : 
    1268                 :             :         /* Mark the path with the correct row estimate */
    1269         [ +  + ]:         104 :         if (param_info)
    1270                 :          21 :                 path->rows = param_info->ppi_rows;
    1271                 :             :         else
    1272                 :          83 :                 path->rows = baserel->rows;
    1273                 :             : 
    1274                 :             :         /* Count how many tuples we expect to retrieve */
    1275                 :         104 :         ntuples = 0;
    1276   [ +  -  +  +  :         212 :         foreach(l, tidquals)
                   +  + ]
    1277                 :             :         {
    1278                 :         108 :                 RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    1279                 :         108 :                 Expr       *qual = rinfo->clause;
    1280                 :             : 
    1281                 :             :                 /*
    1282                 :             :                  * We must use a TID scan for CurrentOfExpr; in any other case, we
    1283                 :             :                  * should be generating a TID scan only if TID scans are allowed.
    1284                 :             :                  * Also, if CurrentOfExpr is the qual, there should be only one.
    1285                 :             :                  */
    1286   [ -  +  #  # ]:         108 :                 Assert((baserel->pgs_mask & PGS_TIDSCAN) != 0 || IsA(qual, CurrentOfExpr));
    1287   [ +  +  +  - ]:         108 :                 Assert(list_length(tidquals) == 1 || !IsA(qual, CurrentOfExpr));
    1288                 :             : 
    1289         [ +  + ]:         108 :                 if (IsA(qual, ScalarArrayOpExpr))
    1290                 :             :                 {
    1291                 :             :                         /* Each element of the array yields 1 tuple */
    1292                 :           8 :                         ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) qual;
    1293                 :           8 :                         Node       *arraynode = (Node *) lsecond(saop->args);
    1294                 :             : 
    1295                 :           8 :                         ntuples += estimate_array_length(root, arraynode);
    1296                 :           8 :                 }
    1297         [ +  + ]:         100 :                 else if (IsA(qual, CurrentOfExpr))
    1298                 :             :                 {
    1299                 :             :                         /* CURRENT OF yields 1 tuple */
    1300                 :          66 :                         ntuples++;
    1301                 :          66 :                 }
    1302                 :             :                 else
    1303                 :             :                 {
    1304                 :             :                         /* It's just CTID = something, count 1 tuple */
    1305                 :          34 :                         ntuples++;
    1306                 :             :                 }
    1307                 :         108 :         }
    1308                 :             : 
    1309                 :             :         /*
    1310                 :             :          * The TID qual expressions will be computed once, any other baserestrict
    1311                 :             :          * quals once per retrieved tuple.
    1312                 :             :          */
    1313                 :         104 :         cost_qual_eval(&tid_qual_cost, tidquals, root);
    1314                 :             : 
    1315                 :             :         /* fetch estimated page cost for tablespace containing table */
    1316                 :         104 :         get_tablespace_page_costs(baserel->reltablespace,
    1317                 :             :                                                           &spc_random_page_cost,
    1318                 :             :                                                           NULL);
    1319                 :             : 
    1320                 :             :         /* disk costs --- assume each tuple on a different page */
    1321                 :         104 :         run_cost += spc_random_page_cost * ntuples;
    1322                 :             : 
    1323                 :             :         /* Add scanning CPU costs */
    1324                 :         104 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1325                 :             : 
    1326                 :             :         /* XXX currently we assume TID quals are a subset of qpquals */
    1327                 :         104 :         startup_cost += qpqual_cost.startup + tid_qual_cost.per_tuple;
    1328                 :         208 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1329                 :         104 :                 tid_qual_cost.per_tuple;
    1330                 :         104 :         run_cost += cpu_per_tuple * ntuples;
    1331                 :             : 
    1332                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1333                 :         104 :         startup_cost += path->pathtarget->cost.startup;
    1334                 :         104 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1335                 :             : 
    1336                 :             :         /*
    1337                 :             :          * There are assertions above verifying that we only reach this function
    1338                 :             :          * either when baserel->pgs_mask includes PGS_TIDSCAN or when the TID scan
    1339                 :             :          * is the only legal path, so we only need to consider the effects of
    1340                 :             :          * PGS_CONSIDER_NONPARTIAL here.
    1341                 :             :          */
    1342         [ -  + ]:         104 :         if (path->parallel_workers == 0)
    1343                 :         104 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1344                 :         104 :         path->disabled_nodes =
    1345                 :         104 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1346                 :         104 :         path->startup_cost = startup_cost;
    1347                 :         104 :         path->total_cost = startup_cost + run_cost;
    1348                 :         104 : }
    1349                 :             : 
    1350                 :             : /*
    1351                 :             :  * cost_tidrangescan
    1352                 :             :  *        Determines and sets the costs of scanning a relation using a range of
    1353                 :             :  *        TIDs for 'path'
    1354                 :             :  *
    1355                 :             :  * 'baserel' is the relation to be scanned
    1356                 :             :  * 'tidrangequals' is the list of TID-checkable range quals
    1357                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1358                 :             :  */
    1359                 :             : void
    1360                 :         342 : cost_tidrangescan(Path *path, PlannerInfo *root,
    1361                 :             :                                   RelOptInfo *baserel, List *tidrangequals,
    1362                 :             :                                   ParamPathInfo *param_info)
    1363                 :             : {
    1364                 :         342 :         Selectivity selectivity;
    1365                 :         342 :         double          pages;
    1366                 :         342 :         Cost            startup_cost;
    1367                 :         342 :         Cost            cpu_run_cost;
    1368                 :         342 :         Cost            disk_run_cost;
    1369                 :         342 :         QualCost        qpqual_cost;
    1370                 :         342 :         Cost            cpu_per_tuple;
    1371                 :         342 :         QualCost        tid_qual_cost;
    1372                 :         342 :         double          ntuples;
    1373                 :         342 :         double          nseqpages;
    1374                 :         342 :         double          spc_random_page_cost;
    1375                 :         342 :         double          spc_seq_page_cost;
    1376                 :         342 :         uint64          enable_mask = PGS_TIDSCAN;
    1377                 :             : 
    1378                 :             :         /* Should only be applied to base relations */
    1379         [ +  - ]:         342 :         Assert(baserel->relid > 0);
    1380         [ +  - ]:         342 :         Assert(baserel->rtekind == RTE_RELATION);
    1381                 :             : 
    1382                 :             :         /* Mark the path with the correct row estimate */
    1383         [ -  + ]:         342 :         if (param_info)
    1384                 :           0 :                 path->rows = param_info->ppi_rows;
    1385                 :             :         else
    1386                 :         342 :                 path->rows = baserel->rows;
    1387                 :             : 
    1388                 :             :         /* Count how many tuples and pages we expect to scan */
    1389                 :         342 :         selectivity = clauselist_selectivity(root, tidrangequals, baserel->relid,
    1390                 :             :                                                                                  JOIN_INNER, NULL);
    1391                 :         342 :         pages = ceil(selectivity * baserel->pages);
    1392                 :             : 
    1393         [ +  + ]:         342 :         if (pages <= 0.0)
    1394                 :           7 :                 pages = 1.0;
    1395                 :             : 
    1396                 :             :         /*
    1397                 :             :          * The first page in a range requires a random seek, but each subsequent
    1398                 :             :          * page is just a normal sequential page read. NOTE: it's desirable for
    1399                 :             :          * TID Range Scans to cost more than the equivalent Sequential Scans,
    1400                 :             :          * because Seq Scans have some performance advantages such as scan
    1401                 :             :          * synchronization, and we'd prefer one of them to be picked unless a TID
    1402                 :             :          * Range Scan really is better.
    1403                 :             :          */
    1404                 :         342 :         ntuples = selectivity * baserel->tuples;
    1405                 :         342 :         nseqpages = pages - 1.0;
    1406                 :             : 
    1407                 :             :         /*
    1408                 :             :          * The TID qual expressions will be computed once, any other baserestrict
    1409                 :             :          * quals once per retrieved tuple.
    1410                 :             :          */
    1411                 :         342 :         cost_qual_eval(&tid_qual_cost, tidrangequals, root);
    1412                 :             : 
    1413                 :             :         /* fetch estimated page cost for tablespace containing table */
    1414                 :         342 :         get_tablespace_page_costs(baserel->reltablespace,
    1415                 :             :                                                           &spc_random_page_cost,
    1416                 :             :                                                           &spc_seq_page_cost);
    1417                 :             : 
    1418                 :             :         /* disk costs; 1 random page and the remainder as seq pages */
    1419                 :         342 :         disk_run_cost = spc_random_page_cost + spc_seq_page_cost * nseqpages;
    1420                 :             : 
    1421                 :             :         /* Add scanning CPU costs */
    1422                 :         342 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1423                 :             : 
    1424                 :             :         /*
    1425                 :             :          * XXX currently we assume TID quals are a subset of qpquals at this
    1426                 :             :          * point; they will be removed (if possible) when we create the plan, so
    1427                 :             :          * we subtract their cost from the total qpqual cost.  (If the TID quals
    1428                 :             :          * can't be removed, this is a mistake and we're going to underestimate
    1429                 :             :          * the CPU cost a bit.)
    1430                 :             :          */
    1431                 :         342 :         startup_cost = qpqual_cost.startup + tid_qual_cost.per_tuple;
    1432                 :         684 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple -
    1433                 :         342 :                 tid_qual_cost.per_tuple;
    1434                 :         342 :         cpu_run_cost = cpu_per_tuple * ntuples;
    1435                 :             : 
    1436                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1437                 :         342 :         startup_cost += path->pathtarget->cost.startup;
    1438                 :         342 :         cpu_run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1439                 :             : 
    1440                 :             :         /* Adjust costing for parallelism, if used. */
    1441         [ +  + ]:         342 :         if (path->parallel_workers > 0)
    1442                 :             :         {
    1443                 :           8 :                 double          parallel_divisor = get_parallel_divisor(path);
    1444                 :             : 
    1445                 :             :                 /* The CPU cost is divided among all the workers. */
    1446                 :           8 :                 cpu_run_cost /= parallel_divisor;
    1447                 :             : 
    1448                 :             :                 /*
    1449                 :             :                  * In the case of a parallel plan, the row count needs to represent
    1450                 :             :                  * the number of tuples processed per worker.
    1451                 :             :                  */
    1452                 :           8 :                 path->rows = clamp_row_est(path->rows / parallel_divisor);
    1453                 :           8 :         }
    1454                 :             : 
    1455                 :             :         /*
    1456                 :             :          * We should not generate this path type when PGS_TIDSCAN is unset, but we
    1457                 :             :          * might need to disable this path due to PGS_CONSIDER_NONPARTIAL.
    1458                 :             :          */
    1459         [ +  - ]:         342 :         Assert((baserel->pgs_mask & PGS_TIDSCAN) != 0);
    1460         [ +  + ]:         342 :         if (path->parallel_workers == 0)
    1461                 :         334 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1462                 :         342 :         path->disabled_nodes =
    1463                 :         342 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1464                 :         342 :         path->disabled_nodes = 0;
    1465                 :         342 :         path->startup_cost = startup_cost;
    1466                 :         342 :         path->total_cost = startup_cost + cpu_run_cost + disk_run_cost;
    1467                 :         342 : }
    1468                 :             : 
    1469                 :             : /*
    1470                 :             :  * cost_subqueryscan
    1471                 :             :  *        Determines and returns the cost of scanning a subquery RTE.
    1472                 :             :  *
    1473                 :             :  * 'baserel' is the relation to be scanned
    1474                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1475                 :             :  * 'trivial_pathtarget' is true if the pathtarget is believed to be trivial.
    1476                 :             :  */
    1477                 :             : void
    1478                 :        7026 : cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root,
    1479                 :             :                                   RelOptInfo *baserel, ParamPathInfo *param_info,
    1480                 :             :                                   bool trivial_pathtarget)
    1481                 :             : {
    1482                 :        7026 :         Cost            startup_cost;
    1483                 :        7026 :         Cost            run_cost;
    1484                 :        7026 :         List       *qpquals;
    1485                 :        7026 :         QualCost        qpqual_cost;
    1486                 :        7026 :         Cost            cpu_per_tuple;
    1487                 :        7026 :         uint64          enable_mask = 0;
    1488                 :             : 
    1489                 :             :         /* Should only be applied to base relations that are subqueries */
    1490         [ +  - ]:        7026 :         Assert(baserel->relid > 0);
    1491         [ +  - ]:        7026 :         Assert(baserel->rtekind == RTE_SUBQUERY);
    1492                 :             : 
    1493                 :             :         /*
    1494                 :             :          * We compute the rowcount estimate as the subplan's estimate times the
    1495                 :             :          * selectivity of relevant restriction clauses.  In simple cases this will
    1496                 :             :          * come out the same as baserel->rows; but when dealing with parallelized
    1497                 :             :          * paths we must do it like this to get the right answer.
    1498                 :             :          */
    1499         [ +  + ]:        7026 :         if (param_info)
    1500                 :         202 :                 qpquals = list_concat_copy(param_info->ppi_clauses,
    1501                 :         101 :                                                                    baserel->baserestrictinfo);
    1502                 :             :         else
    1503                 :        6925 :                 qpquals = baserel->baserestrictinfo;
    1504                 :             : 
    1505                 :       14052 :         path->path.rows = clamp_row_est(path->subpath->rows *
    1506                 :       14052 :                                                                         clauselist_selectivity(root,
    1507                 :        7026 :                                                                                                                    qpquals,
    1508                 :             :                                                                                                                    0,
    1509                 :             :                                                                                                                    JOIN_INNER,
    1510                 :             :                                                                                                                    NULL));
    1511                 :             : 
    1512                 :             :         /*
    1513                 :             :          * Cost of path is cost of evaluating the subplan, plus cost of evaluating
    1514                 :             :          * any restriction clauses and tlist that will be attached to the
    1515                 :             :          * SubqueryScan node, plus cpu_tuple_cost to account for selection and
    1516                 :             :          * projection overhead.
    1517                 :             :          */
    1518         [ +  + ]:        7026 :         if (path->path.parallel_workers == 0)
    1519                 :        7017 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1520                 :       14052 :         path->path.disabled_nodes = path->subpath->disabled_nodes
    1521                 :        7026 :                 + (((baserel->pgs_mask & enable_mask) != enable_mask) ? 1 : 0);
    1522                 :        7026 :         path->path.startup_cost = path->subpath->startup_cost;
    1523                 :        7026 :         path->path.total_cost = path->subpath->total_cost;
    1524                 :             : 
    1525                 :             :         /*
    1526                 :             :          * However, if there are no relevant restriction clauses and the
    1527                 :             :          * pathtarget is trivial, then we expect that setrefs.c will optimize away
    1528                 :             :          * the SubqueryScan plan node altogether, so we should just make its cost
    1529                 :             :          * and rowcount equal to the input path's.
    1530                 :             :          *
    1531                 :             :          * Note: there are some edge cases where createplan.c will apply a
    1532                 :             :          * different targetlist to the SubqueryScan node, thus falsifying our
    1533                 :             :          * current estimate of whether the target is trivial, and making the cost
    1534                 :             :          * estimate (though not the rowcount) wrong.  It does not seem worth the
    1535                 :             :          * extra complication to try to account for that exactly, especially since
    1536                 :             :          * that behavior falsifies other cost estimates as well.
    1537                 :             :          */
    1538   [ +  +  +  + ]:        7026 :         if (qpquals == NIL && trivial_pathtarget)
    1539                 :        3401 :                 return;
    1540                 :             : 
    1541                 :        3625 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1542                 :             : 
    1543                 :        3625 :         startup_cost = qpqual_cost.startup;
    1544                 :        3625 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1545                 :        3625 :         run_cost = cpu_per_tuple * path->subpath->rows;
    1546                 :             : 
    1547                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1548                 :        3625 :         startup_cost += path->path.pathtarget->cost.startup;
    1549                 :        3625 :         run_cost += path->path.pathtarget->cost.per_tuple * path->path.rows;
    1550                 :             : 
    1551                 :        3625 :         path->path.startup_cost += startup_cost;
    1552                 :        3625 :         path->path.total_cost += startup_cost + run_cost;
    1553         [ -  + ]:        7026 : }
    1554                 :             : 
    1555                 :             : /*
    1556                 :             :  * cost_functionscan
    1557                 :             :  *        Determines and returns the cost of scanning a function RTE.
    1558                 :             :  *
    1559                 :             :  * 'baserel' is the relation to be scanned
    1560                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1561                 :             :  */
    1562                 :             : void
    1563                 :        3642 : cost_functionscan(Path *path, PlannerInfo *root,
    1564                 :             :                                   RelOptInfo *baserel, ParamPathInfo *param_info)
    1565                 :             : {
    1566                 :        3642 :         Cost            startup_cost = 0;
    1567                 :        3642 :         Cost            run_cost = 0;
    1568                 :        3642 :         QualCost        qpqual_cost;
    1569                 :        3642 :         Cost            cpu_per_tuple;
    1570                 :        3642 :         RangeTblEntry *rte;
    1571                 :        3642 :         QualCost        exprcost;
    1572                 :        3642 :         uint64          enable_mask = 0;
    1573                 :             : 
    1574                 :             :         /* Should only be applied to base relations that are functions */
    1575         [ +  - ]:        3642 :         Assert(baserel->relid > 0);
    1576         [ +  - ]:        3642 :         rte = planner_rt_fetch(baserel->relid, root);
    1577         [ +  - ]:        3642 :         Assert(rte->rtekind == RTE_FUNCTION);
    1578                 :             : 
    1579                 :             :         /* Mark the path with the correct row estimate */
    1580         [ +  + ]:        3642 :         if (param_info)
    1581                 :          98 :                 path->rows = param_info->ppi_rows;
    1582                 :             :         else
    1583                 :        3544 :                 path->rows = baserel->rows;
    1584                 :             : 
    1585                 :             :         /*
    1586                 :             :          * Estimate costs of executing the function expression(s).
    1587                 :             :          *
    1588                 :             :          * Currently, nodeFunctionscan.c always executes the functions to
    1589                 :             :          * completion before returning any rows, and caches the results in a
    1590                 :             :          * tuplestore.  So the function eval cost is all startup cost, and per-row
    1591                 :             :          * costs are minimal.
    1592                 :             :          *
    1593                 :             :          * XXX in principle we ought to charge tuplestore spill costs if the
    1594                 :             :          * number of rows is large.  However, given how phony our rowcount
    1595                 :             :          * estimates for functions tend to be, there's not a lot of point in that
    1596                 :             :          * refinement right now.
    1597                 :             :          */
    1598                 :        3642 :         cost_qual_eval_node(&exprcost, (Node *) rte->functions, root);
    1599                 :             : 
    1600                 :        3642 :         startup_cost += exprcost.startup + exprcost.per_tuple;
    1601                 :             : 
    1602                 :             :         /* Add scanning CPU costs */
    1603                 :        3642 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1604                 :             : 
    1605                 :        3642 :         startup_cost += qpqual_cost.startup;
    1606                 :        3642 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1607                 :        3642 :         run_cost += cpu_per_tuple * baserel->tuples;
    1608                 :             : 
    1609                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1610                 :        3642 :         startup_cost += path->pathtarget->cost.startup;
    1611                 :        3642 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1612                 :             : 
    1613         [ -  + ]:        3642 :         if (path->parallel_workers == 0)
    1614                 :        3642 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1615                 :        3642 :         path->disabled_nodes =
    1616                 :        3642 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1617                 :        3642 :         path->startup_cost = startup_cost;
    1618                 :        3642 :         path->total_cost = startup_cost + run_cost;
    1619                 :        3642 : }
    1620                 :             : 
    1621                 :             : /*
    1622                 :             :  * cost_tablefuncscan
    1623                 :             :  *        Determines and returns the cost of scanning a table function.
    1624                 :             :  *
    1625                 :             :  * 'baserel' is the relation to be scanned
    1626                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1627                 :             :  */
    1628                 :             : void
    1629                 :         103 : cost_tablefuncscan(Path *path, PlannerInfo *root,
    1630                 :             :                                    RelOptInfo *baserel, ParamPathInfo *param_info)
    1631                 :             : {
    1632                 :         103 :         Cost            startup_cost = 0;
    1633                 :         103 :         Cost            run_cost = 0;
    1634                 :         103 :         QualCost        qpqual_cost;
    1635                 :         103 :         Cost            cpu_per_tuple;
    1636                 :         103 :         RangeTblEntry *rte;
    1637                 :         103 :         QualCost        exprcost;
    1638                 :         103 :         uint64          enable_mask = 0;
    1639                 :             : 
    1640                 :             :         /* Should only be applied to base relations that are functions */
    1641         [ +  - ]:         103 :         Assert(baserel->relid > 0);
    1642         [ +  - ]:         103 :         rte = planner_rt_fetch(baserel->relid, root);
    1643         [ +  - ]:         103 :         Assert(rte->rtekind == RTE_TABLEFUNC);
    1644                 :             : 
    1645                 :             :         /* Mark the path with the correct row estimate */
    1646         [ +  + ]:         103 :         if (param_info)
    1647                 :          39 :                 path->rows = param_info->ppi_rows;
    1648                 :             :         else
    1649                 :          64 :                 path->rows = baserel->rows;
    1650                 :             : 
    1651                 :             :         /*
    1652                 :             :          * Estimate costs of executing the table func expression(s).
    1653                 :             :          *
    1654                 :             :          * XXX in principle we ought to charge tuplestore spill costs if the
    1655                 :             :          * number of rows is large.  However, given how phony our rowcount
    1656                 :             :          * estimates for tablefuncs tend to be, there's not a lot of point in that
    1657                 :             :          * refinement right now.
    1658                 :             :          */
    1659                 :         103 :         cost_qual_eval_node(&exprcost, (Node *) rte->tablefunc, root);
    1660                 :             : 
    1661                 :         103 :         startup_cost += exprcost.startup + exprcost.per_tuple;
    1662                 :             : 
    1663                 :             :         /* Add scanning CPU costs */
    1664                 :         103 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1665                 :             : 
    1666                 :         103 :         startup_cost += qpqual_cost.startup;
    1667                 :         103 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1668                 :         103 :         run_cost += cpu_per_tuple * baserel->tuples;
    1669                 :             : 
    1670                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1671                 :         103 :         startup_cost += path->pathtarget->cost.startup;
    1672                 :         103 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1673                 :             : 
    1674         [ -  + ]:         103 :         if (path->parallel_workers == 0)
    1675                 :         103 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1676                 :         103 :         path->disabled_nodes =
    1677                 :         103 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1678                 :         103 :         path->startup_cost = startup_cost;
    1679                 :         103 :         path->total_cost = startup_cost + run_cost;
    1680                 :         103 : }
    1681                 :             : 
    1682                 :             : /*
    1683                 :             :  * cost_valuesscan
    1684                 :             :  *        Determines and returns the cost of scanning a VALUES RTE.
    1685                 :             :  *
    1686                 :             :  * 'baserel' is the relation to be scanned
    1687                 :             :  * 'param_info' is the ParamPathInfo if this is a parameterized path, else NULL
    1688                 :             :  */
    1689                 :             : void
    1690                 :        1114 : cost_valuesscan(Path *path, PlannerInfo *root,
    1691                 :             :                                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1692                 :             : {
    1693                 :        1114 :         Cost            startup_cost = 0;
    1694                 :        1114 :         Cost            run_cost = 0;
    1695                 :        1114 :         QualCost        qpqual_cost;
    1696                 :        1114 :         Cost            cpu_per_tuple;
    1697                 :        1114 :         uint64          enable_mask = 0;
    1698                 :             : 
    1699                 :             :         /* Should only be applied to base relations that are values lists */
    1700         [ +  - ]:        1114 :         Assert(baserel->relid > 0);
    1701         [ +  - ]:        1114 :         Assert(baserel->rtekind == RTE_VALUES);
    1702                 :             : 
    1703                 :             :         /* Mark the path with the correct row estimate */
    1704         [ +  + ]:        1114 :         if (param_info)
    1705                 :          11 :                 path->rows = param_info->ppi_rows;
    1706                 :             :         else
    1707                 :        1103 :                 path->rows = baserel->rows;
    1708                 :             : 
    1709                 :             :         /*
    1710                 :             :          * For now, estimate list evaluation cost at one operator eval per list
    1711                 :             :          * (probably pretty bogus, but is it worth being smarter?)
    1712                 :             :          */
    1713                 :        1114 :         cpu_per_tuple = cpu_operator_cost;
    1714                 :             : 
    1715                 :             :         /* Add scanning CPU costs */
    1716                 :        1114 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1717                 :             : 
    1718                 :        1114 :         startup_cost += qpqual_cost.startup;
    1719                 :        1114 :         cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1720                 :        1114 :         run_cost += cpu_per_tuple * baserel->tuples;
    1721                 :             : 
    1722                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1723                 :        1114 :         startup_cost += path->pathtarget->cost.startup;
    1724                 :        1114 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1725                 :             : 
    1726         [ -  + ]:        1114 :         if (path->parallel_workers == 0)
    1727                 :        1114 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1728                 :        1114 :         path->disabled_nodes =
    1729                 :        1114 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1730                 :        1114 :         path->startup_cost = startup_cost;
    1731                 :        1114 :         path->total_cost = startup_cost + run_cost;
    1732                 :        1114 : }
    1733                 :             : 
    1734                 :             : /*
    1735                 :             :  * cost_ctescan
    1736                 :             :  *        Determines and returns the cost of scanning a CTE RTE.
    1737                 :             :  *
    1738                 :             :  * Note: this is used for both self-reference and regular CTEs; the
    1739                 :             :  * possible cost differences are below the threshold of what we could
    1740                 :             :  * estimate accurately anyway.  Note that the costs of evaluating the
    1741                 :             :  * referenced CTE query are added into the final plan as initplan costs,
    1742                 :             :  * and should NOT be counted here.
    1743                 :             :  */
    1744                 :             : void
    1745                 :         286 : cost_ctescan(Path *path, PlannerInfo *root,
    1746                 :             :                          RelOptInfo *baserel, ParamPathInfo *param_info)
    1747                 :             : {
    1748                 :         286 :         Cost            startup_cost = 0;
    1749                 :         286 :         Cost            run_cost = 0;
    1750                 :         286 :         QualCost        qpqual_cost;
    1751                 :         286 :         Cost            cpu_per_tuple;
    1752                 :         286 :         uint64          enable_mask = 0;
    1753                 :             : 
    1754                 :             :         /* Should only be applied to base relations that are CTEs */
    1755         [ +  - ]:         286 :         Assert(baserel->relid > 0);
    1756         [ +  - ]:         286 :         Assert(baserel->rtekind == RTE_CTE);
    1757                 :             : 
    1758                 :             :         /* Mark the path with the correct row estimate */
    1759         [ -  + ]:         286 :         if (param_info)
    1760                 :           0 :                 path->rows = param_info->ppi_rows;
    1761                 :             :         else
    1762                 :         286 :                 path->rows = baserel->rows;
    1763                 :             : 
    1764                 :             :         /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1765                 :         286 :         cpu_per_tuple = cpu_tuple_cost;
    1766                 :             : 
    1767                 :             :         /* Add scanning CPU costs */
    1768                 :         286 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1769                 :             : 
    1770                 :         286 :         startup_cost += qpqual_cost.startup;
    1771                 :         286 :         cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1772                 :         286 :         run_cost += cpu_per_tuple * baserel->tuples;
    1773                 :             : 
    1774                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    1775                 :         286 :         startup_cost += path->pathtarget->cost.startup;
    1776                 :         286 :         run_cost += path->pathtarget->cost.per_tuple * path->rows;
    1777                 :             : 
    1778         [ -  + ]:         286 :         if (path->parallel_workers == 0)
    1779                 :         286 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1780                 :         286 :         path->disabled_nodes =
    1781                 :         286 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1782                 :         286 :         path->startup_cost = startup_cost;
    1783                 :         286 :         path->total_cost = startup_cost + run_cost;
    1784                 :         286 : }
    1785                 :             : 
    1786                 :             : /*
    1787                 :             :  * cost_namedtuplestorescan
    1788                 :             :  *        Determines and returns the cost of scanning a named tuplestore.
    1789                 :             :  */
    1790                 :             : void
    1791                 :          77 : cost_namedtuplestorescan(Path *path, PlannerInfo *root,
    1792                 :             :                                                  RelOptInfo *baserel, ParamPathInfo *param_info)
    1793                 :             : {
    1794                 :          77 :         Cost            startup_cost = 0;
    1795                 :          77 :         Cost            run_cost = 0;
    1796                 :          77 :         QualCost        qpqual_cost;
    1797                 :          77 :         Cost            cpu_per_tuple;
    1798                 :          77 :         uint64          enable_mask = 0;
    1799                 :             : 
    1800                 :             :         /* Should only be applied to base relations that are Tuplestores */
    1801         [ +  - ]:          77 :         Assert(baserel->relid > 0);
    1802         [ +  - ]:          77 :         Assert(baserel->rtekind == RTE_NAMEDTUPLESTORE);
    1803                 :             : 
    1804                 :             :         /* Mark the path with the correct row estimate */
    1805         [ -  + ]:          77 :         if (param_info)
    1806                 :           0 :                 path->rows = param_info->ppi_rows;
    1807                 :             :         else
    1808                 :          77 :                 path->rows = baserel->rows;
    1809                 :             : 
    1810                 :             :         /* Charge one CPU tuple cost per row for tuplestore manipulation */
    1811                 :          77 :         cpu_per_tuple = cpu_tuple_cost;
    1812                 :             : 
    1813                 :             :         /* Add scanning CPU costs */
    1814                 :          77 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1815                 :             : 
    1816                 :          77 :         startup_cost += qpqual_cost.startup;
    1817                 :          77 :         cpu_per_tuple += cpu_tuple_cost + qpqual_cost.per_tuple;
    1818                 :          77 :         run_cost += cpu_per_tuple * baserel->tuples;
    1819                 :             : 
    1820         [ -  + ]:          77 :         if (path->parallel_workers == 0)
    1821                 :          77 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1822                 :          77 :         path->disabled_nodes =
    1823                 :          77 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1824                 :          77 :         path->startup_cost = startup_cost;
    1825                 :          77 :         path->total_cost = startup_cost + run_cost;
    1826                 :          77 : }
    1827                 :             : 
    1828                 :             : /*
    1829                 :             :  * cost_resultscan
    1830                 :             :  *        Determines and returns the cost of scanning an RTE_RESULT relation.
    1831                 :             :  */
    1832                 :             : void
    1833                 :         686 : cost_resultscan(Path *path, PlannerInfo *root,
    1834                 :             :                                 RelOptInfo *baserel, ParamPathInfo *param_info)
    1835                 :             : {
    1836                 :         686 :         Cost            startup_cost = 0;
    1837                 :         686 :         Cost            run_cost = 0;
    1838                 :         686 :         QualCost        qpqual_cost;
    1839                 :         686 :         Cost            cpu_per_tuple;
    1840                 :         686 :         uint64          enable_mask = 0;
    1841                 :             : 
    1842                 :             :         /* Should only be applied to RTE_RESULT base relations */
    1843         [ +  - ]:         686 :         Assert(baserel->relid > 0);
    1844         [ +  - ]:         686 :         Assert(baserel->rtekind == RTE_RESULT);
    1845                 :             : 
    1846                 :             :         /* Mark the path with the correct row estimate */
    1847         [ +  + ]:         686 :         if (param_info)
    1848                 :          26 :                 path->rows = param_info->ppi_rows;
    1849                 :             :         else
    1850                 :         660 :                 path->rows = baserel->rows;
    1851                 :             : 
    1852                 :             :         /* We charge qual cost plus cpu_tuple_cost */
    1853                 :         686 :         get_restriction_qual_cost(root, baserel, param_info, &qpqual_cost);
    1854                 :             : 
    1855                 :         686 :         startup_cost += qpqual_cost.startup;
    1856                 :         686 :         cpu_per_tuple = cpu_tuple_cost + qpqual_cost.per_tuple;
    1857                 :         686 :         run_cost += cpu_per_tuple * baserel->tuples;
    1858                 :             : 
    1859         [ -  + ]:         686 :         if (path->parallel_workers == 0)
    1860                 :         686 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1861                 :         686 :         path->disabled_nodes =
    1862                 :         686 :                 (baserel->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1863                 :         686 :         path->startup_cost = startup_cost;
    1864                 :         686 :         path->total_cost = startup_cost + run_cost;
    1865                 :         686 : }
    1866                 :             : 
    1867                 :             : /*
    1868                 :             :  * cost_recursive_union
    1869                 :             :  *        Determines and returns the cost of performing a recursive union,
    1870                 :             :  *        and also the estimated output size.
    1871                 :             :  *
    1872                 :             :  * We are given Paths for the nonrecursive and recursive terms.
    1873                 :             :  */
    1874                 :             : void
    1875                 :          73 : cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
    1876                 :             : {
    1877                 :          73 :         Cost            startup_cost;
    1878                 :          73 :         Cost            total_cost;
    1879                 :          73 :         double          total_rows;
    1880                 :          73 :         uint64          enable_mask = 0;
    1881                 :             : 
    1882                 :             :         /* We probably have decent estimates for the non-recursive term */
    1883                 :          73 :         startup_cost = nrterm->startup_cost;
    1884                 :          73 :         total_cost = nrterm->total_cost;
    1885                 :          73 :         total_rows = nrterm->rows;
    1886                 :             : 
    1887                 :             :         /*
    1888                 :             :          * We arbitrarily assume that about 10 recursive iterations will be
    1889                 :             :          * needed, and that we've managed to get a good fix on the cost and output
    1890                 :             :          * size of each one of them.  These are mighty shaky assumptions but it's
    1891                 :             :          * hard to see how to do better.
    1892                 :             :          */
    1893                 :          73 :         total_cost += 10 * rterm->total_cost;
    1894                 :          73 :         total_rows += 10 * rterm->rows;
    1895                 :             : 
    1896                 :             :         /*
    1897                 :             :          * Also charge cpu_tuple_cost per row to account for the costs of
    1898                 :             :          * manipulating the tuplestores.  (We don't worry about possible
    1899                 :             :          * spill-to-disk costs.)
    1900                 :             :          */
    1901                 :          73 :         total_cost += cpu_tuple_cost * total_rows;
    1902                 :             : 
    1903         [ -  + ]:          73 :         if (runion->parallel_workers == 0)
    1904                 :          73 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    1905                 :          73 :         runion->disabled_nodes =
    1906                 :          73 :                 (runion->parent->pgs_mask & enable_mask) != enable_mask ? 1 : 0;
    1907                 :          73 :         runion->startup_cost = startup_cost;
    1908                 :          73 :         runion->total_cost = total_cost;
    1909                 :          73 :         runion->rows = total_rows;
    1910         [ -  + ]:          73 :         runion->pathtarget->width = Max(nrterm->pathtarget->width,
    1911                 :             :                                                                         rterm->pathtarget->width);
    1912                 :          73 : }
    1913                 :             : 
    1914                 :             : /*
    1915                 :             :  * cost_tuplesort
    1916                 :             :  *        Determines and returns the cost of sorting a relation using tuplesort,
    1917                 :             :  *    not including the cost of reading the input data.
    1918                 :             :  *
    1919                 :             :  * If the total volume of data to sort is less than sort_mem, we will do
    1920                 :             :  * an in-memory sort, which requires no I/O and about t*log2(t) tuple
    1921                 :             :  * comparisons for t tuples.
    1922                 :             :  *
    1923                 :             :  * If the total volume exceeds sort_mem, we switch to a tape-style merge
    1924                 :             :  * algorithm.  There will still be about t*log2(t) tuple comparisons in
    1925                 :             :  * total, but we will also need to write and read each tuple once per
    1926                 :             :  * merge pass.  We expect about ceil(logM(r)) merge passes where r is the
    1927                 :             :  * number of initial runs formed and M is the merge order used by tuplesort.c.
    1928                 :             :  * Since the average initial run should be about sort_mem, we have
    1929                 :             :  *              disk traffic = 2 * relsize * ceil(logM(p / sort_mem))
    1930                 :             :  *              cpu = comparison_cost * t * log2(t)
    1931                 :             :  *
    1932                 :             :  * If the sort is bounded (i.e., only the first k result tuples are needed)
    1933                 :             :  * and k tuples can fit into sort_mem, we use a heap method that keeps only
    1934                 :             :  * k tuples in the heap; this will require about t*log2(k) tuple comparisons.
    1935                 :             :  *
    1936                 :             :  * The disk traffic is assumed to be 3/4ths sequential and 1/4th random
    1937                 :             :  * accesses (XXX can't we refine that guess?)
    1938                 :             :  *
    1939                 :             :  * By default, we charge two operator evals per tuple comparison, which should
    1940                 :             :  * be in the right ballpark in most cases.  The caller can tweak this by
    1941                 :             :  * specifying nonzero comparison_cost; typically that's used for any extra
    1942                 :             :  * work that has to be done to prepare the inputs to the comparison operators.
    1943                 :             :  *
    1944                 :             :  * 'tuples' is the number of tuples in the relation
    1945                 :             :  * 'width' is the average tuple width in bytes
    1946                 :             :  * 'comparison_cost' is the extra cost per comparison, if any
    1947                 :             :  * 'sort_mem' is the number of kilobytes of work memory allowed for the sort
    1948                 :             :  * 'limit_tuples' is the bound on the number of output tuples; -1 if no bound
    1949                 :             :  */
    1950                 :             : static void
    1951                 :      188787 : cost_tuplesort(Cost *startup_cost, Cost *run_cost,
    1952                 :             :                            double tuples, int width,
    1953                 :             :                            Cost comparison_cost, int sort_mem,
    1954                 :             :                            double limit_tuples)
    1955                 :             : {
    1956                 :      188787 :         double          input_bytes = relation_byte_size(tuples, width);
    1957                 :      188787 :         double          output_bytes;
    1958                 :      188787 :         double          output_tuples;
    1959                 :      188787 :         int64           sort_mem_bytes = sort_mem * (int64) 1024;
    1960                 :             : 
    1961                 :             :         /*
    1962                 :             :          * We want to be sure the cost of a sort is never estimated as zero, even
    1963                 :             :          * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    1964                 :             :          */
    1965         [ +  + ]:      188787 :         if (tuples < 2.0)
    1966                 :       54885 :                 tuples = 2.0;
    1967                 :             : 
    1968                 :             :         /* Include the default cost-per-comparison */
    1969                 :      188787 :         comparison_cost += 2.0 * cpu_operator_cost;
    1970                 :             : 
    1971                 :             :         /* Do we have a useful LIMIT? */
    1972   [ +  +  +  + ]:      188787 :         if (limit_tuples > 0 && limit_tuples < tuples)
    1973                 :             :         {
    1974                 :         196 :                 output_tuples = limit_tuples;
    1975                 :         196 :                 output_bytes = relation_byte_size(output_tuples, width);
    1976                 :         196 :         }
    1977                 :             :         else
    1978                 :             :         {
    1979                 :      188591 :                 output_tuples = tuples;
    1980                 :      188591 :                 output_bytes = input_bytes;
    1981                 :             :         }
    1982                 :             : 
    1983         [ +  + ]:      188787 :         if (output_bytes > sort_mem_bytes)
    1984                 :             :         {
    1985                 :             :                 /*
    1986                 :             :                  * We'll have to use a disk-based sort of all the tuples
    1987                 :             :                  */
    1988                 :        1257 :                 double          npages = ceil(input_bytes / BLCKSZ);
    1989                 :        1257 :                 double          nruns = input_bytes / sort_mem_bytes;
    1990                 :        1257 :                 double          mergeorder = tuplesort_merge_order(sort_mem_bytes);
    1991                 :        1257 :                 double          log_runs;
    1992                 :        1257 :                 double          npageaccesses;
    1993                 :             : 
    1994                 :             :                 /*
    1995                 :             :                  * CPU costs
    1996                 :             :                  *
    1997                 :             :                  * Assume about N log2 N comparisons
    1998                 :             :                  */
    1999                 :        1257 :                 *startup_cost = comparison_cost * tuples * LOG2(tuples);
    2000                 :             : 
    2001                 :             :                 /* Disk costs */
    2002                 :             : 
    2003                 :             :                 /* Compute logM(r) as log(r) / log(M) */
    2004         [ +  + ]:        1257 :                 if (nruns > mergeorder)
    2005                 :         406 :                         log_runs = ceil(log(nruns) / log(mergeorder));
    2006                 :             :                 else
    2007                 :         851 :                         log_runs = 1.0;
    2008                 :        1257 :                 npageaccesses = 2.0 * npages * log_runs;
    2009                 :             :                 /* Assume 3/4ths of accesses are sequential, 1/4th are not */
    2010                 :        2514 :                 *startup_cost += npageaccesses *
    2011                 :        1257 :                         (seq_page_cost * 0.75 + random_page_cost * 0.25);
    2012                 :        1257 :         }
    2013   [ +  +  -  + ]:      187530 :         else if (tuples > 2 * output_tuples || input_bytes > sort_mem_bytes)
    2014                 :             :         {
    2015                 :             :                 /*
    2016                 :             :                  * We'll use a bounded heap-sort keeping just K tuples in memory, for
    2017                 :             :                  * a total number of tuple comparisons of N log2 K; but the constant
    2018                 :             :                  * factor is a bit higher than for quicksort.  Tweak it so that the
    2019                 :             :                  * cost curve is continuous at the crossover point.
    2020                 :             :                  */
    2021                 :         132 :                 *startup_cost = comparison_cost * tuples * LOG2(2.0 * output_tuples);
    2022                 :         132 :         }
    2023                 :             :         else
    2024                 :             :         {
    2025                 :             :                 /* We'll use plain quicksort on all the input tuples */
    2026                 :      187398 :                 *startup_cost = comparison_cost * tuples * LOG2(tuples);
    2027                 :             :         }
    2028                 :             : 
    2029                 :             :         /*
    2030                 :             :          * Also charge a small amount (arbitrarily set equal to operator cost) per
    2031                 :             :          * extracted tuple.  We don't charge cpu_tuple_cost because a Sort node
    2032                 :             :          * doesn't do qual-checking or projection, so it has less overhead than
    2033                 :             :          * most plan nodes.  Note it's correct to use tuples not output_tuples
    2034                 :             :          * here --- the upper LIMIT will pro-rate the run cost so we'd be double
    2035                 :             :          * counting the LIMIT otherwise.
    2036                 :             :          */
    2037                 :      188787 :         *run_cost = cpu_operator_cost * tuples;
    2038                 :      188787 : }
    2039                 :             : 
    2040                 :             : /*
    2041                 :             :  * cost_incremental_sort
    2042                 :             :  *      Determines and returns the cost of sorting a relation incrementally, when
    2043                 :             :  *  the input path is presorted by a prefix of the pathkeys.
    2044                 :             :  *
    2045                 :             :  * 'presorted_keys' is the number of leading pathkeys by which the input path
    2046                 :             :  * is sorted.
    2047                 :             :  *
    2048                 :             :  * We estimate the number of groups into which the relation is divided by the
    2049                 :             :  * leading pathkeys, and then calculate the cost of sorting a single group
    2050                 :             :  * with tuplesort using cost_tuplesort().
    2051                 :             :  */
    2052                 :             : void
    2053                 :        1409 : cost_incremental_sort(Path *path,
    2054                 :             :                                           PlannerInfo *root, List *pathkeys, int presorted_keys,
    2055                 :             :                                           int input_disabled_nodes,
    2056                 :             :                                           Cost input_startup_cost, Cost input_total_cost,
    2057                 :             :                                           double input_tuples, int width, Cost comparison_cost, int sort_mem,
    2058                 :             :                                           double limit_tuples)
    2059                 :             : {
    2060                 :        1409 :         Cost            startup_cost,
    2061                 :             :                                 run_cost,
    2062                 :        1409 :                                 input_run_cost = input_total_cost - input_startup_cost;
    2063                 :        1409 :         double          group_tuples,
    2064                 :             :                                 input_groups;
    2065                 :        1409 :         Cost            group_startup_cost,
    2066                 :             :                                 group_run_cost,
    2067                 :             :                                 group_input_run_cost;
    2068                 :        1409 :         List       *presortedExprs = NIL;
    2069                 :        1409 :         ListCell   *l;
    2070                 :        1409 :         bool            unknown_varno = false;
    2071                 :             : 
    2072         [ +  - ]:        1409 :         Assert(presorted_keys > 0 && presorted_keys < list_length(pathkeys));
    2073                 :             : 
    2074                 :             :         /*
    2075                 :             :          * We want to be sure the cost of a sort is never estimated as zero, even
    2076                 :             :          * if passed-in tuple count is zero.  Besides, mustn't do log(0)...
    2077                 :             :          */
    2078         [ +  + ]:        1409 :         if (input_tuples < 2.0)
    2079                 :         972 :                 input_tuples = 2.0;
    2080                 :             : 
    2081                 :             :         /* Default estimate of number of groups, capped to one group per row. */
    2082         [ +  + ]:        1409 :         input_groups = Min(input_tuples, DEFAULT_NUM_DISTINCT);
    2083                 :             : 
    2084                 :             :         /*
    2085                 :             :          * Extract presorted keys as list of expressions.
    2086                 :             :          *
    2087                 :             :          * We need to be careful about Vars containing "varno 0" which might have
    2088                 :             :          * been introduced by generate_append_tlist, which would confuse
    2089                 :             :          * estimate_num_groups (in fact it'd fail for such expressions). See
    2090                 :             :          * recurse_set_operations which has to deal with the same issue.
    2091                 :             :          *
    2092                 :             :          * Unlike recurse_set_operations we can't access the original target list
    2093                 :             :          * here, and even if we could it's not very clear how useful would that be
    2094                 :             :          * for a set operation combining multiple tables. So we simply detect if
    2095                 :             :          * there are any expressions with "varno 0" and use the default
    2096                 :             :          * DEFAULT_NUM_DISTINCT in that case.
    2097                 :             :          *
    2098                 :             :          * We might also use either 1.0 (a single group) or input_tuples (each row
    2099                 :             :          * being a separate group), pretty much the worst and best case for
    2100                 :             :          * incremental sort. But those are extreme cases and using something in
    2101                 :             :          * between seems reasonable. Furthermore, generate_append_tlist is used
    2102                 :             :          * for set operations, which are likely to produce mostly unique output
    2103                 :             :          * anyway - from that standpoint the DEFAULT_NUM_DISTINCT is defensive
    2104                 :             :          * while maintaining lower startup cost.
    2105                 :             :          */
    2106   [ +  -  -  +  :        2834 :         foreach(l, pathkeys)
                   +  - ]
    2107                 :             :         {
    2108                 :        1425 :                 PathKey    *key = (PathKey *) lfirst(l);
    2109                 :        2850 :                 EquivalenceMember *member = (EquivalenceMember *)
    2110                 :        1425 :                         linitial(key->pk_eclass->ec_members);
    2111                 :             : 
    2112                 :             :                 /*
    2113                 :             :                  * Check if the expression contains Var with "varno 0" so that we
    2114                 :             :                  * don't call estimate_num_groups in that case.
    2115                 :             :                  */
    2116         [ +  + ]:        1425 :                 if (bms_is_member(0, pull_varnos(root, (Node *) member->em_expr)))
    2117                 :             :                 {
    2118                 :           1 :                         unknown_varno = true;
    2119                 :           1 :                         break;
    2120                 :             :                 }
    2121                 :             : 
    2122                 :             :                 /* expression not containing any Vars with "varno 0" */
    2123                 :        1424 :                 presortedExprs = lappend(presortedExprs, member->em_expr);
    2124                 :             : 
    2125         [ +  + ]:        1424 :                 if (foreach_current_index(l) + 1 >= presorted_keys)
    2126                 :        1408 :                         break;
    2127         [ +  + ]:        1425 :         }
    2128                 :             : 
    2129                 :             :         /* Estimate the number of groups with equal presorted keys. */
    2130         [ +  + ]:        1409 :         if (!unknown_varno)
    2131                 :        1408 :                 input_groups = estimate_num_groups(root, presortedExprs, input_tuples,
    2132                 :             :                                                                                    NULL, NULL);
    2133                 :             : 
    2134                 :        1409 :         group_tuples = input_tuples / input_groups;
    2135                 :        1409 :         group_input_run_cost = input_run_cost / input_groups;
    2136                 :             : 
    2137                 :             :         /*
    2138                 :             :          * Estimate the average cost of sorting of one group where presorted keys
    2139                 :             :          * are equal.
    2140                 :             :          */
    2141                 :        1409 :         cost_tuplesort(&group_startup_cost, &group_run_cost,
    2142                 :        1409 :                                    group_tuples, width, comparison_cost, sort_mem,
    2143                 :        1409 :                                    limit_tuples);
    2144                 :             : 
    2145                 :             :         /*
    2146                 :             :          * Startup cost of incremental sort is the startup cost of its first group
    2147                 :             :          * plus the cost of its input.
    2148                 :             :          */
    2149                 :        2818 :         startup_cost = group_startup_cost + input_startup_cost +
    2150                 :        1409 :                 group_input_run_cost;
    2151                 :             : 
    2152                 :             :         /*
    2153                 :             :          * After we started producing tuples from the first group, the cost of
    2154                 :             :          * producing all the tuples is given by the cost to finish processing this
    2155                 :             :          * group, plus the total cost to process the remaining groups, plus the
    2156                 :             :          * remaining cost of input.
    2157                 :             :          */
    2158                 :        4227 :         run_cost = group_run_cost + (group_run_cost + group_startup_cost) *
    2159                 :        2818 :                 (input_groups - 1) + group_input_run_cost * (input_groups - 1);
    2160                 :             : 
    2161                 :             :         /*
    2162                 :             :          * Incremental sort adds some overhead by itself. Firstly, it has to
    2163                 :             :          * detect the sort groups. This is roughly equal to one extra copy and
    2164                 :             :          * comparison per tuple.
    2165                 :             :          */
    2166                 :        1409 :         run_cost += (cpu_tuple_cost + comparison_cost) * input_tuples;
    2167                 :             : 
    2168                 :             :         /*
    2169                 :             :          * Additionally, we charge double cpu_tuple_cost for each input group to
    2170                 :             :          * account for the tuplesort_reset that's performed after each group.
    2171                 :             :          */
    2172                 :        1409 :         run_cost += 2.0 * cpu_tuple_cost * input_groups;
    2173                 :             : 
    2174                 :        1409 :         path->rows = input_tuples;
    2175                 :             : 
    2176                 :             :         /*
    2177                 :             :          * We should not generate these paths when enable_incremental_sort=false.
    2178                 :             :          * We can ignore PGS_CONSIDER_NONPARTIAL here, because if it's relevant,
    2179                 :             :          * it will have already affected the input path.
    2180                 :             :          */
    2181         [ +  - ]:        1409 :         Assert(enable_incremental_sort);
    2182                 :        1409 :         path->disabled_nodes = input_disabled_nodes;
    2183                 :             : 
    2184                 :        1409 :         path->startup_cost = startup_cost;
    2185                 :        1409 :         path->total_cost = startup_cost + run_cost;
    2186                 :        1409 : }
    2187                 :             : 
    2188                 :             : /*
    2189                 :             :  * cost_sort
    2190                 :             :  *        Determines and returns the cost of sorting a relation, including
    2191                 :             :  *        the cost of reading the input data.
    2192                 :             :  *
    2193                 :             :  * NOTE: some callers currently pass NIL for pathkeys because they
    2194                 :             :  * can't conveniently supply the sort keys.  Since this routine doesn't
    2195                 :             :  * currently do anything with pathkeys anyway, that doesn't matter...
    2196                 :             :  * but if it ever does, it should react gracefully to lack of key data.
    2197                 :             :  * (Actually, the thing we'd most likely be interested in is just the number
    2198                 :             :  * of sort keys, which all callers *could* supply.)
    2199                 :             :  */
    2200                 :             : void
    2201                 :      187378 : cost_sort(Path *path, PlannerInfo *root,
    2202                 :             :                   List *pathkeys, int input_disabled_nodes,
    2203                 :             :                   Cost input_cost, double tuples, int width,
    2204                 :             :                   Cost comparison_cost, int sort_mem,
    2205                 :             :                   double limit_tuples)
    2206                 :             : 
    2207                 :             : {
    2208                 :      187378 :         Cost            startup_cost;
    2209                 :      187378 :         Cost            run_cost;
    2210                 :             : 
    2211                 :      187378 :         cost_tuplesort(&startup_cost, &run_cost,
    2212                 :      187378 :                                    tuples, width,
    2213                 :      187378 :                                    comparison_cost, sort_mem,
    2214                 :      187378 :                                    limit_tuples);
    2215                 :             : 
    2216                 :      187378 :         startup_cost += input_cost;
    2217                 :             : 
    2218                 :             :         /*
    2219                 :             :          * We can ignore PGS_CONSIDER_NONPARTIAL here, because if it's relevant,
    2220                 :             :          * it will have already affected the input path.
    2221                 :             :          */
    2222                 :      187378 :         path->rows = tuples;
    2223                 :      187378 :         path->disabled_nodes = input_disabled_nodes + (enable_sort ? 0 : 1);
    2224                 :      187378 :         path->startup_cost = startup_cost;
    2225                 :      187378 :         path->total_cost = startup_cost + run_cost;
    2226                 :      187378 : }
    2227                 :             : 
    2228                 :             : /*
    2229                 :             :  * append_nonpartial_cost
    2230                 :             :  *        Estimate the cost of the non-partial paths in a Parallel Append.
    2231                 :             :  *        The non-partial paths are assumed to be the first "numpaths" paths
    2232                 :             :  *        from the subpaths list, and to be in order of decreasing cost.
    2233                 :             :  */
    2234                 :             : static Cost
    2235                 :        4107 : append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
    2236                 :             : {
    2237                 :        4107 :         Cost       *costarr;
    2238                 :        4107 :         int                     arrlen;
    2239                 :        4107 :         ListCell   *l;
    2240                 :        4107 :         ListCell   *cell;
    2241                 :        4107 :         int                     path_index;
    2242                 :        4107 :         int                     min_index;
    2243                 :        4107 :         int                     max_index;
    2244                 :             : 
    2245         [ +  + ]:        4107 :         if (numpaths == 0)
    2246                 :        3395 :                 return 0;
    2247                 :             : 
    2248                 :             :         /*
    2249                 :             :          * Array length is number of workers or number of relevant paths,
    2250                 :             :          * whichever is less.
    2251                 :             :          */
    2252         [ +  + ]:         712 :         arrlen = Min(parallel_workers, numpaths);
    2253                 :         712 :         costarr = palloc_array(Cost, arrlen);
    2254                 :             : 
    2255                 :             :         /* The first few paths will each be claimed by a different worker. */
    2256                 :         712 :         path_index = 0;
    2257   [ +  -  +  +  :        2211 :         foreach(cell, subpaths)
                   +  + ]
    2258                 :             :         {
    2259                 :        1499 :                 Path       *subpath = (Path *) lfirst(cell);
    2260                 :             : 
    2261         [ +  + ]:        1499 :                 if (path_index == arrlen)
    2262                 :         151 :                         break;
    2263                 :        1348 :                 costarr[path_index++] = subpath->total_cost;
    2264         [ +  + ]:        1499 :         }
    2265                 :             : 
    2266                 :             :         /*
    2267                 :             :          * Since subpaths are sorted by decreasing cost, the last one will have
    2268                 :             :          * the minimum cost.
    2269                 :             :          */
    2270                 :         712 :         min_index = arrlen - 1;
    2271                 :             : 
    2272                 :             :         /*
    2273                 :             :          * For each of the remaining subpaths, add its cost to the array element
    2274                 :             :          * with minimum cost.
    2275                 :             :          */
    2276   [ +  -  +  +  :         902 :         for_each_cell(l, subpaths, cell)
                   +  + ]
    2277                 :             :         {
    2278                 :         190 :                 Path       *subpath = (Path *) lfirst(l);
    2279                 :             : 
    2280                 :             :                 /* Consider only the non-partial paths */
    2281         [ +  + ]:         190 :                 if (path_index++ == numpaths)
    2282                 :          88 :                         break;
    2283                 :             : 
    2284                 :         102 :                 costarr[min_index] += subpath->total_cost;
    2285                 :             : 
    2286                 :             :                 /* Update the new min cost array index */
    2287                 :         102 :                 min_index = 0;
    2288         [ +  + ]:         312 :                 for (int i = 0; i < arrlen; i++)
    2289                 :             :                 {
    2290         [ +  + ]:         210 :                         if (costarr[i] < costarr[min_index])
    2291                 :          38 :                                 min_index = i;
    2292                 :         210 :                 }
    2293         [ +  + ]:         190 :         }
    2294                 :             : 
    2295                 :             :         /* Return the highest cost from the array */
    2296                 :         712 :         max_index = 0;
    2297         [ +  + ]:        2060 :         for (int i = 0; i < arrlen; i++)
    2298                 :             :         {
    2299         [ +  + ]:        1348 :                 if (costarr[i] > costarr[max_index])
    2300                 :          41 :                         max_index = i;
    2301                 :        1348 :         }
    2302                 :             : 
    2303                 :         712 :         return costarr[max_index];
    2304                 :        4107 : }
    2305                 :             : 
    2306                 :             : /*
    2307                 :             :  * cost_append
    2308                 :             :  *        Determines and returns the cost of an Append node.
    2309                 :             :  */
    2310                 :             : void
    2311                 :       10951 : cost_append(AppendPath *apath, PlannerInfo *root)
    2312                 :             : {
    2313                 :       10951 :         RelOptInfo *rel = apath->path.parent;
    2314                 :       10951 :         ListCell   *l;
    2315                 :       10951 :         uint64          enable_mask = PGS_APPEND;
    2316                 :             : 
    2317         [ +  + ]:       10951 :         if (apath->path.parallel_workers == 0)
    2318                 :        6836 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    2319                 :             : 
    2320                 :       10951 :         apath->path.disabled_nodes =
    2321                 :       10951 :                 (rel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
    2322                 :       10951 :         apath->path.startup_cost = 0;
    2323                 :       10951 :         apath->path.total_cost = 0;
    2324                 :       10951 :         apath->path.rows = 0;
    2325                 :             : 
    2326         [ +  + ]:       10951 :         if (apath->subpaths == NIL)
    2327                 :         316 :                 return;
    2328                 :             : 
    2329         [ +  + ]:       10635 :         if (!apath->path.parallel_aware)
    2330                 :             :         {
    2331                 :        6528 :                 List       *pathkeys = apath->path.pathkeys;
    2332                 :             : 
    2333         [ +  + ]:        6528 :                 if (pathkeys == NIL)
    2334                 :             :                 {
    2335                 :        6182 :                         Path       *firstsubpath = (Path *) linitial(apath->subpaths);
    2336                 :             : 
    2337                 :             :                         /*
    2338                 :             :                          * For an unordered, non-parallel-aware Append we take the startup
    2339                 :             :                          * cost as the startup cost of the first subpath.
    2340                 :             :                          */
    2341                 :        6182 :                         apath->path.startup_cost = firstsubpath->startup_cost;
    2342                 :             : 
    2343                 :             :                         /*
    2344                 :             :                          * Compute rows, number of disabled nodes, and total cost as sums
    2345                 :             :                          * of underlying subplan values.
    2346                 :             :                          */
    2347   [ +  -  +  +  :       23802 :                         foreach(l, apath->subpaths)
                   +  + ]
    2348                 :             :                         {
    2349                 :       17620 :                                 Path       *subpath = (Path *) lfirst(l);
    2350                 :             : 
    2351                 :       17620 :                                 apath->path.rows += subpath->rows;
    2352                 :       17620 :                                 apath->path.disabled_nodes += subpath->disabled_nodes;
    2353                 :       17620 :                                 apath->path.total_cost += subpath->total_cost;
    2354                 :       17620 :                         }
    2355                 :        6182 :                 }
    2356                 :             :                 else
    2357                 :             :                 {
    2358                 :             :                         /*
    2359                 :             :                          * For an ordered, non-parallel-aware Append we take the startup
    2360                 :             :                          * cost as the sum of the subpath startup costs.  This ensures
    2361                 :             :                          * that we don't underestimate the startup cost when a query's
    2362                 :             :                          * LIMIT is such that several of the children have to be run to
    2363                 :             :                          * satisfy it.  This might be overkill --- another plausible hack
    2364                 :             :                          * would be to take the Append's startup cost as the maximum of
    2365                 :             :                          * the child startup costs.  But we don't want to risk believing
    2366                 :             :                          * that an ORDER BY LIMIT query can be satisfied at small cost
    2367                 :             :                          * when the first child has small startup cost but later ones
    2368                 :             :                          * don't.  (If we had the ability to deal with nonlinear cost
    2369                 :             :                          * interpolation for partial retrievals, we would not need to be
    2370                 :             :                          * so conservative about this.)
    2371                 :             :                          *
    2372                 :             :                          * This case is also different from the above in that we have to
    2373                 :             :                          * account for possibly injecting sorts into subpaths that aren't
    2374                 :             :                          * natively ordered.
    2375                 :             :                          */
    2376   [ +  -  +  +  :        1365 :                         foreach(l, apath->subpaths)
                   +  + ]
    2377                 :             :                         {
    2378                 :        1019 :                                 Path       *subpath = (Path *) lfirst(l);
    2379                 :        1019 :                                 int                     presorted_keys;
    2380                 :        1019 :                                 Path            sort_path;      /* dummy for result of
    2381                 :             :                                                                                  * cost_sort/cost_incremental_sort */
    2382                 :             : 
    2383         [ +  + ]:        1019 :                                 if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
    2384                 :             :                                                                                                  &presorted_keys))
    2385                 :             :                                 {
    2386                 :             :                                         /*
    2387                 :             :                                          * We'll need to insert a Sort node, so include costs for
    2388                 :             :                                          * that.  We choose to use incremental sort if it is
    2389                 :             :                                          * enabled and there are presorted keys; otherwise we use
    2390                 :             :                                          * full sort.
    2391                 :             :                                          *
    2392                 :             :                                          * We can use the parent's LIMIT if any, since we
    2393                 :             :                                          * certainly won't pull more than that many tuples from
    2394                 :             :                                          * any child.
    2395                 :             :                                          */
    2396   [ +  -  +  + ]:           4 :                                         if (enable_incremental_sort && presorted_keys > 0)
    2397                 :             :                                         {
    2398                 :           2 :                                                 cost_incremental_sort(&sort_path,
    2399                 :           2 :                                                                                           root,
    2400                 :           2 :                                                                                           pathkeys,
    2401                 :           2 :                                                                                           presorted_keys,
    2402                 :           2 :                                                                                           subpath->disabled_nodes,
    2403                 :           2 :                                                                                           subpath->startup_cost,
    2404                 :           2 :                                                                                           subpath->total_cost,
    2405                 :           2 :                                                                                           subpath->rows,
    2406                 :           2 :                                                                                           subpath->pathtarget->width,
    2407                 :             :                                                                                           0.0,
    2408                 :           2 :                                                                                           work_mem,
    2409                 :           2 :                                                                                           apath->limit_tuples);
    2410                 :           2 :                                         }
    2411                 :             :                                         else
    2412                 :             :                                         {
    2413                 :           2 :                                                 cost_sort(&sort_path,
    2414                 :           2 :                                                                   root,
    2415                 :           2 :                                                                   pathkeys,
    2416                 :           2 :                                                                   subpath->disabled_nodes,
    2417                 :           2 :                                                                   subpath->total_cost,
    2418                 :           2 :                                                                   subpath->rows,
    2419                 :           2 :                                                                   subpath->pathtarget->width,
    2420                 :             :                                                                   0.0,
    2421                 :           2 :                                                                   work_mem,
    2422                 :           2 :                                                                   apath->limit_tuples);
    2423                 :             :                                         }
    2424                 :             : 
    2425                 :           4 :                                         subpath = &sort_path;
    2426                 :           4 :                                 }
    2427                 :             : 
    2428                 :        1019 :                                 apath->path.rows += subpath->rows;
    2429                 :        1019 :                                 apath->path.disabled_nodes += subpath->disabled_nodes;
    2430                 :        1019 :                                 apath->path.startup_cost += subpath->startup_cost;
    2431                 :        1019 :                                 apath->path.total_cost += subpath->total_cost;
    2432                 :        1019 :                         }
    2433                 :             :                 }
    2434                 :        6528 :         }
    2435                 :             :         else                                            /* parallel-aware */
    2436                 :             :         {
    2437                 :        4107 :                 int                     i = 0;
    2438                 :        4107 :                 double          parallel_divisor = get_parallel_divisor(&apath->path);
    2439                 :             : 
    2440                 :             :                 /* Parallel-aware Append never produces ordered output. */
    2441         [ +  - ]:        4107 :                 Assert(apath->path.pathkeys == NIL);
    2442                 :             : 
    2443                 :             :                 /* Calculate startup cost. */
    2444   [ +  -  +  +  :       15788 :                 foreach(l, apath->subpaths)
                   +  + ]
    2445                 :             :                 {
    2446                 :       11681 :                         Path       *subpath = (Path *) lfirst(l);
    2447                 :             : 
    2448                 :             :                         /*
    2449                 :             :                          * Append will start returning tuples when the child node having
    2450                 :             :                          * lowest startup cost is done setting up. We consider only the
    2451                 :             :                          * first few subplans that immediately get a worker assigned.
    2452                 :             :                          */
    2453         [ +  + ]:       11681 :                         if (i == 0)
    2454                 :        4107 :                                 apath->path.startup_cost = subpath->startup_cost;
    2455         [ +  + ]:        7574 :                         else if (i < apath->path.parallel_workers)
    2456         [ +  + ]:        4012 :                                 apath->path.startup_cost = Min(apath->path.startup_cost,
    2457                 :             :                                                                                            subpath->startup_cost);
    2458                 :             : 
    2459                 :             :                         /*
    2460                 :             :                          * Apply parallel divisor to subpaths.  Scale the number of rows
    2461                 :             :                          * for each partial subpath based on the ratio of the parallel
    2462                 :             :                          * divisor originally used for the subpath to the one we adopted.
    2463                 :             :                          * Also add the cost of partial paths to the total cost, but
    2464                 :             :                          * ignore non-partial paths for now.
    2465                 :             :                          */
    2466         [ +  + ]:       11681 :                         if (i < apath->first_partial_path)
    2467                 :        1450 :                                 apath->path.rows += subpath->rows / parallel_divisor;
    2468                 :             :                         else
    2469                 :             :                         {
    2470                 :       10231 :                                 double          subpath_parallel_divisor;
    2471                 :             : 
    2472                 :       10231 :                                 subpath_parallel_divisor = get_parallel_divisor(subpath);
    2473                 :       20462 :                                 apath->path.rows += subpath->rows * (subpath_parallel_divisor /
    2474                 :       10231 :                                                                                                          parallel_divisor);
    2475                 :       10231 :                                 apath->path.total_cost += subpath->total_cost;
    2476                 :       10231 :                         }
    2477                 :             : 
    2478                 :       11681 :                         apath->path.disabled_nodes += subpath->disabled_nodes;
    2479                 :       11681 :                         apath->path.rows = clamp_row_est(apath->path.rows);
    2480                 :             : 
    2481                 :       11681 :                         i++;
    2482                 :       11681 :                 }
    2483                 :             : 
    2484                 :             :                 /* Add cost for non-partial subpaths. */
    2485                 :        4107 :                 apath->path.total_cost +=
    2486                 :        8214 :                         append_nonpartial_cost(apath->subpaths,
    2487                 :        4107 :                                                                    apath->first_partial_path,
    2488                 :        4107 :                                                                    apath->path.parallel_workers);
    2489                 :        4107 :         }
    2490                 :             : 
    2491                 :             :         /*
    2492                 :             :          * Although Append does not do any selection or projection, it's not free;
    2493                 :             :          * add a small per-tuple overhead.
    2494                 :             :          */
    2495                 :       10635 :         apath->path.total_cost +=
    2496                 :       10635 :                 cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * apath->path.rows;
    2497         [ -  + ]:       10951 : }
    2498                 :             : 
    2499                 :             : /*
    2500                 :             :  * cost_merge_append
    2501                 :             :  *        Determines and returns the cost of a MergeAppend node.
    2502                 :             :  *
    2503                 :             :  * MergeAppend merges several pre-sorted input streams, using a heap that
    2504                 :             :  * at any given instant holds the next tuple from each stream.  If there
    2505                 :             :  * are N streams, we need about N*log2(N) tuple comparisons to construct
    2506                 :             :  * the heap at startup, and then for each output tuple, about log2(N)
    2507                 :             :  * comparisons to replace the top entry.
    2508                 :             :  *
    2509                 :             :  * (The effective value of N will drop once some of the input streams are
    2510                 :             :  * exhausted, but it seems unlikely to be worth trying to account for that.)
    2511                 :             :  *
    2512                 :             :  * The heap is never spilled to disk, since we assume N is not very large.
    2513                 :             :  * So this is much simpler than cost_sort.
    2514                 :             :  *
    2515                 :             :  * As in cost_sort, we charge two operator evals per tuple comparison.
    2516                 :             :  *
    2517                 :             :  * 'pathkeys' is a list of sort keys
    2518                 :             :  * 'n_streams' is the number of input streams
    2519                 :             :  * 'input_disabled_nodes' is the sum of the input streams' disabled node counts
    2520                 :             :  * 'input_startup_cost' is the sum of the input streams' startup costs
    2521                 :             :  * 'input_total_cost' is the sum of the input streams' total costs
    2522                 :             :  * 'tuples' is the number of tuples in all the streams
    2523                 :             :  */
    2524                 :             : void
    2525                 :        1635 : cost_merge_append(Path *path, PlannerInfo *root,
    2526                 :             :                                   List *pathkeys, int n_streams,
    2527                 :             :                                   int input_disabled_nodes,
    2528                 :             :                                   Cost input_startup_cost, Cost input_total_cost,
    2529                 :             :                                   double tuples)
    2530                 :             : {
    2531                 :        1635 :         RelOptInfo *rel = path->parent;
    2532                 :        1635 :         Cost            startup_cost = 0;
    2533                 :        1635 :         Cost            run_cost = 0;
    2534                 :        1635 :         Cost            comparison_cost;
    2535                 :        1635 :         double          N;
    2536                 :        1635 :         double          logN;
    2537                 :        1635 :         uint64          enable_mask = PGS_MERGE_APPEND;
    2538                 :             : 
    2539         [ -  + ]:        1635 :         if (path->parallel_workers == 0)
    2540                 :        1635 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    2541                 :             : 
    2542                 :             :         /*
    2543                 :             :          * Avoid log(0)...
    2544                 :             :          */
    2545         [ -  + ]:        1635 :         N = (n_streams < 2) ? 2.0 : (double) n_streams;
    2546                 :        1635 :         logN = LOG2(N);
    2547                 :             : 
    2548                 :             :         /* Assumed cost per tuple comparison */
    2549                 :        1635 :         comparison_cost = 2.0 * cpu_operator_cost;
    2550                 :             : 
    2551                 :             :         /* Heap creation cost */
    2552                 :        1635 :         startup_cost += comparison_cost * N * logN;
    2553                 :             : 
    2554                 :             :         /* Per-tuple heap maintenance cost */
    2555                 :        1635 :         run_cost += tuples * comparison_cost * logN;
    2556                 :             : 
    2557                 :             :         /*
    2558                 :             :          * Although MergeAppend does not do any selection or projection, it's not
    2559                 :             :          * free; add a small per-tuple overhead.
    2560                 :             :          */
    2561                 :        1635 :         run_cost += cpu_tuple_cost * APPEND_CPU_COST_MULTIPLIER * tuples;
    2562                 :             : 
    2563                 :        1635 :         path->disabled_nodes =
    2564                 :        1635 :                 (rel->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
    2565                 :        1635 :         path->disabled_nodes += input_disabled_nodes;
    2566                 :        1635 :         path->startup_cost = startup_cost + input_startup_cost;
    2567                 :        1635 :         path->total_cost = startup_cost + run_cost + input_total_cost;
    2568                 :        1635 : }
    2569                 :             : 
    2570                 :             : /*
    2571                 :             :  * cost_material
    2572                 :             :  *        Determines and returns the cost of materializing a relation, including
    2573                 :             :  *        the cost of reading the input data.
    2574                 :             :  *
    2575                 :             :  * If the total volume of data to materialize exceeds work_mem, we will need
    2576                 :             :  * to write it to disk, so the cost is much higher in that case.
    2577                 :             :  *
    2578                 :             :  * Note that here we are estimating the costs for the first scan of the
    2579                 :             :  * relation, so the materialization is all overhead --- any savings will
    2580                 :             :  * occur only on rescan, which is estimated in cost_rescan.
    2581                 :             :  */
    2582                 :             : void
    2583                 :       68711 : cost_material(Path *path,
    2584                 :             :                           bool enabled, int input_disabled_nodes,
    2585                 :             :                           Cost input_startup_cost, Cost input_total_cost,
    2586                 :             :                           double tuples, int width)
    2587                 :             : {
    2588                 :       68711 :         Cost            startup_cost = input_startup_cost;
    2589                 :       68711 :         Cost            run_cost = input_total_cost - input_startup_cost;
    2590                 :       68711 :         double          nbytes = relation_byte_size(tuples, width);
    2591                 :       68711 :         double          work_mem_bytes = work_mem * (Size) 1024;
    2592                 :             : 
    2593         [ +  + ]:       68711 :         if (path->parallel_workers == 0 &&
    2594   [ +  +  +  + ]:       68704 :                 path->parent != NULL &&
    2595                 :       68699 :                 (path->parent->pgs_mask & PGS_CONSIDER_NONPARTIAL) == 0)
    2596                 :           8 :                 enabled = false;
    2597                 :             : 
    2598                 :       68711 :         path->rows = tuples;
    2599                 :             : 
    2600                 :             :         /*
    2601                 :             :          * Whether spilling or not, charge 2x cpu_operator_cost per tuple to
    2602                 :             :          * reflect bookkeeping overhead.  (This rate must be more than what
    2603                 :             :          * cost_rescan charges for materialize, ie, cpu_operator_cost per tuple;
    2604                 :             :          * if it is exactly the same then there will be a cost tie between
    2605                 :             :          * nestloop with A outer, materialized B inner and nestloop with B outer,
    2606                 :             :          * materialized A inner.  The extra cost ensures we'll prefer
    2607                 :             :          * materializing the smaller rel.)      Note that this is normally a good deal
    2608                 :             :          * less than cpu_tuple_cost; which is OK because a Material plan node
    2609                 :             :          * doesn't do qual-checking or projection, so it's got less overhead than
    2610                 :             :          * most plan nodes.
    2611                 :             :          */
    2612                 :       68711 :         run_cost += 2 * cpu_operator_cost * tuples;
    2613                 :             : 
    2614                 :             :         /*
    2615                 :             :          * If we will spill to disk, charge at the rate of seq_page_cost per page.
    2616                 :             :          * This cost is assumed to be evenly spread through the plan run phase,
    2617                 :             :          * which isn't exactly accurate but our cost model doesn't allow for
    2618                 :             :          * nonuniform costs within the run phase.
    2619                 :             :          */
    2620         [ +  + ]:       68711 :         if (nbytes > work_mem_bytes)
    2621                 :             :         {
    2622                 :         423 :                 double          npages = ceil(nbytes / BLCKSZ);
    2623                 :             : 
    2624                 :         423 :                 run_cost += seq_page_cost * npages;
    2625                 :         423 :         }
    2626                 :             : 
    2627                 :       68711 :         path->disabled_nodes = input_disabled_nodes + (enabled ? 0 : 1);
    2628                 :       68711 :         path->startup_cost = startup_cost;
    2629                 :       68711 :         path->total_cost = startup_cost + run_cost;
    2630                 :       68711 : }
    2631                 :             : 
    2632                 :             : /*
    2633                 :             :  * cost_memoize_rescan
    2634                 :             :  *        Determines the estimated cost of rescanning a Memoize node.
    2635                 :             :  *
    2636                 :             :  * In order to estimate this, we must gain knowledge of how often we expect to
    2637                 :             :  * be called and how many distinct sets of parameters we are likely to be
    2638                 :             :  * called with. If we expect a good cache hit ratio, then we can set our
    2639                 :             :  * costs to account for that hit ratio, plus a little bit of cost for the
    2640                 :             :  * caching itself.  Caching will not work out well if we expect to be called
    2641                 :             :  * with too many distinct parameter values.  The worst-case here is that we
    2642                 :             :  * never see any parameter value twice, in which case we'd never get a cache
    2643                 :             :  * hit and caching would be a complete waste of effort.
    2644                 :             :  */
    2645                 :             : static void
    2646                 :       18403 : cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
    2647                 :             :                                         Cost *rescan_startup_cost, Cost *rescan_total_cost)
    2648                 :             : {
    2649                 :       18403 :         EstimationInfo estinfo;
    2650                 :       18403 :         ListCell   *lc;
    2651                 :       18403 :         Cost            input_startup_cost = mpath->subpath->startup_cost;
    2652                 :       18403 :         Cost            input_total_cost = mpath->subpath->total_cost;
    2653                 :       18403 :         double          tuples = mpath->subpath->rows;
    2654                 :       18403 :         Cardinality est_calls = mpath->est_calls;
    2655                 :       18403 :         int                     width = mpath->subpath->pathtarget->width;
    2656                 :             : 
    2657                 :       18403 :         double          hash_mem_bytes;
    2658                 :       18403 :         double          est_entry_bytes;
    2659                 :       18403 :         Cardinality est_cache_entries;
    2660                 :       18403 :         Cardinality ndistinct;
    2661                 :       18403 :         double          evict_ratio;
    2662                 :       18403 :         double          hit_ratio;
    2663                 :       18403 :         Cost            startup_cost;
    2664                 :       18403 :         Cost            total_cost;
    2665                 :             : 
    2666                 :             :         /* available cache space */
    2667                 :       18403 :         hash_mem_bytes = get_hash_memory_limit();
    2668                 :             : 
    2669                 :             :         /*
    2670                 :             :          * Set the number of bytes each cache entry should consume in the cache.
    2671                 :             :          * To provide us with better estimations on how many cache entries we can
    2672                 :             :          * store at once, we make a call to the executor here to ask it what
    2673                 :             :          * memory overheads there are for a single cache entry.
    2674                 :             :          */
    2675                 :       36806 :         est_entry_bytes = relation_byte_size(tuples, width) +
    2676                 :       18403 :                 ExecEstimateCacheEntryOverheadBytes(tuples);
    2677                 :             : 
    2678                 :             :         /* include the estimated width for the cache keys */
    2679   [ +  -  +  +  :       38232 :         foreach(lc, mpath->param_exprs)
                   +  + ]
    2680                 :       19829 :                 est_entry_bytes += get_expr_width(root, (Node *) lfirst(lc));
    2681                 :             : 
    2682                 :             :         /* estimate on the upper limit of cache entries we can hold at once */
    2683                 :       18403 :         est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
    2684                 :             : 
    2685                 :             :         /* estimate on the distinct number of parameter values */
    2686                 :       18403 :         ndistinct = estimate_num_groups(root, mpath->param_exprs, est_calls, NULL,
    2687                 :             :                                                                         &estinfo);
    2688                 :             : 
    2689                 :             :         /*
    2690                 :             :          * When the estimation fell back on using a default value, it's a bit too
    2691                 :             :          * risky to assume that it's ok to use a Memoize node.  The use of a
    2692                 :             :          * default could cause us to use a Memoize node when it's really
    2693                 :             :          * inappropriate to do so.  If we see that this has been done, then we'll
    2694                 :             :          * assume that every call will have unique parameters, which will almost
    2695                 :             :          * certainly mean a MemoizePath will never survive add_path().
    2696                 :             :          */
    2697         [ +  + ]:       18403 :         if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
    2698                 :        2310 :                 ndistinct = est_calls;
    2699                 :             : 
    2700                 :             :         /* Remember the ndistinct estimate for EXPLAIN */
    2701                 :       18403 :         mpath->est_unique_keys = ndistinct;
    2702                 :             : 
    2703                 :             :         /*
    2704                 :             :          * Since we've already estimated the maximum number of entries we can
    2705                 :             :          * store at once and know the estimated number of distinct values we'll be
    2706                 :             :          * called with, we'll take this opportunity to set the path's est_entries.
    2707                 :             :          * This will ultimately determine the hash table size that the executor
    2708                 :             :          * will use.  If we leave this at zero, the executor will just choose the
    2709                 :             :          * size itself.  Really this is not the right place to do this, but it's
    2710                 :             :          * convenient since everything is already calculated.
    2711                 :             :          */
    2712   [ +  +  +  -  :       18403 :         mpath->est_entries = Min(Min(ndistinct, est_cache_entries),
                   +  + ]
    2713                 :             :                                                          PG_UINT32_MAX);
    2714                 :             : 
    2715                 :             :         /*
    2716                 :             :          * When the number of distinct parameter values is above the amount we can
    2717                 :             :          * store in the cache, then we'll have to evict some entries from the
    2718                 :             :          * cache.  This is not free. Here we estimate how often we'll incur the
    2719                 :             :          * cost of that eviction.
    2720                 :             :          */
    2721         [ +  + ]:       18403 :         evict_ratio = 1.0 - Min(est_cache_entries, ndistinct) / ndistinct;
    2722                 :             : 
    2723                 :             :         /*
    2724                 :             :          * In order to estimate how costly a single scan will be, we need to
    2725                 :             :          * attempt to estimate what the cache hit ratio will be.  To do that we
    2726                 :             :          * must look at how many scans are estimated in total for this node and
    2727                 :             :          * how many of those scans we expect to get a cache hit.
    2728                 :             :          */
    2729                 :       36806 :         hit_ratio = ((est_calls - ndistinct) / est_calls) *
    2730         [ +  + ]:       18403 :                 (est_cache_entries / Max(ndistinct, est_cache_entries));
    2731                 :             : 
    2732                 :             :         /* Remember the hit ratio estimate for EXPLAIN */
    2733                 :       18403 :         mpath->est_hit_ratio = hit_ratio;
    2734                 :             : 
    2735         [ +  - ]:       18403 :         Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
    2736                 :             : 
    2737                 :             :         /*
    2738                 :             :          * Set the total_cost accounting for the expected cache hit ratio.  We
    2739                 :             :          * also add on a cpu_operator_cost to account for a cache lookup. This
    2740                 :             :          * will happen regardless of whether it's a cache hit or not.
    2741                 :             :          */
    2742                 :       18403 :         total_cost = input_total_cost * (1.0 - hit_ratio) + cpu_operator_cost;
    2743                 :             : 
    2744                 :             :         /* Now adjust the total cost to account for cache evictions */
    2745                 :             : 
    2746                 :             :         /* Charge a cpu_tuple_cost for evicting the actual cache entry */
    2747                 :       18403 :         total_cost += cpu_tuple_cost * evict_ratio;
    2748                 :             : 
    2749                 :             :         /*
    2750                 :             :          * Charge a 10th of cpu_operator_cost to evict every tuple in that entry.
    2751                 :             :          * The per-tuple eviction is really just a pfree, so charging a whole
    2752                 :             :          * cpu_operator_cost seems a little excessive.
    2753                 :             :          */
    2754                 :       18403 :         total_cost += cpu_operator_cost / 10.0 * evict_ratio * tuples;
    2755                 :             : 
    2756                 :             :         /*
    2757                 :             :          * Now adjust for storing things in the cache, since that's not free
    2758                 :             :          * either.  Everything must go in the cache.  We don't proportion this
    2759                 :             :          * over any ratio, just apply it once for the scan.  We charge a
    2760                 :             :          * cpu_tuple_cost for the creation of the cache entry and also a
    2761                 :             :          * cpu_operator_cost for each tuple we expect to cache.
    2762                 :             :          */
    2763                 :       18403 :         total_cost += cpu_tuple_cost + cpu_operator_cost * tuples;
    2764                 :             : 
    2765                 :             :         /*
    2766                 :             :          * Getting the first row must be also be proportioned according to the
    2767                 :             :          * expected cache hit ratio.
    2768                 :             :          */
    2769                 :       18403 :         startup_cost = input_startup_cost * (1.0 - hit_ratio);
    2770                 :             : 
    2771                 :             :         /*
    2772                 :             :          * Additionally we charge a cpu_tuple_cost to account for cache lookups,
    2773                 :             :          * which we'll do regardless of whether it was a cache hit or not.
    2774                 :             :          */
    2775                 :       18403 :         startup_cost += cpu_tuple_cost;
    2776                 :             : 
    2777                 :       18403 :         *rescan_startup_cost = startup_cost;
    2778                 :       18403 :         *rescan_total_cost = total_cost;
    2779                 :       18403 : }
    2780                 :             : 
    2781                 :             : /*
    2782                 :             :  * cost_agg
    2783                 :             :  *              Determines and returns the cost of performing an Agg plan node,
    2784                 :             :  *              including the cost of its input.
    2785                 :             :  *
    2786                 :             :  * aggcosts can be NULL when there are no actual aggregate functions (i.e.,
    2787                 :             :  * we are using a hashed Agg node just to do grouping).
    2788                 :             :  *
    2789                 :             :  * Note: when aggstrategy == AGG_SORTED, caller must ensure that input costs
    2790                 :             :  * are for appropriately-sorted input.
    2791                 :             :  */
    2792                 :             : void
    2793                 :       12265 : cost_agg(Path *path, PlannerInfo *root,
    2794                 :             :                  AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
    2795                 :             :                  int numGroupCols, double numGroups,
    2796                 :             :                  List *quals,
    2797                 :             :                  int disabled_nodes,
    2798                 :             :                  Cost input_startup_cost, Cost input_total_cost,
    2799                 :             :                  double input_tuples, double input_width)
    2800                 :             : {
    2801                 :       12265 :         double          output_tuples;
    2802                 :       12265 :         Cost            startup_cost;
    2803                 :       12265 :         Cost            total_cost;
    2804                 :       12265 :         const AggClauseCosts dummy_aggcosts = {0};
    2805                 :             : 
    2806                 :             :         /* Use all-zero per-aggregate costs if NULL is passed */
    2807         [ +  + ]:       12265 :         if (aggcosts == NULL)
    2808                 :             :         {
    2809         [ +  - ]:        2670 :                 Assert(aggstrategy == AGG_HASHED);
    2810                 :        2670 :                 aggcosts = &dummy_aggcosts;
    2811                 :        2670 :         }
    2812                 :             : 
    2813                 :             :         /*
    2814                 :             :          * The transCost.per_tuple component of aggcosts should be charged once
    2815                 :             :          * per input tuple, corresponding to the costs of evaluating the aggregate
    2816                 :             :          * transfns and their input expressions. The finalCost.per_tuple component
    2817                 :             :          * is charged once per output tuple, corresponding to the costs of
    2818                 :             :          * evaluating the finalfns.  Startup costs are of course charged but once.
    2819                 :             :          *
    2820                 :             :          * If we are grouping, we charge an additional cpu_operator_cost per
    2821                 :             :          * grouping column per input tuple for grouping comparisons.
    2822                 :             :          *
    2823                 :             :          * We will produce a single output tuple if not grouping, and a tuple per
    2824                 :             :          * group otherwise.  We charge cpu_tuple_cost for each output tuple.
    2825                 :             :          *
    2826                 :             :          * Note: in this cost model, AGG_SORTED and AGG_HASHED have exactly the
    2827                 :             :          * same total CPU cost, but AGG_SORTED has lower startup cost.  If the
    2828                 :             :          * input path is already sorted appropriately, AGG_SORTED should be
    2829                 :             :          * preferred (since it has no risk of memory overflow).  This will happen
    2830                 :             :          * as long as the computed total costs are indeed exactly equal --- but if
    2831                 :             :          * there's roundoff error we might do the wrong thing.  So be sure that
    2832                 :             :          * the computations below form the same intermediate values in the same
    2833                 :             :          * order.
    2834                 :             :          */
    2835         [ +  + ]:       12265 :         if (aggstrategy == AGG_PLAIN)
    2836                 :             :         {
    2837                 :        4679 :                 startup_cost = input_total_cost;
    2838                 :        4679 :                 startup_cost += aggcosts->transCost.startup;
    2839                 :        4679 :                 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2840                 :        4679 :                 startup_cost += aggcosts->finalCost.startup;
    2841                 :        4679 :                 startup_cost += aggcosts->finalCost.per_tuple;
    2842                 :             :                 /* we aren't grouping */
    2843                 :        4679 :                 total_cost = startup_cost + cpu_tuple_cost;
    2844                 :        4679 :                 output_tuples = 1;
    2845                 :        4679 :         }
    2846   [ +  +  +  + ]:        7586 :         else if (aggstrategy == AGG_SORTED || aggstrategy == AGG_MIXED)
    2847                 :             :         {
    2848                 :             :                 /* Here we are able to deliver output on-the-fly */
    2849                 :        2904 :                 startup_cost = input_startup_cost;
    2850                 :        2904 :                 total_cost = input_total_cost;
    2851   [ +  +  +  + ]:        2904 :                 if (aggstrategy == AGG_MIXED && !enable_hashagg)
    2852                 :          90 :                         ++disabled_nodes;
    2853                 :             :                 /* calcs phrased this way to match HASHED case, see note above */
    2854                 :        2904 :                 total_cost += aggcosts->transCost.startup;
    2855                 :        2904 :                 total_cost += aggcosts->transCost.per_tuple * input_tuples;
    2856                 :        2904 :                 total_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2857                 :        2904 :                 total_cost += aggcosts->finalCost.startup;
    2858                 :        2904 :                 total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2859                 :        2904 :                 total_cost += cpu_tuple_cost * numGroups;
    2860                 :        2904 :                 output_tuples = numGroups;
    2861                 :        2904 :         }
    2862                 :             :         else
    2863                 :             :         {
    2864                 :             :                 /* must be AGG_HASHED */
    2865                 :        4682 :                 startup_cost = input_total_cost;
    2866         [ +  + ]:        4682 :                 if (!enable_hashagg)
    2867                 :         312 :                         ++disabled_nodes;
    2868                 :        4682 :                 startup_cost += aggcosts->transCost.startup;
    2869                 :        4682 :                 startup_cost += aggcosts->transCost.per_tuple * input_tuples;
    2870                 :             :                 /* cost of computing hash value */
    2871                 :        4682 :                 startup_cost += (cpu_operator_cost * numGroupCols) * input_tuples;
    2872                 :        4682 :                 startup_cost += aggcosts->finalCost.startup;
    2873                 :             : 
    2874                 :        4682 :                 total_cost = startup_cost;
    2875                 :        4682 :                 total_cost += aggcosts->finalCost.per_tuple * numGroups;
    2876                 :             :                 /* cost of retrieving from hash table */
    2877                 :        4682 :                 total_cost += cpu_tuple_cost * numGroups;
    2878                 :        4682 :                 output_tuples = numGroups;
    2879                 :             :         }
    2880                 :             : 
    2881                 :             :         /*
    2882                 :             :          * Add the disk costs of hash aggregation that spills to disk.
    2883                 :             :          *
    2884                 :             :          * Groups that go into the hash table stay in memory until finalized, so
    2885                 :             :          * spilling and reprocessing tuples doesn't incur additional invocations
    2886                 :             :          * of transCost or finalCost. Furthermore, the computed hash value is
    2887                 :             :          * stored with the spilled tuples, so we don't incur extra invocations of
    2888                 :             :          * the hash function.
    2889                 :             :          *
    2890                 :             :          * Hash Agg begins returning tuples after the first batch is complete.
    2891                 :             :          * Accrue writes (spilled tuples) to startup_cost and to total_cost;
    2892                 :             :          * accrue reads only to total_cost.
    2893                 :             :          */
    2894   [ +  +  +  + ]:       12265 :         if (aggstrategy == AGG_HASHED || aggstrategy == AGG_MIXED)
    2895                 :             :         {
    2896                 :        4849 :                 double          pages;
    2897                 :        4849 :                 double          pages_written = 0.0;
    2898                 :        4849 :                 double          pages_read = 0.0;
    2899                 :        4849 :                 double          spill_cost;
    2900                 :        4849 :                 double          hashentrysize;
    2901                 :        4849 :                 double          nbatches;
    2902                 :        4849 :                 Size            mem_limit;
    2903                 :        4849 :                 uint64          ngroups_limit;
    2904                 :        4849 :                 int                     num_partitions;
    2905                 :        4849 :                 int                     depth;
    2906                 :             : 
    2907                 :             :                 /*
    2908                 :             :                  * Estimate number of batches based on the computed limits. If less
    2909                 :             :                  * than or equal to one, all groups are expected to fit in memory;
    2910                 :             :                  * otherwise we expect to spill.
    2911                 :             :                  */
    2912                 :        9698 :                 hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
    2913                 :        4849 :                                                                                         input_width,
    2914                 :        4849 :                                                                                         aggcosts->transitionSpace);
    2915                 :        4849 :                 hash_agg_set_limits(hashentrysize, numGroups, 0, &mem_limit,
    2916                 :             :                                                         &ngroups_limit, &num_partitions);
    2917                 :             : 
    2918         [ -  + ]:        4849 :                 nbatches = Max((numGroups * hashentrysize) / mem_limit,
    2919                 :             :                                            numGroups / ngroups_limit);
    2920                 :             : 
    2921         [ +  + ]:        4849 :                 nbatches = Max(ceil(nbatches), 1.0);
    2922         [ +  + ]:        4849 :                 num_partitions = Max(num_partitions, 2);
    2923                 :             : 
    2924                 :             :                 /*
    2925                 :             :                  * The number of partitions can change at different levels of
    2926                 :             :                  * recursion; but for the purposes of this calculation assume it stays
    2927                 :             :                  * constant.
    2928                 :             :                  */
    2929                 :        4849 :                 depth = ceil(log(nbatches) / log(num_partitions));
    2930                 :             : 
    2931                 :             :                 /*
    2932                 :             :                  * Estimate number of pages read and written. For each level of
    2933                 :             :                  * recursion, a tuple must be written and then later read.
    2934                 :             :                  */
    2935                 :        4849 :                 pages = relation_byte_size(input_tuples, input_width) / BLCKSZ;
    2936                 :        4849 :                 pages_written = pages_read = pages * depth;
    2937                 :             : 
    2938                 :             :                 /*
    2939                 :             :                  * HashAgg has somewhat worse IO behavior than Sort on typical
    2940                 :             :                  * hardware/OS combinations. Account for this with a generic penalty.
    2941                 :             :                  */
    2942                 :        4849 :                 pages_read *= 2.0;
    2943                 :        4849 :                 pages_written *= 2.0;
    2944                 :             : 
    2945                 :        4849 :                 startup_cost += pages_written * random_page_cost;
    2946                 :        4849 :                 total_cost += pages_written * random_page_cost;
    2947                 :        4849 :                 total_cost += pages_read * seq_page_cost;
    2948                 :             : 
    2949                 :             :                 /* account for CPU cost of spilling a tuple and reading it back */
    2950                 :        4849 :                 spill_cost = depth * input_tuples * 2.0 * cpu_tuple_cost;
    2951                 :        4849 :                 startup_cost += spill_cost;
    2952                 :        4849 :                 total_cost += spill_cost;
    2953                 :        4849 :         }
    2954                 :             : 
    2955                 :             :         /*
    2956                 :             :          * If there are quals (HAVING quals), account for their cost and
    2957                 :             :          * selectivity.
    2958                 :             :          */
    2959         [ +  + ]:       12265 :         if (quals)
    2960                 :             :         {
    2961                 :         724 :                 QualCost        qual_cost;
    2962                 :             : 
    2963                 :         724 :                 cost_qual_eval(&qual_cost, quals, root);
    2964                 :         724 :                 startup_cost += qual_cost.startup;
    2965                 :         724 :                 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    2966                 :             : 
    2967                 :        1448 :                 output_tuples = clamp_row_est(output_tuples *
    2968                 :        1448 :                                                                           clauselist_selectivity(root,
    2969                 :         724 :                                                                                                                          quals,
    2970                 :             :                                                                                                                          0,
    2971                 :             :                                                                                                                          JOIN_INNER,
    2972                 :             :                                                                                                                          NULL));
    2973                 :         724 :         }
    2974                 :             : 
    2975                 :       12265 :         path->rows = output_tuples;
    2976                 :       12265 :         path->disabled_nodes = disabled_nodes;
    2977                 :       12265 :         path->startup_cost = startup_cost;
    2978                 :       12265 :         path->total_cost = total_cost;
    2979                 :       12265 : }
    2980                 :             : 
    2981                 :             : /*
    2982                 :             :  * get_windowclause_startup_tuples
    2983                 :             :  *              Estimate how many tuples we'll need to fetch from a WindowAgg's
    2984                 :             :  *              subnode before we can output the first WindowAgg tuple.
    2985                 :             :  *
    2986                 :             :  * How many tuples need to be read depends on the WindowClause.  For example,
    2987                 :             :  * a WindowClause with no PARTITION BY and no ORDER BY requires that all
    2988                 :             :  * subnode tuples are read and aggregated before the WindowAgg can output
    2989                 :             :  * anything.  If there's a PARTITION BY, then we only need to look at tuples
    2990                 :             :  * in the first partition.  Here we attempt to estimate just how many
    2991                 :             :  * 'input_tuples' the WindowAgg will need to read for the given WindowClause
    2992                 :             :  * before the first tuple can be output.
    2993                 :             :  */
    2994                 :             : static double
    2995                 :         492 : get_windowclause_startup_tuples(PlannerInfo *root, WindowClause *wc,
    2996                 :             :                                                                 double input_tuples)
    2997                 :             : {
    2998                 :         492 :         int                     frameOptions = wc->frameOptions;
    2999                 :         492 :         double          partition_tuples;
    3000                 :         492 :         double          return_tuples;
    3001                 :         492 :         double          peer_tuples;
    3002                 :             : 
    3003                 :             :         /*
    3004                 :             :          * First, figure out how many partitions there are likely to be and set
    3005                 :             :          * partition_tuples according to that estimate.
    3006                 :             :          */
    3007         [ +  + ]:         492 :         if (wc->partitionClause != NIL)
    3008                 :             :         {
    3009                 :         119 :                 double          num_partitions;
    3010                 :         238 :                 List       *partexprs = get_sortgrouplist_exprs(wc->partitionClause,
    3011                 :         119 :                                                                                                                 root->parse->targetList);
    3012                 :             : 
    3013                 :         119 :                 num_partitions = estimate_num_groups(root, partexprs, input_tuples,
    3014                 :             :                                                                                          NULL, NULL);
    3015                 :         119 :                 list_free(partexprs);
    3016                 :             : 
    3017                 :         119 :                 partition_tuples = input_tuples / num_partitions;
    3018                 :         119 :         }
    3019                 :             :         else
    3020                 :             :         {
    3021                 :             :                 /* all tuples belong to the same partition */
    3022                 :         373 :                 partition_tuples = input_tuples;
    3023                 :             :         }
    3024                 :             : 
    3025                 :             :         /* estimate the number of tuples in each peer group */
    3026         [ +  + ]:         492 :         if (wc->orderClause != NIL)
    3027                 :             :         {
    3028                 :         393 :                 double          num_groups;
    3029                 :         393 :                 List       *orderexprs;
    3030                 :             : 
    3031                 :         786 :                 orderexprs = get_sortgrouplist_exprs(wc->orderClause,
    3032                 :         393 :                                                                                          root->parse->targetList);
    3033                 :             : 
    3034                 :             :                 /* estimate out how many peer groups there are in the partition */
    3035                 :         786 :                 num_groups = estimate_num_groups(root, orderexprs,
    3036                 :         393 :                                                                                  partition_tuples, NULL,
    3037                 :             :                                                                                  NULL);
    3038                 :         393 :                 list_free(orderexprs);
    3039                 :         393 :                 peer_tuples = partition_tuples / num_groups;
    3040                 :         393 :         }
    3041                 :             :         else
    3042                 :             :         {
    3043                 :             :                 /* no ORDER BY so only 1 tuple belongs in each peer group */
    3044                 :          99 :                 peer_tuples = 1.0;
    3045                 :             :         }
    3046                 :             : 
    3047         [ +  + ]:         492 :         if (frameOptions & FRAMEOPTION_END_UNBOUNDED_FOLLOWING)
    3048                 :             :         {
    3049                 :             :                 /* include all partition rows */
    3050                 :          60 :                 return_tuples = partition_tuples;
    3051                 :          60 :         }
    3052         [ +  + ]:         432 :         else if (frameOptions & FRAMEOPTION_END_CURRENT_ROW)
    3053                 :             :         {
    3054         [ +  + ]:         259 :                 if (frameOptions & FRAMEOPTION_ROWS)
    3055                 :             :                 {
    3056                 :             :                         /* just count the current row */
    3057                 :         119 :                         return_tuples = 1.0;
    3058                 :         119 :                 }
    3059         [ +  - ]:         140 :                 else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
    3060                 :             :                 {
    3061                 :             :                         /*
    3062                 :             :                          * When in RANGE/GROUPS mode, it's more complex.  If there's no
    3063                 :             :                          * ORDER BY, then all rows in the partition are peers, otherwise
    3064                 :             :                          * we'll need to read the first group of peers.
    3065                 :             :                          */
    3066         [ +  + ]:         140 :                         if (wc->orderClause == NIL)
    3067                 :          53 :                                 return_tuples = partition_tuples;
    3068                 :             :                         else
    3069                 :          87 :                                 return_tuples = peer_tuples;
    3070                 :         140 :                 }
    3071                 :             :                 else
    3072                 :             :                 {
    3073                 :             :                         /*
    3074                 :             :                          * Something new we don't support yet?  This needs attention.
    3075                 :             :                          * We'll just return 1.0 in the meantime.
    3076                 :             :                          */
    3077                 :           0 :                         Assert(false);
    3078                 :           0 :                         return_tuples = 1.0;
    3079                 :             :                 }
    3080                 :         259 :         }
    3081         [ +  + ]:         173 :         else if (frameOptions & FRAMEOPTION_END_OFFSET_PRECEDING)
    3082                 :             :         {
    3083                 :             :                 /*
    3084                 :             :                  * BETWEEN ... AND N PRECEDING will only need to read the WindowAgg's
    3085                 :             :                  * subnode after N ROWS/RANGES/GROUPS.  N can be 0, but not negative,
    3086                 :             :                  * so we'll just assume only the current row needs to be read to fetch
    3087                 :             :                  * the first WindowAgg row.
    3088                 :             :                  */
    3089                 :          18 :                 return_tuples = 1.0;
    3090                 :          18 :         }
    3091         [ +  - ]:         155 :         else if (frameOptions & FRAMEOPTION_END_OFFSET_FOLLOWING)
    3092                 :             :         {
    3093                 :         155 :                 Const      *endOffset = (Const *) wc->endOffset;
    3094                 :         155 :                 double          end_offset_value;
    3095                 :             : 
    3096                 :             :                 /* try and figure out the value specified in the endOffset. */
    3097         [ +  - ]:         155 :                 if (IsA(endOffset, Const))
    3098                 :             :                 {
    3099         [ -  + ]:         155 :                         if (endOffset->constisnull)
    3100                 :             :                         {
    3101                 :             :                                 /*
    3102                 :             :                                  * NULLs are not allowed, but currently, there's no code to
    3103                 :             :                                  * error out if there's a NULL Const.  We'll only discover
    3104                 :             :                                  * this during execution.  For now, just pretend everything is
    3105                 :             :                                  * fine and assume that just the first row/range/group will be
    3106                 :             :                                  * needed.
    3107                 :             :                                  */
    3108                 :           0 :                                 end_offset_value = 1.0;
    3109                 :           0 :                         }
    3110                 :             :                         else
    3111                 :             :                         {
    3112   [ +  +  +  + ]:         155 :                                 switch (endOffset->consttype)
    3113                 :             :                                 {
    3114                 :             :                                         case INT2OID:
    3115                 :           4 :                                                 end_offset_value =
    3116                 :           4 :                                                         (double) DatumGetInt16(endOffset->constvalue);
    3117                 :           4 :                                                 break;
    3118                 :             :                                         case INT4OID:
    3119                 :          22 :                                                 end_offset_value =
    3120                 :          22 :                                                         (double) DatumGetInt32(endOffset->constvalue);
    3121                 :          22 :                                                 break;
    3122                 :             :                                         case INT8OID:
    3123                 :          72 :                                                 end_offset_value =
    3124                 :          72 :                                                         (double) DatumGetInt64(endOffset->constvalue);
    3125                 :          72 :                                                 break;
    3126                 :             :                                         default:
    3127                 :          57 :                                                 end_offset_value =
    3128                 :          57 :                                                         partition_tuples / peer_tuples *
    3129                 :             :                                                         DEFAULT_INEQ_SEL;
    3130                 :          57 :                                                 break;
    3131                 :             :                                 }
    3132                 :             :                         }
    3133                 :         155 :                 }
    3134                 :             :                 else
    3135                 :             :                 {
    3136                 :             :                         /*
    3137                 :             :                          * When the end bound is not a Const, we'll just need to guess. We
    3138                 :             :                          * just make use of DEFAULT_INEQ_SEL.
    3139                 :             :                          */
    3140                 :           0 :                         end_offset_value =
    3141                 :           0 :                                 partition_tuples / peer_tuples * DEFAULT_INEQ_SEL;
    3142                 :             :                 }
    3143                 :             : 
    3144         [ +  + ]:         155 :                 if (frameOptions & FRAMEOPTION_ROWS)
    3145                 :             :                 {
    3146                 :             :                         /* include the N FOLLOWING and the current row */
    3147                 :          45 :                         return_tuples = end_offset_value + 1.0;
    3148                 :          45 :                 }
    3149         [ +  - ]:         110 :                 else if (frameOptions & (FRAMEOPTION_RANGE | FRAMEOPTION_GROUPS))
    3150                 :             :                 {
    3151                 :             :                         /* include N FOLLOWING ranges/group and the initial range/group */
    3152                 :         110 :                         return_tuples = peer_tuples * (end_offset_value + 1.0);
    3153                 :         110 :                 }
    3154                 :             :                 else
    3155                 :             :                 {
    3156                 :             :                         /*
    3157                 :             :                          * Something new we don't support yet?  This needs attention.
    3158                 :             :                          * We'll just return 1.0 in the meantime.
    3159                 :             :                          */
    3160                 :           0 :                         Assert(false);
    3161                 :           0 :                         return_tuples = 1.0;
    3162                 :             :                 }
    3163                 :         155 :         }
    3164                 :             :         else
    3165                 :             :         {
    3166                 :             :                 /*
    3167                 :             :                  * Something new we don't support yet?  This needs attention.  We'll
    3168                 :             :                  * just return 1.0 in the meantime.
    3169                 :             :                  */
    3170                 :           0 :                 Assert(false);
    3171                 :           0 :                 return_tuples = 1.0;
    3172                 :             :         }
    3173                 :             : 
    3174   [ +  +  +  + ]:         492 :         if (wc->partitionClause != NIL || wc->orderClause != NIL)
    3175                 :             :         {
    3176                 :             :                 /*
    3177                 :             :                  * Cap the return value to the estimated partition tuples and account
    3178                 :             :                  * for the extra tuple WindowAgg will need to read to confirm the next
    3179                 :             :                  * tuple does not belong to the same partition or peer group.
    3180                 :             :                  */
    3181         [ +  + ]:         427 :                 return_tuples = Min(return_tuples + 1.0, partition_tuples);
    3182                 :         427 :         }
    3183                 :             :         else
    3184                 :             :         {
    3185                 :             :                 /*
    3186                 :             :                  * Cap the return value so it's never higher than the expected tuples
    3187                 :             :                  * in the partition.
    3188                 :             :                  */
    3189         [ +  + ]:          65 :                 return_tuples = Min(return_tuples, partition_tuples);
    3190                 :             :         }
    3191                 :             : 
    3192                 :             :         /*
    3193                 :             :          * We needn't worry about any EXCLUDE options as those only exclude rows
    3194                 :             :          * from being aggregated, not from being read from the WindowAgg's
    3195                 :             :          * subnode.
    3196                 :             :          */
    3197                 :             : 
    3198                 :         984 :         return clamp_row_est(return_tuples);
    3199                 :         492 : }
    3200                 :             : 
    3201                 :             : /*
    3202                 :             :  * cost_windowagg
    3203                 :             :  *              Determines and returns the cost of performing a WindowAgg plan node,
    3204                 :             :  *              including the cost of its input.
    3205                 :             :  *
    3206                 :             :  * Input is assumed already properly sorted.
    3207                 :             :  */
    3208                 :             : void
    3209                 :         492 : cost_windowagg(Path *path, PlannerInfo *root,
    3210                 :             :                            List *windowFuncs, WindowClause *winclause,
    3211                 :             :                            int input_disabled_nodes,
    3212                 :             :                            Cost input_startup_cost, Cost input_total_cost,
    3213                 :             :                            double input_tuples)
    3214                 :             : {
    3215                 :         492 :         Cost            startup_cost;
    3216                 :         492 :         Cost            total_cost;
    3217                 :         492 :         double          startup_tuples;
    3218                 :         492 :         int                     numPartCols;
    3219                 :         492 :         int                     numOrderCols;
    3220                 :         492 :         ListCell   *lc;
    3221                 :             : 
    3222                 :         492 :         numPartCols = list_length(winclause->partitionClause);
    3223                 :         492 :         numOrderCols = list_length(winclause->orderClause);
    3224                 :             : 
    3225                 :         492 :         startup_cost = input_startup_cost;
    3226                 :         492 :         total_cost = input_total_cost;
    3227                 :             : 
    3228                 :             :         /*
    3229                 :             :          * Window functions are assumed to cost their stated execution cost, plus
    3230                 :             :          * the cost of evaluating their input expressions, per tuple.  Since they
    3231                 :             :          * may in fact evaluate their inputs at multiple rows during each cycle,
    3232                 :             :          * this could be a drastic underestimate; but without a way to know how
    3233                 :             :          * many rows the window function will fetch, it's hard to do better.  In
    3234                 :             :          * any case, it's a good estimate for all the built-in window functions,
    3235                 :             :          * so we'll just do this for now.
    3236                 :             :          */
    3237   [ +  -  +  +  :        1131 :         foreach(lc, windowFuncs)
                   +  + ]
    3238                 :             :         {
    3239                 :         639 :                 WindowFunc *wfunc = lfirst_node(WindowFunc, lc);
    3240                 :         639 :                 Cost            wfunccost;
    3241                 :         639 :                 QualCost        argcosts;
    3242                 :             : 
    3243                 :         639 :                 argcosts.startup = argcosts.per_tuple = 0;
    3244                 :         639 :                 add_function_cost(root, wfunc->winfnoid, (Node *) wfunc,
    3245                 :             :                                                   &argcosts);
    3246                 :         639 :                 startup_cost += argcosts.startup;
    3247                 :         639 :                 wfunccost = argcosts.per_tuple;
    3248                 :             : 
    3249                 :             :                 /* also add the input expressions' cost to per-input-row costs */
    3250                 :         639 :                 cost_qual_eval_node(&argcosts, (Node *) wfunc->args, root);
    3251                 :         639 :                 startup_cost += argcosts.startup;
    3252                 :         639 :                 wfunccost += argcosts.per_tuple;
    3253                 :             : 
    3254                 :             :                 /*
    3255                 :             :                  * Add the filter's cost to per-input-row costs.  XXX We should reduce
    3256                 :             :                  * input expression costs according to filter selectivity.
    3257                 :             :                  */
    3258                 :         639 :                 cost_qual_eval_node(&argcosts, (Node *) wfunc->aggfilter, root);
    3259                 :         639 :                 startup_cost += argcosts.startup;
    3260                 :         639 :                 wfunccost += argcosts.per_tuple;
    3261                 :             : 
    3262                 :         639 :                 total_cost += wfunccost * input_tuples;
    3263                 :         639 :         }
    3264                 :             : 
    3265                 :             :         /*
    3266                 :             :          * We also charge cpu_operator_cost per grouping column per tuple for
    3267                 :             :          * grouping comparisons, plus cpu_tuple_cost per tuple for general
    3268                 :             :          * overhead.
    3269                 :             :          *
    3270                 :             :          * XXX this neglects costs of spooling the data to disk when it overflows
    3271                 :             :          * work_mem.  Sooner or later that should get accounted for.
    3272                 :             :          */
    3273                 :         492 :         total_cost += cpu_operator_cost * (numPartCols + numOrderCols) * input_tuples;
    3274                 :         492 :         total_cost += cpu_tuple_cost * input_tuples;
    3275                 :             : 
    3276                 :         492 :         path->rows = input_tuples;
    3277                 :         492 :         path->disabled_nodes = input_disabled_nodes;
    3278                 :         492 :         path->startup_cost = startup_cost;
    3279                 :         492 :         path->total_cost = total_cost;
    3280                 :             : 
    3281                 :             :         /*
    3282                 :             :          * Also, take into account how many tuples we need to read from the
    3283                 :             :          * subnode in order to produce the first tuple from the WindowAgg.  To do
    3284                 :             :          * this we proportion the run cost (total cost not including startup cost)
    3285                 :             :          * over the estimated startup tuples.  We already included the startup
    3286                 :             :          * cost of the subnode, so we only need to do this when the estimated
    3287                 :             :          * startup tuples is above 1.0.
    3288                 :             :          */
    3289                 :         984 :         startup_tuples = get_windowclause_startup_tuples(root, winclause,
    3290                 :         492 :                                                                                                          input_tuples);
    3291                 :             : 
    3292         [ +  + ]:         492 :         if (startup_tuples > 1.0)
    3293                 :         856 :                 path->startup_cost += (total_cost - startup_cost) / input_tuples *
    3294                 :         428 :                         (startup_tuples - 1.0);
    3295                 :         492 : }
    3296                 :             : 
    3297                 :             : /*
    3298                 :             :  * cost_group
    3299                 :             :  *              Determines and returns the cost of performing a Group plan node,
    3300                 :             :  *              including the cost of its input.
    3301                 :             :  *
    3302                 :             :  * Note: caller must ensure that input costs are for appropriately-sorted
    3303                 :             :  * input.
    3304                 :             :  */
    3305                 :             : void
    3306                 :         192 : cost_group(Path *path, PlannerInfo *root,
    3307                 :             :                    int numGroupCols, double numGroups,
    3308                 :             :                    List *quals,
    3309                 :             :                    int input_disabled_nodes,
    3310                 :             :                    Cost input_startup_cost, Cost input_total_cost,
    3311                 :             :                    double input_tuples)
    3312                 :             : {
    3313                 :         192 :         double          output_tuples;
    3314                 :         192 :         Cost            startup_cost;
    3315                 :         192 :         Cost            total_cost;
    3316                 :             : 
    3317                 :         192 :         output_tuples = numGroups;
    3318                 :         192 :         startup_cost = input_startup_cost;
    3319                 :         192 :         total_cost = input_total_cost;
    3320                 :             : 
    3321                 :             :         /*
    3322                 :             :          * Charge one cpu_operator_cost per comparison per input tuple. We assume
    3323                 :             :          * all columns get compared at most of the tuples.
    3324                 :             :          */
    3325                 :         192 :         total_cost += cpu_operator_cost * input_tuples * numGroupCols;
    3326                 :             : 
    3327                 :             :         /*
    3328                 :             :          * If there are quals (HAVING quals), account for their cost and
    3329                 :             :          * selectivity.
    3330                 :             :          */
    3331         [ +  - ]:         192 :         if (quals)
    3332                 :             :         {
    3333                 :           0 :                 QualCost        qual_cost;
    3334                 :             : 
    3335                 :           0 :                 cost_qual_eval(&qual_cost, quals, root);
    3336                 :           0 :                 startup_cost += qual_cost.startup;
    3337                 :           0 :                 total_cost += qual_cost.startup + output_tuples * qual_cost.per_tuple;
    3338                 :             : 
    3339                 :           0 :                 output_tuples = clamp_row_est(output_tuples *
    3340                 :           0 :                                                                           clauselist_selectivity(root,
    3341                 :           0 :                                                                                                                          quals,
    3342                 :             :                                                                                                                          0,
    3343                 :             :                                                                                                                          JOIN_INNER,
    3344                 :             :                                                                                                                          NULL));
    3345                 :           0 :         }
    3346                 :             : 
    3347                 :         192 :         path->rows = output_tuples;
    3348                 :         192 :         path->disabled_nodes = input_disabled_nodes;
    3349                 :         192 :         path->startup_cost = startup_cost;
    3350                 :         192 :         path->total_cost = total_cost;
    3351                 :         192 : }
    3352                 :             : 
    3353                 :             : /*
    3354                 :             :  * initial_cost_nestloop
    3355                 :             :  *        Preliminary estimate of the cost of a nestloop join path.
    3356                 :             :  *
    3357                 :             :  * This must quickly produce lower-bound estimates of the path's startup and
    3358                 :             :  * total costs.  If we are unable to eliminate the proposed path from
    3359                 :             :  * consideration using the lower bounds, final_cost_nestloop will be called
    3360                 :             :  * to obtain the final estimates.
    3361                 :             :  *
    3362                 :             :  * The exact division of labor between this function and final_cost_nestloop
    3363                 :             :  * is private to them, and represents a tradeoff between speed of the initial
    3364                 :             :  * estimate and getting a tight lower bound.  We choose to not examine the
    3365                 :             :  * join quals here, since that's by far the most expensive part of the
    3366                 :             :  * calculations.  The end result is that CPU-cost considerations must be
    3367                 :             :  * left for the second phase; and for SEMI/ANTI joins, we must also postpone
    3368                 :             :  * incorporation of the inner path's run cost.
    3369                 :             :  *
    3370                 :             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3371                 :             :  *              other data to be used by final_cost_nestloop
    3372                 :             :  * 'jointype' is the type of join to be performed
    3373                 :             :  * 'outer_path' is the outer input to the join
    3374                 :             :  * 'inner_path' is the inner input to the join
    3375                 :             :  * 'extra' contains miscellaneous information about the join
    3376                 :             :  */
    3377                 :             : void
    3378                 :      284672 : initial_cost_nestloop(PlannerInfo *root, JoinCostWorkspace *workspace,
    3379                 :             :                                           JoinType jointype, uint64 enable_mask,
    3380                 :             :                                           Path *outer_path, Path *inner_path,
    3381                 :             :                                           JoinPathExtraData *extra)
    3382                 :             : {
    3383                 :      284672 :         int                     disabled_nodes;
    3384                 :      284672 :         Cost            startup_cost = 0;
    3385                 :      284672 :         Cost            run_cost = 0;
    3386                 :      284672 :         double          outer_path_rows = outer_path->rows;
    3387                 :      284672 :         Cost            inner_rescan_start_cost;
    3388                 :      284672 :         Cost            inner_rescan_total_cost;
    3389                 :      284672 :         Cost            inner_run_cost;
    3390                 :      284672 :         Cost            inner_rescan_run_cost;
    3391                 :             : 
    3392                 :             :         /* Count up disabled nodes. */
    3393                 :      284672 :         disabled_nodes = (extra->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
    3394                 :      284672 :         disabled_nodes += inner_path->disabled_nodes;
    3395                 :      284672 :         disabled_nodes += outer_path->disabled_nodes;
    3396                 :             : 
    3397                 :             :         /* estimate costs to rescan the inner relation */
    3398                 :      284672 :         cost_rescan(root, inner_path,
    3399                 :             :                                 &inner_rescan_start_cost,
    3400                 :             :                                 &inner_rescan_total_cost);
    3401                 :             : 
    3402                 :             :         /* cost of source data */
    3403                 :             : 
    3404                 :             :         /*
    3405                 :             :          * NOTE: clearly, we must pay both outer and inner paths' startup_cost
    3406                 :             :          * before we can start returning tuples, so the join's startup cost is
    3407                 :             :          * their sum.  We'll also pay the inner path's rescan startup cost
    3408                 :             :          * multiple times.
    3409                 :             :          */
    3410                 :      284672 :         startup_cost += outer_path->startup_cost + inner_path->startup_cost;
    3411                 :      284672 :         run_cost += outer_path->total_cost - outer_path->startup_cost;
    3412         [ +  + ]:      284672 :         if (outer_path_rows > 1)
    3413                 :      190906 :                 run_cost += (outer_path_rows - 1) * inner_rescan_start_cost;
    3414                 :             : 
    3415                 :      284672 :         inner_run_cost = inner_path->total_cost - inner_path->startup_cost;
    3416                 :      284672 :         inner_rescan_run_cost = inner_rescan_total_cost - inner_rescan_start_cost;
    3417                 :             : 
    3418   [ +  +  +  +  :      284672 :         if (jointype == JOIN_SEMI || jointype == JOIN_ANTI ||
                   +  + ]
    3419                 :      277858 :                 extra->inner_unique)
    3420                 :             :         {
    3421                 :             :                 /*
    3422                 :             :                  * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3423                 :             :                  * executor will stop after the first match.
    3424                 :             :                  *
    3425                 :             :                  * Getting decent estimates requires inspection of the join quals,
    3426                 :             :                  * which we choose to postpone to final_cost_nestloop.
    3427                 :             :                  */
    3428                 :             : 
    3429                 :             :                 /* Save private data for final_cost_nestloop */
    3430                 :      101090 :                 workspace->inner_run_cost = inner_run_cost;
    3431                 :      101090 :                 workspace->inner_rescan_run_cost = inner_rescan_run_cost;
    3432                 :      101090 :         }
    3433                 :             :         else
    3434                 :             :         {
    3435                 :             :                 /* Normal case; we'll scan whole input rel for each outer row */
    3436                 :      183582 :                 run_cost += inner_run_cost;
    3437         [ +  + ]:      183582 :                 if (outer_path_rows > 1)
    3438                 :      139928 :                         run_cost += (outer_path_rows - 1) * inner_rescan_run_cost;
    3439                 :             :         }
    3440                 :             : 
    3441                 :             :         /* CPU costs left for later */
    3442                 :             : 
    3443                 :             :         /* Public result fields */
    3444                 :      284672 :         workspace->disabled_nodes = disabled_nodes;
    3445                 :      284672 :         workspace->startup_cost = startup_cost;
    3446                 :      284672 :         workspace->total_cost = startup_cost + run_cost;
    3447                 :             :         /* Save private data for final_cost_nestloop */
    3448                 :      284672 :         workspace->run_cost = run_cost;
    3449                 :      284672 : }
    3450                 :             : 
    3451                 :             : /*
    3452                 :             :  * final_cost_nestloop
    3453                 :             :  *        Final estimate of the cost and result size of a nestloop join path.
    3454                 :             :  *
    3455                 :             :  * 'path' is already filled in except for the rows and cost fields
    3456                 :             :  * 'workspace' is the result from initial_cost_nestloop
    3457                 :             :  * 'extra' contains miscellaneous information about the join
    3458                 :             :  */
    3459                 :             : void
    3460                 :      127517 : final_cost_nestloop(PlannerInfo *root, NestPath *path,
    3461                 :             :                                         JoinCostWorkspace *workspace,
    3462                 :             :                                         JoinPathExtraData *extra)
    3463                 :             : {
    3464                 :      127517 :         Path       *outer_path = path->jpath.outerjoinpath;
    3465                 :      127517 :         Path       *inner_path = path->jpath.innerjoinpath;
    3466                 :      127517 :         double          outer_path_rows = outer_path->rows;
    3467                 :      127517 :         double          inner_path_rows = inner_path->rows;
    3468                 :      127517 :         Cost            startup_cost = workspace->startup_cost;
    3469                 :      127517 :         Cost            run_cost = workspace->run_cost;
    3470                 :      127517 :         Cost            cpu_per_tuple;
    3471                 :      127517 :         QualCost        restrict_qual_cost;
    3472                 :      127517 :         double          ntuples;
    3473                 :             : 
    3474                 :             :         /* Set the number of disabled nodes. */
    3475                 :      127517 :         path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    3476                 :             : 
    3477                 :             :         /* Protect some assumptions below that rowcounts aren't zero */
    3478         [ +  - ]:      127517 :         if (outer_path_rows <= 0)
    3479                 :           0 :                 outer_path_rows = 1;
    3480         [ +  + ]:      127517 :         if (inner_path_rows <= 0)
    3481                 :         107 :                 inner_path_rows = 1;
    3482                 :             :         /* Mark the path with the correct row estimate */
    3483         [ +  + ]:      127517 :         if (path->jpath.path.param_info)
    3484                 :        1602 :                 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3485                 :             :         else
    3486                 :      125915 :                 path->jpath.path.rows = path->jpath.path.parent->rows;
    3487                 :             : 
    3488                 :             :         /* For partial paths, scale row estimate. */
    3489         [ +  + ]:      127517 :         if (path->jpath.path.parallel_workers > 0)
    3490                 :             :         {
    3491                 :        7335 :                 double          parallel_divisor = get_parallel_divisor(&path->jpath.path);
    3492                 :             : 
    3493                 :        7335 :                 path->jpath.path.rows =
    3494                 :        7335 :                         clamp_row_est(path->jpath.path.rows / parallel_divisor);
    3495                 :        7335 :         }
    3496                 :             : 
    3497                 :             :         /* cost of inner-relation source data (we already dealt with outer rel) */
    3498                 :             : 
    3499   [ +  +  +  +  :      127517 :         if (path->jpath.jointype == JOIN_SEMI || path->jpath.jointype == JOIN_ANTI ||
                   +  + ]
    3500                 :      122125 :                 extra->inner_unique)
    3501                 :             :         {
    3502                 :             :                 /*
    3503                 :             :                  * With a SEMI or ANTI join, or if the innerrel is known unique, the
    3504                 :             :                  * executor will stop after the first match.
    3505                 :             :                  */
    3506                 :       69247 :                 Cost            inner_run_cost = workspace->inner_run_cost;
    3507                 :       69247 :                 Cost            inner_rescan_run_cost = workspace->inner_rescan_run_cost;
    3508                 :       69247 :                 double          outer_matched_rows;
    3509                 :       69247 :                 double          outer_unmatched_rows;
    3510                 :       69247 :                 Selectivity inner_scan_frac;
    3511                 :             : 
    3512                 :             :                 /*
    3513                 :             :                  * For an outer-rel row that has at least one match, we can expect the
    3514                 :             :                  * inner scan to stop after a fraction 1/(match_count+1) of the inner
    3515                 :             :                  * rows, if the matches are evenly distributed.  Since they probably
    3516                 :             :                  * aren't quite evenly distributed, we apply a fuzz factor of 2.0 to
    3517                 :             :                  * that fraction.  (If we used a larger fuzz factor, we'd have to
    3518                 :             :                  * clamp inner_scan_frac to at most 1.0; but since match_count is at
    3519                 :             :                  * least 1, no such clamp is needed now.)
    3520                 :             :                  */
    3521                 :       69247 :                 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    3522                 :       69247 :                 outer_unmatched_rows = outer_path_rows - outer_matched_rows;
    3523                 :       69247 :                 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    3524                 :             : 
    3525                 :             :                 /*
    3526                 :             :                  * Compute number of tuples processed (not number emitted!).  First,
    3527                 :             :                  * account for successfully-matched outer rows.
    3528                 :             :                  */
    3529                 :       69247 :                 ntuples = outer_matched_rows * inner_path_rows * inner_scan_frac;
    3530                 :             : 
    3531                 :             :                 /*
    3532                 :             :                  * Now we need to estimate the actual costs of scanning the inner
    3533                 :             :                  * relation, which may be quite a bit less than N times inner_run_cost
    3534                 :             :                  * due to early scan stops.  We consider two cases.  If the inner path
    3535                 :             :                  * is an indexscan using all the joinquals as indexquals, then an
    3536                 :             :                  * unmatched outer row results in an indexscan returning no rows,
    3537                 :             :                  * which is probably quite cheap.  Otherwise, the executor will have
    3538                 :             :                  * to scan the whole inner rel for an unmatched row; not so cheap.
    3539                 :             :                  */
    3540         [ +  + ]:       69247 :                 if (has_indexed_join_quals(path))
    3541                 :             :                 {
    3542                 :             :                         /*
    3543                 :             :                          * Successfully-matched outer rows will only require scanning
    3544                 :             :                          * inner_scan_frac of the inner relation.  In this case, we don't
    3545                 :             :                          * need to charge the full inner_run_cost even when that's more
    3546                 :             :                          * than inner_rescan_run_cost, because we can assume that none of
    3547                 :             :                          * the inner scans ever scan the whole inner relation.  So it's
    3548                 :             :                          * okay to assume that all the inner scan executions can be
    3549                 :             :                          * fractions of the full cost, even if materialization is reducing
    3550                 :             :                          * the rescan cost.  At this writing, it's impossible to get here
    3551                 :             :                          * for a materialized inner scan, so inner_run_cost and
    3552                 :             :                          * inner_rescan_run_cost will be the same anyway; but just in
    3553                 :             :                          * case, use inner_run_cost for the first matched tuple and
    3554                 :             :                          * inner_rescan_run_cost for additional ones.
    3555                 :             :                          */
    3556                 :       12891 :                         run_cost += inner_run_cost * inner_scan_frac;
    3557         [ +  + ]:       12891 :                         if (outer_matched_rows > 1)
    3558                 :         784 :                                 run_cost += (outer_matched_rows - 1) * inner_rescan_run_cost * inner_scan_frac;
    3559                 :             : 
    3560                 :             :                         /*
    3561                 :             :                          * Add the cost of inner-scan executions for unmatched outer rows.
    3562                 :             :                          * We estimate this as the same cost as returning the first tuple
    3563                 :             :                          * of a nonempty scan.  We consider that these are all rescans,
    3564                 :             :                          * since we used inner_run_cost once already.
    3565                 :             :                          */
    3566                 :       38673 :                         run_cost += outer_unmatched_rows *
    3567                 :       25782 :                                 inner_rescan_run_cost / inner_path_rows;
    3568                 :             : 
    3569                 :             :                         /*
    3570                 :             :                          * We won't be evaluating any quals at all for unmatched rows, so
    3571                 :             :                          * don't add them to ntuples.
    3572                 :             :                          */
    3573                 :       12891 :                 }
    3574                 :             :                 else
    3575                 :             :                 {
    3576                 :             :                         /*
    3577                 :             :                          * Here, a complicating factor is that rescans may be cheaper than
    3578                 :             :                          * first scans.  If we never scan all the way to the end of the
    3579                 :             :                          * inner rel, it might be (depending on the plan type) that we'd
    3580                 :             :                          * never pay the whole inner first-scan run cost.  However it is
    3581                 :             :                          * difficult to estimate whether that will happen (and it could
    3582                 :             :                          * not happen if there are any unmatched outer rows!), so be
    3583                 :             :                          * conservative and always charge the whole first-scan cost once.
    3584                 :             :                          * We consider this charge to correspond to the first unmatched
    3585                 :             :                          * outer row, unless there isn't one in our estimate, in which
    3586                 :             :                          * case blame it on the first matched row.
    3587                 :             :                          */
    3588                 :             : 
    3589                 :             :                         /* First, count all unmatched join tuples as being processed */
    3590                 :       56356 :                         ntuples += outer_unmatched_rows * inner_path_rows;
    3591                 :             : 
    3592                 :             :                         /* Now add the forced full scan, and decrement appropriate count */
    3593                 :       56356 :                         run_cost += inner_run_cost;
    3594         [ +  + ]:       56356 :                         if (outer_unmatched_rows >= 1)
    3595                 :       50414 :                                 outer_unmatched_rows -= 1;
    3596                 :             :                         else
    3597                 :        5942 :                                 outer_matched_rows -= 1;
    3598                 :             : 
    3599                 :             :                         /* Add inner run cost for additional outer tuples having matches */
    3600         [ +  + ]:       56356 :                         if (outer_matched_rows > 0)
    3601                 :       14150 :                                 run_cost += outer_matched_rows * inner_rescan_run_cost * inner_scan_frac;
    3602                 :             : 
    3603                 :             :                         /* Add inner run cost for additional unmatched outer tuples */
    3604         [ +  + ]:       56356 :                         if (outer_unmatched_rows > 0)
    3605                 :       24804 :                                 run_cost += outer_unmatched_rows * inner_rescan_run_cost;
    3606                 :             :                 }
    3607                 :       69247 :         }
    3608                 :             :         else
    3609                 :             :         {
    3610                 :             :                 /* Normal-case source costs were included in preliminary estimate */
    3611                 :             : 
    3612                 :             :                 /* Compute number of tuples processed (not number emitted!) */
    3613                 :       58270 :                 ntuples = outer_path_rows * inner_path_rows;
    3614                 :             :         }
    3615                 :             : 
    3616                 :             :         /* CPU costs */
    3617                 :      127517 :         cost_qual_eval(&restrict_qual_cost, path->jpath.joinrestrictinfo, root);
    3618                 :      127517 :         startup_cost += restrict_qual_cost.startup;
    3619                 :      127517 :         cpu_per_tuple = cpu_tuple_cost + restrict_qual_cost.per_tuple;
    3620                 :      127517 :         run_cost += cpu_per_tuple * ntuples;
    3621                 :             : 
    3622                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    3623                 :      127517 :         startup_cost += path->jpath.path.pathtarget->cost.startup;
    3624                 :      127517 :         run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    3625                 :             : 
    3626                 :      127517 :         path->jpath.path.startup_cost = startup_cost;
    3627                 :      127517 :         path->jpath.path.total_cost = startup_cost + run_cost;
    3628                 :      127517 : }
    3629                 :             : 
    3630                 :             : /*
    3631                 :             :  * initial_cost_mergejoin
    3632                 :             :  *        Preliminary estimate of the cost of a mergejoin path.
    3633                 :             :  *
    3634                 :             :  * This must quickly produce lower-bound estimates of the path's startup and
    3635                 :             :  * total costs.  If we are unable to eliminate the proposed path from
    3636                 :             :  * consideration using the lower bounds, final_cost_mergejoin will be called
    3637                 :             :  * to obtain the final estimates.
    3638                 :             :  *
    3639                 :             :  * The exact division of labor between this function and final_cost_mergejoin
    3640                 :             :  * is private to them, and represents a tradeoff between speed of the initial
    3641                 :             :  * estimate and getting a tight lower bound.  We choose to not examine the
    3642                 :             :  * join quals here, except for obtaining the scan selectivity estimate which
    3643                 :             :  * is really essential (but fortunately, use of caching keeps the cost of
    3644                 :             :  * getting that down to something reasonable).
    3645                 :             :  * We also assume that cost_sort/cost_incremental_sort is cheap enough to use
    3646                 :             :  * here.
    3647                 :             :  *
    3648                 :             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    3649                 :             :  *              other data to be used by final_cost_mergejoin
    3650                 :             :  * 'jointype' is the type of join to be performed
    3651                 :             :  * 'mergeclauses' is the list of joinclauses to be used as merge clauses
    3652                 :             :  * 'outer_path' is the outer input to the join
    3653                 :             :  * 'inner_path' is the inner input to the join
    3654                 :             :  * 'outersortkeys' is the list of sort keys for the outer path
    3655                 :             :  * 'innersortkeys' is the list of sort keys for the inner path
    3656                 :             :  * 'outer_presorted_keys' is the number of presorted keys of the outer path
    3657                 :             :  * 'extra' contains miscellaneous information about the join
    3658                 :             :  *
    3659                 :             :  * Note: outersortkeys and innersortkeys should be NIL if no explicit
    3660                 :             :  * sort is needed because the respective source path is already ordered.
    3661                 :             :  */
    3662                 :             : void
    3663                 :      123669 : initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    3664                 :             :                                            JoinType jointype,
    3665                 :             :                                            List *mergeclauses,
    3666                 :             :                                            Path *outer_path, Path *inner_path,
    3667                 :             :                                            List *outersortkeys, List *innersortkeys,
    3668                 :             :                                            int outer_presorted_keys,
    3669                 :             :                                            JoinPathExtraData *extra)
    3670                 :             : {
    3671                 :      123669 :         int                     disabled_nodes;
    3672                 :      123669 :         Cost            startup_cost = 0;
    3673                 :      123669 :         Cost            run_cost = 0;
    3674                 :      123669 :         double          outer_path_rows = outer_path->rows;
    3675                 :      123669 :         double          inner_path_rows = inner_path->rows;
    3676                 :      123669 :         Cost            inner_run_cost;
    3677                 :      123669 :         double          outer_rows,
    3678                 :             :                                 inner_rows,
    3679                 :             :                                 outer_skip_rows,
    3680                 :             :                                 inner_skip_rows;
    3681                 :      123669 :         Selectivity outerstartsel,
    3682                 :             :                                 outerendsel,
    3683                 :             :                                 innerstartsel,
    3684                 :             :                                 innerendsel;
    3685                 :      123669 :         Path            sort_path;              /* dummy for result of
    3686                 :             :                                                                  * cost_sort/cost_incremental_sort */
    3687                 :             : 
    3688                 :             :         /* Protect some assumptions below that rowcounts aren't zero */
    3689         [ +  + ]:      123669 :         if (outer_path_rows <= 0)
    3690                 :          16 :                 outer_path_rows = 1;
    3691         [ +  + ]:      123669 :         if (inner_path_rows <= 0)
    3692                 :          21 :                 inner_path_rows = 1;
    3693                 :             : 
    3694                 :             :         /*
    3695                 :             :          * A merge join will stop as soon as it exhausts either input stream
    3696                 :             :          * (unless it's an outer join, in which case the outer side has to be
    3697                 :             :          * scanned all the way anyway).  Estimate fraction of the left and right
    3698                 :             :          * inputs that will actually need to be scanned.  Likewise, we can
    3699                 :             :          * estimate the number of rows that will be skipped before the first join
    3700                 :             :          * pair is found, which should be factored into startup cost. We use only
    3701                 :             :          * the first (most significant) merge clause for this purpose. Since
    3702                 :             :          * mergejoinscansel() is a fairly expensive computation, we cache the
    3703                 :             :          * results in the merge clause RestrictInfo.
    3704                 :             :          */
    3705   [ +  +  +  + ]:      123669 :         if (mergeclauses && jointype != JOIN_FULL)
    3706                 :             :         {
    3707                 :      122781 :                 RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
    3708                 :      122781 :                 List       *opathkeys;
    3709                 :      122781 :                 List       *ipathkeys;
    3710                 :      122781 :                 PathKey    *opathkey;
    3711                 :      122781 :                 PathKey    *ipathkey;
    3712                 :      122781 :                 MergeScanSelCache *cache;
    3713                 :             : 
    3714                 :             :                 /* Get the input pathkeys to determine the sort-order details */
    3715         [ +  + ]:      122781 :                 opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
    3716         [ +  + ]:      122781 :                 ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
    3717         [ +  - ]:      122781 :                 Assert(opathkeys);
    3718         [ +  - ]:      122781 :                 Assert(ipathkeys);
    3719                 :      122781 :                 opathkey = (PathKey *) linitial(opathkeys);
    3720                 :      122781 :                 ipathkey = (PathKey *) linitial(ipathkeys);
    3721                 :             :                 /* debugging check */
    3722         [ +  - ]:      122781 :                 if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
    3723                 :      122781 :                         opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
    3724                 :      122781 :                         opathkey->pk_cmptype != ipathkey->pk_cmptype ||
    3725                 :      122781 :                         opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
    3726   [ #  #  #  # ]:           0 :                         elog(ERROR, "left and right pathkeys do not match in mergejoin");
    3727                 :             : 
    3728                 :             :                 /* Get the selectivity with caching */
    3729                 :      122781 :                 cache = cached_scansel(root, firstclause, opathkey);
    3730                 :             : 
    3731   [ +  +  +  + ]:      245562 :                 if (bms_is_subset(firstclause->left_relids,
    3732                 :      122781 :                                                   outer_path->parent->relids))
    3733                 :             :                 {
    3734                 :             :                         /* left side of clause is outer */
    3735                 :       62798 :                         outerstartsel = cache->leftstartsel;
    3736                 :       62798 :                         outerendsel = cache->leftendsel;
    3737                 :       62798 :                         innerstartsel = cache->rightstartsel;
    3738                 :       62798 :                         innerendsel = cache->rightendsel;
    3739                 :       62798 :                 }
    3740                 :             :                 else
    3741                 :             :                 {
    3742                 :             :                         /* left side of clause is inner */
    3743                 :       59983 :                         outerstartsel = cache->rightstartsel;
    3744                 :       59983 :                         outerendsel = cache->rightendsel;
    3745                 :       59983 :                         innerstartsel = cache->leftstartsel;
    3746                 :       59983 :                         innerendsel = cache->leftendsel;
    3747                 :             :                 }
    3748   [ +  +  +  + ]:      122781 :                 if (jointype == JOIN_LEFT ||
    3749                 :      113505 :                         jointype == JOIN_ANTI)
    3750                 :             :                 {
    3751                 :       10297 :                         outerstartsel = 0.0;
    3752                 :       10297 :                         outerendsel = 1.0;
    3753                 :       10297 :                 }
    3754   [ +  +  +  + ]:      112484 :                 else if (jointype == JOIN_RIGHT ||
    3755                 :      102532 :                                  jointype == JOIN_RIGHT_ANTI)
    3756                 :             :                 {
    3757                 :       11081 :                         innerstartsel = 0.0;
    3758                 :       11081 :                         innerendsel = 1.0;
    3759                 :       11081 :                 }
    3760                 :      122781 :         }
    3761                 :             :         else
    3762                 :             :         {
    3763                 :             :                 /* cope with clauseless or full mergejoin */
    3764                 :         888 :                 outerstartsel = innerstartsel = 0.0;
    3765                 :         888 :                 outerendsel = innerendsel = 1.0;
    3766                 :             :         }
    3767                 :             : 
    3768                 :             :         /*
    3769                 :             :          * Convert selectivities to row counts.  We force outer_rows and
    3770                 :             :          * inner_rows to be at least 1, but the skip_rows estimates can be zero.
    3771                 :             :          */
    3772                 :      123669 :         outer_skip_rows = rint(outer_path_rows * outerstartsel);
    3773                 :      123669 :         inner_skip_rows = rint(inner_path_rows * innerstartsel);
    3774                 :      123669 :         outer_rows = clamp_row_est(outer_path_rows * outerendsel);
    3775                 :      123669 :         inner_rows = clamp_row_est(inner_path_rows * innerendsel);
    3776                 :             : 
    3777         [ +  - ]:      123669 :         Assert(outer_skip_rows <= outer_rows);
    3778         [ +  - ]:      123669 :         Assert(inner_skip_rows <= inner_rows);
    3779                 :             : 
    3780                 :             :         /*
    3781                 :             :          * Readjust scan selectivities to account for above rounding.  This is
    3782                 :             :          * normally an insignificant effect, but when there are only a few rows in
    3783                 :             :          * the inputs, failing to do this makes for a large percentage error.
    3784                 :             :          */
    3785                 :      123669 :         outerstartsel = outer_skip_rows / outer_path_rows;
    3786                 :      123669 :         innerstartsel = inner_skip_rows / inner_path_rows;
    3787                 :      123669 :         outerendsel = outer_rows / outer_path_rows;
    3788                 :      123669 :         innerendsel = inner_rows / inner_path_rows;
    3789                 :             : 
    3790         [ +  - ]:      123669 :         Assert(outerstartsel <= outerendsel);
    3791         [ +  - ]:      123669 :         Assert(innerstartsel <= innerendsel);
    3792                 :             : 
    3793                 :             :         /*
    3794                 :             :          * We don't decide whether to materialize the inner path until we get to
    3795                 :             :          * final_cost_mergejoin(), so we don't know whether to check the pgs_mask
    3796                 :             :          * again PGS_MERGEJOIN_PLAIN or PGS_MERGEJOIN_MATERIALIZE. Instead, we
    3797                 :             :          * just account for any child nodes here and assume that this node is not
    3798                 :             :          * itslef disabled; we can sort out the details in final_cost_mergejoin().
    3799                 :             :          *
    3800                 :             :          * (We could be more precise here by setting disabled_nodes to 1 at this
    3801                 :             :          * stage if both PGS_MERGEJOIN_PLAIN and PGS_MERGEJOIN_MATERIALIZE are
    3802                 :             :          * disabled, but that seems to against the idea of making this function
    3803                 :             :          * produce a quick, optimistic approximation of the final cost.)
    3804                 :             :          */
    3805                 :      123669 :         disabled_nodes = 0;
    3806                 :             : 
    3807                 :             :         /* cost of source data */
    3808                 :             : 
    3809         [ +  + ]:      123669 :         if (outersortkeys)                      /* do we need to sort outer? */
    3810                 :             :         {
    3811                 :             :                 /*
    3812                 :             :                  * We can assert that the outer path is not already ordered
    3813                 :             :                  * appropriately for the mergejoin; otherwise, outersortkeys would
    3814                 :             :                  * have been set to NIL.
    3815                 :             :                  */
    3816         [ +  - ]:       67994 :                 Assert(!pathkeys_contained_in(outersortkeys, outer_path->pathkeys));
    3817                 :             : 
    3818                 :             :                 /*
    3819                 :             :                  * We choose to use incremental sort if it is enabled and there are
    3820                 :             :                  * presorted keys; otherwise we use full sort.
    3821                 :             :                  */
    3822   [ +  +  +  + ]:       67994 :                 if (enable_incremental_sort && outer_presorted_keys > 0)
    3823                 :             :                 {
    3824                 :         203 :                         cost_incremental_sort(&sort_path,
    3825                 :         203 :                                                                   root,
    3826                 :         203 :                                                                   outersortkeys,
    3827                 :         203 :                                                                   outer_presorted_keys,
    3828                 :         203 :                                                                   outer_path->disabled_nodes,
    3829                 :         203 :                                                                   outer_path->startup_cost,
    3830                 :         203 :                                                                   outer_path->total_cost,
    3831                 :         203 :                                                                   outer_path_rows,
    3832                 :         203 :                                                                   outer_path->pathtarget->width,
    3833                 :             :                                                                   0.0,
    3834                 :         203 :                                                                   work_mem,
    3835                 :             :                                                                   -1.0);
    3836                 :         203 :                 }
    3837                 :             :                 else
    3838                 :             :                 {
    3839                 :       67791 :                         cost_sort(&sort_path,
    3840                 :       67791 :                                           root,
    3841                 :       67791 :                                           outersortkeys,
    3842                 :       67791 :                                           outer_path->disabled_nodes,
    3843                 :       67791 :                                           outer_path->total_cost,
    3844                 :       67791 :                                           outer_path_rows,
    3845                 :       67791 :                                           outer_path->pathtarget->width,
    3846                 :             :                                           0.0,
    3847                 :       67791 :                                           work_mem,
    3848                 :             :                                           -1.0);
    3849                 :             :                 }
    3850                 :             : 
    3851                 :       67994 :                 disabled_nodes += sort_path.disabled_nodes;
    3852                 :       67994 :                 startup_cost += sort_path.startup_cost;
    3853                 :      135988 :                 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3854                 :       67994 :                         * outerstartsel;
    3855                 :      135988 :                 run_cost += (sort_path.total_cost - sort_path.startup_cost)
    3856                 :       67994 :                         * (outerendsel - outerstartsel);
    3857                 :       67994 :         }
    3858                 :             :         else
    3859                 :             :         {
    3860                 :       55675 :                 disabled_nodes += outer_path->disabled_nodes;
    3861                 :       55675 :                 startup_cost += outer_path->startup_cost;
    3862                 :      111350 :                 startup_cost += (outer_path->total_cost - outer_path->startup_cost)
    3863                 :       55675 :                         * outerstartsel;
    3864                 :      111350 :                 run_cost += (outer_path->total_cost - outer_path->startup_cost)
    3865                 :       55675 :                         * (outerendsel - outerstartsel);
    3866                 :             :         }
    3867                 :             : 
    3868         [ +  + ]:      123669 :         if (innersortkeys)                      /* do we need to sort inner? */
    3869                 :             :         {
    3870                 :             :                 /*
    3871                 :             :                  * We can assert that the inner path is not already ordered
    3872                 :             :                  * appropriately for the mergejoin; otherwise, innersortkeys would
    3873                 :             :                  * have been set to NIL.
    3874                 :             :                  */
    3875         [ +  - ]:      102979 :                 Assert(!pathkeys_contained_in(innersortkeys, inner_path->pathkeys));
    3876                 :             : 
    3877                 :             :                 /*
    3878                 :             :                  * We do not consider incremental sort for inner path, because
    3879                 :             :                  * incremental sort does not support mark/restore.
    3880                 :             :                  */
    3881                 :             : 
    3882                 :      102979 :                 cost_sort(&sort_path,
    3883                 :      102979 :                                   root,
    3884                 :      102979 :                                   innersortkeys,
    3885                 :      102979 :                                   inner_path->disabled_nodes,
    3886                 :      102979 :                                   inner_path->total_cost,
    3887                 :      102979 :                                   inner_path_rows,
    3888                 :      102979 :                                   inner_path->pathtarget->width,
    3889                 :             :                                   0.0,
    3890                 :      102979 :                                   work_mem,
    3891                 :             :                                   -1.0);
    3892                 :      102979 :                 disabled_nodes += sort_path.disabled_nodes;
    3893                 :      102979 :                 startup_cost += sort_path.startup_cost;
    3894                 :      205958 :                 startup_cost += (sort_path.total_cost - sort_path.startup_cost)
    3895                 :      102979 :                         * innerstartsel;
    3896                 :      205958 :                 inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
    3897                 :      102979 :                         * (innerendsel - innerstartsel);
    3898                 :      102979 :         }
    3899                 :             :         else
    3900                 :             :         {
    3901                 :       20690 :                 disabled_nodes += inner_path->disabled_nodes;
    3902                 :       20690 :                 startup_cost += inner_path->startup_cost;
    3903                 :       41380 :                 startup_cost += (inner_path->total_cost - inner_path->startup_cost)
    3904                 :       20690 :                         * innerstartsel;
    3905                 :       41380 :                 inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
    3906                 :       20690 :                         * (innerendsel - innerstartsel);
    3907                 :             :         }
    3908                 :             : 
    3909                 :             :         /*
    3910                 :             :          * We can't yet determine whether rescanning occurs, or whether
    3911                 :             :          * materialization of the inner input should be done.  The minimum
    3912                 :             :          * possible inner input cost, regardless of rescan and materialization
    3913                 :             :          * considerations, is inner_run_cost.  We include that in
    3914                 :             :          * workspace->total_cost, but not yet in run_cost.
    3915                 :             :          */
    3916                 :             : 
    3917                 :             :         /* CPU costs left for later */
    3918                 :             : 
    3919                 :             :         /* Public result fields */
    3920                 :      123669 :         workspace->disabled_nodes = disabled_nodes;
    3921                 :      123669 :         workspace->startup_cost = startup_cost;
    3922                 :      123669 :         workspace->total_cost = startup_cost + run_cost + inner_run_cost;
    3923                 :             :         /* Save private data for final_cost_mergejoin */
    3924                 :      123669 :         workspace->run_cost = run_cost;
    3925                 :      123669 :         workspace->inner_run_cost = inner_run_cost;
    3926                 :      123669 :         workspace->outer_rows = outer_rows;
    3927                 :      123669 :         workspace->inner_rows = inner_rows;
    3928                 :      123669 :         workspace->outer_skip_rows = outer_skip_rows;
    3929                 :      123669 :         workspace->inner_skip_rows = inner_skip_rows;
    3930                 :      123669 : }
    3931                 :             : 
    3932                 :             : /*
    3933                 :             :  * final_cost_mergejoin
    3934                 :             :  *        Final estimate of the cost and result size of a mergejoin path.
    3935                 :             :  *
    3936                 :             :  * Unlike other costsize functions, this routine makes two actual decisions:
    3937                 :             :  * whether the executor will need to do mark/restore, and whether we should
    3938                 :             :  * materialize the inner path.  It would be logically cleaner to build
    3939                 :             :  * separate paths testing these alternatives, but that would require repeating
    3940                 :             :  * most of the cost calculations, which are not all that cheap.  Since the
    3941                 :             :  * choice will not affect output pathkeys or startup cost, only total cost,
    3942                 :             :  * there is no possibility of wanting to keep more than one path.  So it seems
    3943                 :             :  * best to make the decisions here and record them in the path's
    3944                 :             :  * skip_mark_restore and materialize_inner fields.
    3945                 :             :  *
    3946                 :             :  * Mark/restore overhead is usually required, but can be skipped if we know
    3947                 :             :  * that the executor need find only one match per outer tuple, and that the
    3948                 :             :  * mergeclauses are sufficient to identify a match.
    3949                 :             :  *
    3950                 :             :  * We materialize the inner path if we need mark/restore and either the inner
    3951                 :             :  * path can't support mark/restore, or it's cheaper to use an interposed
    3952                 :             :  * Material node to handle mark/restore.
    3953                 :             :  *
    3954                 :             :  * 'path' is already filled in except for the rows and cost fields and
    3955                 :             :  *              skip_mark_restore and materialize_inner
    3956                 :             :  * 'workspace' is the result from initial_cost_mergejoin
    3957                 :             :  * 'extra' contains miscellaneous information about the join
    3958                 :             :  */
    3959                 :             : void
    3960                 :       48719 : final_cost_mergejoin(PlannerInfo *root, MergePath *path,
    3961                 :             :                                          JoinCostWorkspace *workspace,
    3962                 :             :                                          JoinPathExtraData *extra)
    3963                 :             : {
    3964                 :       48719 :         Path       *outer_path = path->jpath.outerjoinpath;
    3965                 :       48719 :         Path       *inner_path = path->jpath.innerjoinpath;
    3966                 :       48719 :         double          inner_path_rows = inner_path->rows;
    3967                 :       48719 :         List       *mergeclauses = path->path_mergeclauses;
    3968                 :       48719 :         List       *innersortkeys = path->innersortkeys;
    3969                 :       48719 :         Cost            startup_cost = workspace->startup_cost;
    3970                 :       48719 :         Cost            run_cost = workspace->run_cost;
    3971                 :       48719 :         Cost            inner_run_cost = workspace->inner_run_cost;
    3972                 :       48719 :         double          outer_rows = workspace->outer_rows;
    3973                 :       48719 :         double          inner_rows = workspace->inner_rows;
    3974                 :       48719 :         double          outer_skip_rows = workspace->outer_skip_rows;
    3975                 :       48719 :         double          inner_skip_rows = workspace->inner_skip_rows;
    3976                 :       48719 :         Cost            cpu_per_tuple,
    3977                 :             :                                 bare_inner_cost,
    3978                 :             :                                 mat_inner_cost;
    3979                 :       48719 :         QualCost        merge_qual_cost;
    3980                 :       48719 :         QualCost        qp_qual_cost;
    3981                 :       48719 :         double          mergejointuples,
    3982                 :             :                                 rescannedtuples;
    3983                 :       48719 :         double          rescanratio;
    3984                 :       48719 :         uint64          enable_mask = 0;
    3985                 :             : 
    3986                 :             :         /* Protect some assumptions below that rowcounts aren't zero */
    3987         [ +  + ]:       48719 :         if (inner_path_rows <= 0)
    3988                 :          15 :                 inner_path_rows = 1;
    3989                 :             : 
    3990                 :             :         /* Mark the path with the correct row estimate */
    3991         [ +  + ]:       48719 :         if (path->jpath.path.param_info)
    3992                 :          98 :                 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    3993                 :             :         else
    3994                 :       48621 :                 path->jpath.path.rows = path->jpath.path.parent->rows;
    3995                 :             : 
    3996                 :             :         /* For partial paths, scale row estimate. */
    3997         [ +  + ]:       48719 :         if (path->jpath.path.parallel_workers > 0)
    3998                 :             :         {
    3999                 :       10960 :                 double          parallel_divisor = get_parallel_divisor(&path->jpath.path);
    4000                 :             : 
    4001                 :       10960 :                 path->jpath.path.rows =
    4002                 :       10960 :                         clamp_row_est(path->jpath.path.rows / parallel_divisor);
    4003                 :       10960 :         }
    4004                 :             : 
    4005                 :             :         /*
    4006                 :             :          * Compute cost of the mergequals and qpquals (other restriction clauses)
    4007                 :             :          * separately.
    4008                 :             :          */
    4009                 :       48719 :         cost_qual_eval(&merge_qual_cost, mergeclauses, root);
    4010                 :       48719 :         cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    4011                 :       48719 :         qp_qual_cost.startup -= merge_qual_cost.startup;
    4012                 :       48719 :         qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
    4013                 :             : 
    4014                 :             :         /*
    4015                 :             :          * With a SEMI or ANTI join, or if the innerrel is known unique, the
    4016                 :             :          * executor will stop scanning for matches after the first match.  When
    4017                 :             :          * all the joinclauses are merge clauses, this means we don't ever need to
    4018                 :             :          * back up the merge, and so we can skip mark/restore overhead.
    4019                 :             :          */
    4020         [ +  + ]:       48719 :         if ((path->jpath.jointype == JOIN_SEMI ||
    4021         [ +  + ]:       47777 :                  path->jpath.jointype == JOIN_ANTI ||
    4022         [ +  + ]:       48719 :                  extra->inner_unique) &&
    4023                 :       97438 :                 (list_length(path->jpath.joinrestrictinfo) ==
    4024                 :       48719 :                  list_length(path->path_mergeclauses)))
    4025                 :       11644 :                 path->skip_mark_restore = true;
    4026                 :             :         else
    4027                 :       37075 :                 path->skip_mark_restore = false;
    4028                 :             : 
    4029                 :             :         /*
    4030                 :             :          * Get approx # tuples passing the mergequals.  We use approx_tuple_count
    4031                 :             :          * here because we need an estimate done with JOIN_INNER semantics.
    4032                 :             :          */
    4033                 :       48719 :         mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
    4034                 :             : 
    4035                 :             :         /*
    4036                 :             :          * When there are equal merge keys in the outer relation, the mergejoin
    4037                 :             :          * must rescan any matching tuples in the inner relation. This means
    4038                 :             :          * re-fetching inner tuples; we have to estimate how often that happens.
    4039                 :             :          *
    4040                 :             :          * For regular inner and outer joins, the number of re-fetches can be
    4041                 :             :          * estimated approximately as size of merge join output minus size of
    4042                 :             :          * inner relation. Assume that the distinct key values are 1, 2, ..., and
    4043                 :             :          * denote the number of values of each key in the outer relation as m1,
    4044                 :             :          * m2, ...; in the inner relation, n1, n2, ...  Then we have
    4045                 :             :          *
    4046                 :             :          * size of join = m1 * n1 + m2 * n2 + ...
    4047                 :             :          *
    4048                 :             :          * number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
    4049                 :             :          * n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
    4050                 :             :          * relation
    4051                 :             :          *
    4052                 :             :          * This equation works correctly for outer tuples having no inner match
    4053                 :             :          * (nk = 0), but not for inner tuples having no outer match (mk = 0); we
    4054                 :             :          * are effectively subtracting those from the number of rescanned tuples,
    4055                 :             :          * when we should not.  Can we do better without expensive selectivity
    4056                 :             :          * computations?
    4057                 :             :          *
    4058                 :             :          * The whole issue is moot if we know we don't need to mark/restore at
    4059                 :             :          * all, or if we are working from a unique-ified outer input.
    4060                 :             :          */
    4061   [ +  +  +  + ]:       49686 :         if (path->skip_mark_restore ||
    4062   [ +  +  +  + ]:       37075 :                 RELATION_WAS_MADE_UNIQUE(outer_path->parent, extra->sjinfo,
    4063                 :             :                                                                  path->jpath.jointype))
    4064                 :       12541 :                 rescannedtuples = 0;
    4065                 :             :         else
    4066                 :             :         {
    4067                 :       36178 :                 rescannedtuples = mergejointuples - inner_path_rows;
    4068                 :             :                 /* Must clamp because of possible underestimate */
    4069         [ +  + ]:       36178 :                 if (rescannedtuples < 0)
    4070                 :        5007 :                         rescannedtuples = 0;
    4071                 :             :         }
    4072                 :             : 
    4073                 :             :         /*
    4074                 :             :          * We'll inflate various costs this much to account for rescanning.  Note
    4075                 :             :          * that this is to be multiplied by something involving inner_rows, or
    4076                 :             :          * another number related to the portion of the inner rel we'll scan.
    4077                 :             :          */
    4078                 :       48719 :         rescanratio = 1.0 + (rescannedtuples / inner_rows);
    4079                 :             : 
    4080                 :             :         /*
    4081                 :             :          * Decide whether we want to materialize the inner input to shield it from
    4082                 :             :          * mark/restore and performing re-fetches.  Our cost model for regular
    4083                 :             :          * re-fetches is that a re-fetch costs the same as an original fetch,
    4084                 :             :          * which is probably an overestimate; but on the other hand we ignore the
    4085                 :             :          * bookkeeping costs of mark/restore.  Not clear if it's worth developing
    4086                 :             :          * a more refined model.  So we just need to inflate the inner run cost by
    4087                 :             :          * rescanratio.
    4088                 :             :          */
    4089                 :       48719 :         bare_inner_cost = inner_run_cost * rescanratio;
    4090                 :             : 
    4091                 :             :         /*
    4092                 :             :          * When we interpose a Material node the re-fetch cost is assumed to be
    4093                 :             :          * just cpu_operator_cost per tuple, independently of the underlying
    4094                 :             :          * plan's cost; and we charge an extra cpu_operator_cost per original
    4095                 :             :          * fetch as well.  Note that we're assuming the materialize node will
    4096                 :             :          * never spill to disk, since it only has to remember tuples back to the
    4097                 :             :          * last mark.  (If there are a huge number of duplicates, our other cost
    4098                 :             :          * factors will make the path so expensive that it probably won't get
    4099                 :             :          * chosen anyway.)      So we don't use cost_rescan here.
    4100                 :             :          *
    4101                 :             :          * Note: keep this estimate in sync with create_mergejoin_plan's labeling
    4102                 :             :          * of the generated Material node.
    4103                 :             :          */
    4104                 :       97438 :         mat_inner_cost = inner_run_cost +
    4105                 :       48719 :                 cpu_operator_cost * inner_rows * rescanratio;
    4106                 :             : 
    4107                 :             :         /*
    4108                 :             :          * If we don't need mark/restore at all, we don't need materialization.
    4109                 :             :          */
    4110         [ +  + ]:       48719 :         if (path->skip_mark_restore)
    4111                 :       11644 :                 path->materialize_inner = false;
    4112                 :             : 
    4113                 :             :         /*
    4114                 :             :          * If merge joins with materialization are enabled, then choose
    4115                 :             :          * materialization if either (a) it looks cheaper or (b) merge joins
    4116                 :             :          * without materialization are disabled.
    4117                 :             :          */
    4118   [ +  +  +  + ]:       73781 :         else if ((extra->pgs_mask & PGS_MERGEJOIN_MATERIALIZE) != 0 &&
    4119         [ +  + ]:       37058 :                          (mat_inner_cost < bare_inner_cost ||
    4120                 :       36706 :                           (extra->pgs_mask & PGS_MERGEJOIN_PLAIN) == 0))
    4121                 :         355 :                 path->materialize_inner = true;
    4122                 :             : 
    4123                 :             :         /*
    4124                 :             :          * Regardless of what plan shapes are enabled and what the costs seem to
    4125                 :             :          * be, we *must* materialize it if the inner path is to be used directly
    4126                 :             :          * (without sorting) and it doesn't support mark/restore. Planner failure
    4127                 :             :          * is not an option!
    4128                 :             :          *
    4129                 :             :          * Since the inner side must be ordered, and only Sorts and IndexScans can
    4130                 :             :          * create order to begin with, and they both support mark/restore, you
    4131                 :             :          * might think there's no problem --- but you'd be wrong.  Nestloop and
    4132                 :             :          * merge joins can *preserve* the order of their inputs, so they can be
    4133                 :             :          * selected as the input of a mergejoin, and they don't support
    4134                 :             :          * mark/restore at present.
    4135                 :             :          */
    4136   [ +  +  +  + ]:       36720 :         else if (innersortkeys == NIL &&
    4137                 :         339 :                          !ExecSupportsMarkRestore(inner_path))
    4138                 :         179 :                 path->materialize_inner = true;
    4139                 :             : 
    4140                 :             :         /*
    4141                 :             :          * Also, force materializing if the inner path is to be sorted and the
    4142                 :             :          * sort is expected to spill to disk.  This is because the final merge
    4143                 :             :          * pass can be done on-the-fly if it doesn't have to support mark/restore.
    4144                 :             :          * We don't try to adjust the cost estimates for this consideration,
    4145                 :             :          * though.
    4146                 :             :          *
    4147                 :             :          * Since materialization is a performance optimization in this case,
    4148                 :             :          * rather than necessary for correctness, we skip it if materialization is
    4149                 :             :          * switched off.
    4150                 :             :          */
    4151         [ +  + ]:       36541 :         else if ((extra->pgs_mask & PGS_MERGEJOIN_MATERIALIZE) != 0 &&
    4152   [ +  +  +  + ]:       36524 :                          innersortkeys != NIL &&
    4153                 :       72730 :                          relation_byte_size(inner_path_rows,
    4154                 :       72730 :                                                                 inner_path->pathtarget->width) >
    4155                 :       36365 :                          work_mem * (Size) 1024)
    4156                 :          22 :                 path->materialize_inner = true;
    4157                 :             :         else
    4158                 :       36519 :                 path->materialize_inner = false;
    4159                 :             : 
    4160                 :             :         /* Get the number of disabled nodes, not yet including this one. */
    4161                 :       48719 :         path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    4162                 :             : 
    4163                 :             :         /*
    4164                 :             :          * Charge the right incremental cost for the chosen case, and update
    4165                 :             :          * enable_mask as appropriate.
    4166                 :             :          */
    4167         [ +  + ]:       48719 :         if (path->materialize_inner)
    4168                 :             :         {
    4169                 :         556 :                 run_cost += mat_inner_cost;
    4170                 :         556 :                 enable_mask |= PGS_MERGEJOIN_MATERIALIZE;
    4171                 :         556 :         }
    4172                 :             :         else
    4173                 :             :         {
    4174                 :       48163 :                 run_cost += bare_inner_cost;
    4175                 :       48163 :                 enable_mask |= PGS_MERGEJOIN_PLAIN;
    4176                 :             :         }
    4177                 :             : 
    4178                 :             :         /* Incremental count of disabled nodes if this node is disabled. */
    4179         [ +  + ]:       48719 :         if (path->jpath.path.parallel_workers == 0)
    4180                 :       37759 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    4181         [ +  + ]:       48719 :         if ((extra->pgs_mask & enable_mask) != enable_mask)
    4182                 :          27 :                 ++path->jpath.path.disabled_nodes;
    4183                 :             : 
    4184                 :             :         /* CPU costs */
    4185                 :             : 
    4186                 :             :         /*
    4187                 :             :          * The number of tuple comparisons needed is approximately number of outer
    4188                 :             :          * rows plus number of inner rows plus number of rescanned tuples (can we
    4189                 :             :          * refine this?).  At each one, we need to evaluate the mergejoin quals.
    4190                 :             :          */
    4191                 :       48719 :         startup_cost += merge_qual_cost.startup;
    4192                 :       97438 :         startup_cost += merge_qual_cost.per_tuple *
    4193                 :       48719 :                 (outer_skip_rows + inner_skip_rows * rescanratio);
    4194                 :       97438 :         run_cost += merge_qual_cost.per_tuple *
    4195                 :       97438 :                 ((outer_rows - outer_skip_rows) +
    4196                 :       48719 :                  (inner_rows - inner_skip_rows) * rescanratio);
    4197                 :             : 
    4198                 :             :         /*
    4199                 :             :          * For each tuple that gets through the mergejoin proper, we charge
    4200                 :             :          * cpu_tuple_cost plus the cost of evaluating additional restriction
    4201                 :             :          * clauses that are to be applied at the join.  (This is pessimistic since
    4202                 :             :          * not all of the quals may get evaluated at each tuple.)
    4203                 :             :          *
    4204                 :             :          * Note: we could adjust for SEMI/ANTI joins skipping some qual
    4205                 :             :          * evaluations here, but it's probably not worth the trouble.
    4206                 :             :          */
    4207                 :       48719 :         startup_cost += qp_qual_cost.startup;
    4208                 :       48719 :         cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    4209                 :       48719 :         run_cost += cpu_per_tuple * mergejointuples;
    4210                 :             : 
    4211                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    4212                 :       48719 :         startup_cost += path->jpath.path.pathtarget->cost.startup;
    4213                 :       48719 :         run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    4214                 :             : 
    4215                 :       48719 :         path->jpath.path.startup_cost = startup_cost;
    4216                 :       48719 :         path->jpath.path.total_cost = startup_cost + run_cost;
    4217                 :       48719 : }
    4218                 :             : 
    4219                 :             : /*
    4220                 :             :  * run mergejoinscansel() with caching
    4221                 :             :  */
    4222                 :             : static MergeScanSelCache *
    4223                 :      122781 : cached_scansel(PlannerInfo *root, RestrictInfo *rinfo, PathKey *pathkey)
    4224                 :             : {
    4225                 :      122781 :         MergeScanSelCache *cache;
    4226                 :      122781 :         ListCell   *lc;
    4227                 :      122781 :         Selectivity leftstartsel,
    4228                 :             :                                 leftendsel,
    4229                 :             :                                 rightstartsel,
    4230                 :             :                                 rightendsel;
    4231                 :      122781 :         MemoryContext oldcontext;
    4232                 :             : 
    4233                 :             :         /* Do we have this result already? */
    4234   [ +  +  +  +  :      231763 :         foreach(lc, rinfo->scansel_cache)
             +  +  +  + ]
    4235                 :             :         {
    4236                 :      108982 :                 cache = (MergeScanSelCache *) lfirst(lc);
    4237         [ +  - ]:      108982 :                 if (cache->opfamily == pathkey->pk_opfamily &&
    4238         [ +  - ]:      108982 :                         cache->collation == pathkey->pk_eclass->ec_collation &&
    4239   [ +  +  -  + ]:      108982 :                         cache->cmptype == pathkey->pk_cmptype &&
    4240                 :      108981 :                         cache->nulls_first == pathkey->pk_nulls_first)
    4241                 :      108981 :                         return cache;
    4242                 :           1 :         }
    4243                 :             : 
    4244                 :             :         /* Nope, do the computation */
    4245                 :       27600 :         mergejoinscansel(root,
    4246                 :       13800 :                                          (Node *) rinfo->clause,
    4247                 :       13800 :                                          pathkey->pk_opfamily,
    4248                 :       13800 :                                          pathkey->pk_cmptype,
    4249                 :       13800 :                                          pathkey->pk_nulls_first,
    4250                 :             :                                          &leftstartsel,
    4251                 :             :                                          &leftendsel,
    4252                 :             :                                          &rightstartsel,
    4253                 :             :                                          &rightendsel);
    4254                 :             : 
    4255                 :             :         /* Cache the result in suitably long-lived workspace */
    4256                 :       13800 :         oldcontext = MemoryContextSwitchTo(root->planner_cxt);
    4257                 :             : 
    4258                 :       13800 :         cache = palloc_object(MergeScanSelCache);
    4259                 :       13800 :         cache->opfamily = pathkey->pk_opfamily;
    4260                 :       13800 :         cache->collation = pathkey->pk_eclass->ec_collation;
    4261                 :       13800 :         cache->cmptype = pathkey->pk_cmptype;
    4262                 :       13800 :         cache->nulls_first = pathkey->pk_nulls_first;
    4263                 :       13800 :         cache->leftstartsel = leftstartsel;
    4264                 :       13800 :         cache->leftendsel = leftendsel;
    4265                 :       13800 :         cache->rightstartsel = rightstartsel;
    4266                 :       13800 :         cache->rightendsel = rightendsel;
    4267                 :             : 
    4268                 :       13800 :         rinfo->scansel_cache = lappend(rinfo->scansel_cache, cache);
    4269                 :             : 
    4270                 :       13800 :         MemoryContextSwitchTo(oldcontext);
    4271                 :             : 
    4272                 :       13800 :         return cache;
    4273                 :      122781 : }
    4274                 :             : 
    4275                 :             : /*
    4276                 :             :  * initial_cost_hashjoin
    4277                 :             :  *        Preliminary estimate of the cost of a hashjoin path.
    4278                 :             :  *
    4279                 :             :  * This must quickly produce lower-bound estimates of the path's startup and
    4280                 :             :  * total costs.  If we are unable to eliminate the proposed path from
    4281                 :             :  * consideration using the lower bounds, final_cost_hashjoin will be called
    4282                 :             :  * to obtain the final estimates.
    4283                 :             :  *
    4284                 :             :  * The exact division of labor between this function and final_cost_hashjoin
    4285                 :             :  * is private to them, and represents a tradeoff between speed of the initial
    4286                 :             :  * estimate and getting a tight lower bound.  We choose to not examine the
    4287                 :             :  * join quals here (other than by counting the number of hash clauses),
    4288                 :             :  * so we can't do much with CPU costs.  We do assume that
    4289                 :             :  * ExecChooseHashTableSize is cheap enough to use here.
    4290                 :             :  *
    4291                 :             :  * 'workspace' is to be filled with startup_cost, total_cost, and perhaps
    4292                 :             :  *              other data to be used by final_cost_hashjoin
    4293                 :             :  * 'jointype' is the type of join to be performed
    4294                 :             :  * 'hashclauses' is the list of joinclauses to be used as hash clauses
    4295                 :             :  * 'outer_path' is the outer input to the join
    4296                 :             :  * 'inner_path' is the inner input to the join
    4297                 :             :  * 'extra' contains miscellaneous information about the join
    4298                 :             :  * 'parallel_hash' indicates that inner_path is partial and that a shared
    4299                 :             :  *              hash table will be built in parallel
    4300                 :             :  */
    4301                 :             : void
    4302                 :       82310 : initial_cost_hashjoin(PlannerInfo *root, JoinCostWorkspace *workspace,
    4303                 :             :                                           JoinType jointype,
    4304                 :             :                                           List *hashclauses,
    4305                 :             :                                           Path *outer_path, Path *inner_path,
    4306                 :             :                                           JoinPathExtraData *extra,
    4307                 :             :                                           bool parallel_hash)
    4308                 :             : {
    4309                 :       82310 :         int                     disabled_nodes;
    4310                 :       82310 :         Cost            startup_cost = 0;
    4311                 :       82310 :         Cost            run_cost = 0;
    4312                 :       82310 :         double          outer_path_rows = outer_path->rows;
    4313                 :       82310 :         double          inner_path_rows = inner_path->rows;
    4314                 :       82310 :         double          inner_path_rows_total = inner_path_rows;
    4315                 :       82310 :         int                     num_hashclauses = list_length(hashclauses);
    4316                 :       82310 :         int                     numbuckets;
    4317                 :       82310 :         int                     numbatches;
    4318                 :       82310 :         int                     num_skew_mcvs;
    4319                 :       82310 :         size_t          space_allowed;  /* unused */
    4320                 :       82310 :         uint64          enable_mask = PGS_HASHJOIN;
    4321                 :             : 
    4322         [ +  + ]:       82310 :         if (outer_path->parallel_workers == 0)
    4323                 :       57664 :                 enable_mask |= PGS_CONSIDER_NONPARTIAL;
    4324                 :             : 
    4325                 :             :         /* Count up disabled nodes. */
    4326                 :       82310 :         disabled_nodes = (extra->pgs_mask & enable_mask) == enable_mask ? 0 : 1;
    4327                 :       82310 :         disabled_nodes += inner_path->disabled_nodes;
    4328                 :       82310 :         disabled_nodes += outer_path->disabled_nodes;
    4329                 :             : 
    4330                 :             :         /* cost of source data */
    4331                 :       82310 :         startup_cost += outer_path->startup_cost;
    4332                 :       82310 :         run_cost += outer_path->total_cost - outer_path->startup_cost;
    4333                 :       82310 :         startup_cost += inner_path->total_cost;
    4334                 :             : 
    4335                 :             :         /*
    4336                 :             :          * Cost of computing hash function: must do it once per input tuple. We
    4337                 :             :          * charge one cpu_operator_cost for each column's hash function.  Also,
    4338                 :             :          * tack on one cpu_tuple_cost per inner row, to model the costs of
    4339                 :             :          * inserting the row into the hashtable.
    4340                 :             :          *
    4341                 :             :          * XXX when a hashclause is more complex than a single operator, we really
    4342                 :             :          * should charge the extra eval costs of the left or right side, as
    4343                 :             :          * appropriate, here.  This seems more work than it's worth at the moment.
    4344                 :             :          */
    4345                 :      164620 :         startup_cost += (cpu_operator_cost * num_hashclauses + cpu_tuple_cost)
    4346                 :       82310 :                 * inner_path_rows;
    4347                 :       82310 :         run_cost += cpu_operator_cost * num_hashclauses * outer_path_rows;
    4348                 :             : 
    4349                 :             :         /*
    4350                 :             :          * If this is a parallel hash build, then the value we have for
    4351                 :             :          * inner_rows_total currently refers only to the rows returned by each
    4352                 :             :          * participant.  For shared hash table size estimation, we need the total
    4353                 :             :          * number, so we need to undo the division.
    4354                 :             :          */
    4355         [ +  + ]:       82310 :         if (parallel_hash)
    4356                 :       12559 :                 inner_path_rows_total *= get_parallel_divisor(inner_path);
    4357                 :             : 
    4358                 :             :         /*
    4359                 :             :          * Get hash table size that executor would use for inner relation.
    4360                 :             :          *
    4361                 :             :          * XXX for the moment, always assume that skew optimization will be
    4362                 :             :          * performed.  As long as SKEW_HASH_MEM_PERCENT is small, it's not worth
    4363                 :             :          * trying to determine that for sure.
    4364                 :             :          *
    4365                 :             :          * XXX at some point it might be interesting to try to account for skew
    4366                 :             :          * optimization in the cost estimate, but for now, we don't.
    4367                 :             :          */
    4368                 :      164620 :         ExecChooseHashTableSize(inner_path_rows_total,
    4369                 :       82310 :                                                         inner_path->pathtarget->width,
    4370                 :             :                                                         true,   /* useskew */
    4371                 :       82310 :                                                         parallel_hash,  /* try_combined_hash_mem */
    4372                 :       82310 :                                                         outer_path->parallel_workers,
    4373                 :             :                                                         &space_allowed,
    4374                 :             :                                                         &numbuckets,
    4375                 :             :                                                         &numbatches,
    4376                 :             :                                                         &num_skew_mcvs);
    4377                 :             : 
    4378                 :             :         /*
    4379                 :             :          * If inner relation is too big then we will need to "batch" the join,
    4380                 :             :          * which implies writing and reading most of the tuples to disk an extra
    4381                 :             :          * time.  Charge seq_page_cost per page, since the I/O should be nice and
    4382                 :             :          * sequential.  Writing the inner rel counts as startup cost, all the rest
    4383                 :             :          * as run cost.
    4384                 :             :          */
    4385         [ +  + ]:       82310 :         if (numbatches > 1)
    4386                 :             :         {
    4387                 :         696 :                 double          outerpages = page_size(outer_path_rows,
    4388                 :         348 :                                                                                    outer_path->pathtarget->width);
    4389                 :         696 :                 double          innerpages = page_size(inner_path_rows,
    4390                 :         348 :                                                                                    inner_path->pathtarget->width);
    4391                 :             : 
    4392                 :         348 :                 startup_cost += seq_page_cost * innerpages;
    4393                 :         348 :                 run_cost += seq_page_cost * (innerpages + 2 * outerpages);
    4394                 :         348 :         }
    4395                 :             : 
    4396                 :             :         /* CPU costs left for later */
    4397                 :             : 
    4398                 :             :         /* Public result fields */
    4399                 :       82310 :         workspace->disabled_nodes = disabled_nodes;
    4400                 :       82310 :         workspace->startup_cost = startup_cost;
    4401                 :       82310 :         workspace->total_cost = startup_cost + run_cost;
    4402                 :             :         /* Save private data for final_cost_hashjoin */
    4403                 :       82310 :         workspace->run_cost = run_cost;
    4404                 :       82310 :         workspace->numbuckets = numbuckets;
    4405                 :       82310 :         workspace->numbatches = numbatches;
    4406                 :       82310 :         workspace->inner_rows_total = inner_path_rows_total;
    4407                 :       82310 : }
    4408                 :             : 
    4409                 :             : /*
    4410                 :             :  * final_cost_hashjoin
    4411                 :             :  *        Final estimate of the cost and result size of a hashjoin path.
    4412                 :             :  *
    4413                 :             :  * Note: the numbatches estimate is also saved into 'path' for use later
    4414                 :             :  *
    4415                 :             :  * 'path' is already filled in except for the rows and cost fields and
    4416                 :             :  *              num_batches
    4417                 :             :  * 'workspace' is the result from initial_cost_hashjoin
    4418                 :             :  * 'extra' contains miscellaneous information about the join
    4419                 :             :  */
    4420                 :             : void
    4421                 :       52877 : final_cost_hashjoin(PlannerInfo *root, HashPath *path,
    4422                 :             :                                         JoinCostWorkspace *workspace,
    4423                 :             :                                         JoinPathExtraData *extra)
    4424                 :             : {
    4425                 :       52877 :         Path       *outer_path = path->jpath.outerjoinpath;
    4426                 :       52877 :         Path       *inner_path = path->jpath.innerjoinpath;
    4427                 :       52877 :         double          outer_path_rows = outer_path->rows;
    4428                 :       52877 :         double          inner_path_rows = inner_path->rows;
    4429                 :       52877 :         double          inner_path_rows_total = workspace->inner_rows_total;
    4430                 :       52877 :         List       *hashclauses = path->path_hashclauses;
    4431                 :       52877 :         Cost            startup_cost = workspace->startup_cost;
    4432                 :       52877 :         Cost            run_cost = workspace->run_cost;
    4433                 :       52877 :         int                     numbuckets = workspace->numbuckets;
    4434                 :       52877 :         int                     numbatches = workspace->numbatches;
    4435                 :       52877 :         Cost            cpu_per_tuple;
    4436                 :       52877 :         QualCost        hash_qual_cost;
    4437                 :       52877 :         QualCost        qp_qual_cost;
    4438                 :       52877 :         double          hashjointuples;
    4439                 :       52877 :         double          virtualbuckets;
    4440                 :       52877 :         Selectivity innerbucketsize;
    4441                 :       52877 :         Selectivity innermcvfreq;
    4442                 :       52877 :         ListCell   *hcl;
    4443                 :             : 
    4444                 :             :         /* Set the number of disabled nodes. */
    4445                 :       52877 :         path->jpath.path.disabled_nodes = workspace->disabled_nodes;
    4446                 :             : 
    4447                 :             :         /* Mark the path with the correct row estimate */
    4448         [ +  + ]:       52877 :         if (path->jpath.path.param_info)
    4449                 :         179 :                 path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
    4450                 :             :         else
    4451                 :       52698 :                 path->jpath.path.rows = path->jpath.path.parent->rows;
    4452                 :             : 
    4453                 :             :         /* For partial paths, scale row estimate. */
    4454         [ +  + ]:       52877 :         if (path->jpath.path.parallel_workers > 0)
    4455                 :             :         {
    4456                 :       17884 :                 double          parallel_divisor = get_parallel_divisor(&path->jpath.path);
    4457                 :             : 
    4458                 :       17884 :                 path->jpath.path.rows =
    4459                 :       17884 :                         clamp_row_est(path->jpath.path.rows / parallel_divisor);
    4460                 :       17884 :         }
    4461                 :             : 
    4462                 :             :         /* mark the path with estimated # of batches */
    4463                 :       52877 :         path->num_batches = numbatches;
    4464                 :             : 
    4465                 :             :         /* store the total number of tuples (sum of partial row estimates) */
    4466                 :       52877 :         path->inner_rows_total = inner_path_rows_total;
    4467                 :             : 
    4468                 :             :         /* and compute the number of "virtual" buckets in the whole join */
    4469                 :       52877 :         virtualbuckets = (double) numbuckets * (double) numbatches;
    4470                 :             : 
    4471                 :             :         /*
    4472                 :             :          * Determine bucketsize fraction and MCV frequency for the inner relation.
    4473                 :             :          * We use the smallest bucketsize or MCV frequency estimated for any
    4474                 :             :          * individual hashclause; this is undoubtedly conservative.
    4475                 :             :          *
    4476                 :             :          * BUT: if inner relation has been unique-ified, we can assume it's good
    4477                 :             :          * for hashing.  This is important both because it's the right answer, and
    4478                 :             :          * because we avoid contaminating the cache with a value that's wrong for
    4479                 :             :          * non-unique-ified paths.
    4480                 :             :          */
    4481   [ +  +  +  +  :       52877 :         if (RELATION_WAS_MADE_UNIQUE(inner_path->parent, extra->sjinfo,
                   +  + ]
    4482                 :             :                                                                  path->jpath.jointype))
    4483                 :             :         {
    4484                 :         474 :                 innerbucketsize = 1.0 / virtualbuckets;
    4485                 :         474 :                 innermcvfreq = 1.0 / inner_path_rows_total;
    4486                 :         474 :         }
    4487                 :             :         else
    4488                 :             :         {
    4489                 :       52403 :                 List       *otherclauses;
    4490                 :             : 
    4491                 :       52403 :                 innerbucketsize = 1.0;
    4492                 :       52403 :                 innermcvfreq = 1.0;
    4493                 :             : 
    4494                 :             :                 /* At first, try to estimate bucket size using extended statistics. */
    4495                 :      104806 :                 otherclauses = estimate_multivariate_bucketsize(root,
    4496                 :       52403 :                                                                                                                 inner_path->parent,
    4497                 :       52403 :                                                                                                                 hashclauses,
    4498                 :             :                                                                                                                 &innerbucketsize);
    4499                 :             : 
    4500                 :             :                 /* Pass through the remaining clauses */
    4501   [ +  +  +  +  :      107412 :                 foreach(hcl, otherclauses)
                   +  + ]
    4502                 :             :                 {
    4503                 :       55009 :                         RestrictInfo *restrictinfo = lfirst_node(RestrictInfo, hcl);
    4504                 :       55009 :                         Selectivity thisbucketsize;
    4505                 :       55009 :                         Selectivity thismcvfreq;
    4506                 :             : 
    4507                 :             :                         /*
    4508                 :             :                          * First we have to figure out which side of the hashjoin clause
    4509                 :             :                          * is the inner side.
    4510                 :             :                          *
    4511                 :             :                          * Since we tend to visit the same clauses over and over when
    4512                 :             :                          * planning a large query, we cache the bucket stats estimates in
    4513                 :             :                          * the RestrictInfo node to avoid repeated lookups of statistics.
    4514                 :             :                          */
    4515   [ +  +  +  + ]:      110018 :                         if (bms_is_subset(restrictinfo->right_relids,
    4516                 :       55009 :                                                           inner_path->parent->relids))
    4517                 :             :                         {
    4518                 :             :                                 /* righthand side is inner */
    4519                 :       28882 :                                 thisbucketsize = restrictinfo->right_bucketsize;
    4520         [ +  + ]:       28882 :                                 if (thisbucketsize < 0)
    4521                 :             :                                 {
    4522                 :             :                                         /* not cached yet */
    4523                 :       23642 :                                         estimate_hash_bucket_stats(root,
    4524                 :       11821 :                                                                                            get_rightop(restrictinfo->clause),
    4525                 :       11821 :                                                                                            virtualbuckets,
    4526                 :       11821 :                                                                                            &restrictinfo->right_mcvfreq,
    4527                 :       11821 :                                                                                            &restrictinfo->right_bucketsize);
    4528                 :       11821 :                                         thisbucketsize = restrictinfo->right_bucketsize;
    4529                 :       11821 :                                 }
    4530                 :       28882 :                                 thismcvfreq = restrictinfo->right_mcvfreq;
    4531                 :       28882 :                         }
    4532                 :             :                         else
    4533                 :             :                         {
    4534         [ -  + ]:       26127 :                                 Assert(bms_is_subset(restrictinfo->left_relids,
    4535                 :             :                                                                          inner_path->parent->relids));
    4536                 :             :                                 /* lefthand side is inner */
    4537                 :       26127 :                                 thisbucketsize = restrictinfo->left_bucketsize;
    4538         [ +  + ]:       26127 :                                 if (thisbucketsize < 0)
    4539                 :             :                                 {
    4540                 :             :                                         /* not cached yet */
    4541                 :       19732 :                                         estimate_hash_bucket_stats(root,
    4542                 :        9866 :                                                                                            get_leftop(restrictinfo->clause),
    4543                 :        9866 :                                                                                            virtualbuckets,
    4544                 :        9866 :                                                                                            &restrictinfo->left_mcvfreq,
    4545                 :        9866 :                                                                                            &restrictinfo->left_bucketsize);
    4546                 :        9866 :                                         thisbucketsize = restrictinfo->left_bucketsize;
    4547                 :        9866 :                                 }
    4548                 :       26127 :                                 thismcvfreq = restrictinfo->left_mcvfreq;
    4549                 :             :                         }
    4550                 :             : 
    4551         [ +  + ]:       55009 :                         if (innerbucketsize > thisbucketsize)
    4552                 :       41196 :                                 innerbucketsize = thisbucketsize;
    4553                 :             :                         /* Disregard zero for MCV freq, it means we have no data */
    4554   [ +  +  +  + ]:       55009 :                         if (thismcvfreq > 0.0 && innermcvfreq > thismcvfreq)
    4555                 :       41734 :                                 innermcvfreq = thismcvfreq;
    4556                 :       55009 :                 }
    4557                 :       52403 :         }
    4558                 :             : 
    4559                 :             :         /*
    4560                 :             :          * If the bucket holding the inner MCV would exceed hash_mem, we don't
    4561                 :             :          * want to hash unless there is really no other alternative, so apply
    4562                 :             :          * disable_cost.  (The executor normally copes with excessive memory usage
    4563                 :             :          * by splitting batches, but obviously it cannot separate equal values
    4564                 :             :          * that way, so it will be unable to drive the batch size below hash_mem
    4565                 :             :          * when this is true.)
    4566                 :             :          */
    4567                 :      105754 :         if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq),
    4568   [ +  +  +  + ]:      105754 :                                                    inner_path->pathtarget->width) > get_hash_memory_limit())
    4569                 :           8 :                 startup_cost += disable_cost;
    4570                 :             : 
    4571                 :             :         /*
    4572                 :             :          * Compute cost of the hashquals and qpquals (other restriction clauses)
    4573                 :             :          * separately.
    4574                 :             :          */
    4575                 :       52877 :         cost_qual_eval(&hash_qual_cost, hashclauses, root);
    4576                 :       52877 :         cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
    4577                 :       52877 :         qp_qual_cost.startup -= hash_qual_cost.startup;
    4578                 :       52877 :         qp_qual_cost.per_tuple -= hash_qual_cost.per_tuple;
    4579                 :             : 
    4580                 :             :         /* CPU costs */
    4581                 :             : 
    4582         [ +  + ]:       52877 :         if (path->jpath.jointype == JOIN_SEMI ||
    4583   [ +  +  +  + ]:       52090 :                 path->jpath.jointype == JOIN_ANTI ||
    4584                 :       51701 :                 extra->inner_unique)
    4585                 :             :         {
    4586                 :       10356 :                 double          outer_matched_rows;
    4587                 :       10356 :                 Selectivity inner_scan_frac;
    4588                 :             : 
    4589                 :             :                 /*
    4590                 :             :                  * With a SEMI or ANTI join, or if the innerrel is known unique, the
    4591                 :             :                  * executor will stop after the first match.
    4592                 :             :                  *
    4593                 :             :                  * For an outer-rel row that has at least one match, we can expect the
    4594                 :             :                  * bucket scan to stop after a fraction 1/(match_count+1) of the
    4595                 :             :                  * bucket's rows, if the matches are evenly distributed.  Since they
    4596                 :             :                  * probably aren't quite evenly distributed, we apply a fuzz factor of
    4597                 :             :                  * 2.0 to that fraction.  (If we used a larger fuzz factor, we'd have
    4598                 :             :                  * to clamp inner_scan_frac to at most 1.0; but since match_count is
    4599                 :             :                  * at least 1, no such clamp is needed now.)
    4600                 :             :                  */
    4601                 :       10356 :                 outer_matched_rows = rint(outer_path_rows * extra->semifactors.outer_match_frac);
    4602                 :       10356 :                 inner_scan_frac = 2.0 / (extra->semifactors.match_count + 1.0);
    4603                 :             : 
    4604                 :       10356 :                 startup_cost += hash_qual_cost.startup;
    4605                 :       20712 :                 run_cost += hash_qual_cost.per_tuple * outer_matched_rows *
    4606                 :       10356 :                         clamp_row_est(inner_path_rows * innerbucketsize * inner_scan_frac) * 0.5;
    4607                 :             : 
    4608                 :             :                 /*
    4609                 :             :                  * For unmatched outer-rel rows, the picture is quite a lot different.
    4610                 :             :                  * In the first place, there is no reason to assume that these rows
    4611                 :             :                  * preferentially hit heavily-populated buckets; instead assume they
    4612                 :             :                  * are uncorrelated with the inner distribution and so they see an
    4613                 :             :                  * average bucket size of inner_path_rows / virtualbuckets.  In the
    4614                 :             :                  * second place, it seems likely that they will have few if any exact
    4615                 :             :                  * hash-code matches and so very few of the tuples in the bucket will
    4616                 :             :                  * actually require eval of the hash quals.  We don't have any good
    4617                 :             :                  * way to estimate how many will, but for the moment assume that the
    4618                 :             :                  * effective cost per bucket entry is one-tenth what it is for
    4619                 :             :                  * matchable tuples.
    4620                 :             :                  */
    4621                 :       31068 :                 run_cost += hash_qual_cost.per_tuple *
    4622                 :       20712 :                         (outer_path_rows - outer_matched_rows) *
    4623                 :       10356 :                         clamp_row_est(inner_path_rows / virtualbuckets) * 0.05;
    4624                 :             : 
    4625                 :             :                 /* Get # of tuples that will pass the basic join */
    4626         [ +  + ]:       10356 :                 if (path->jpath.jointype == JOIN_ANTI)
    4627                 :         389 :                         hashjointuples = outer_path_rows - outer_matched_rows;
    4628                 :             :                 else
    4629                 :        9967 :                         hashjointuples = outer_matched_rows;
    4630                 :       10356 :         }
    4631                 :             :         else
    4632                 :             :         {
    4633                 :             :                 /*
    4634                 :             :                  * The number of tuple comparisons needed is the number of outer
    4635                 :             :                  * tuples times the typical number of tuples in a hash bucket, which
    4636                 :             :                  * is the inner relation size times its bucketsize fraction.  At each
    4637                 :             :                  * one, we need to evaluate the hashjoin quals.  But actually,
    4638                 :             :                  * charging the full qual eval cost at each tuple is pessimistic,
    4639                 :             :                  * since we don't evaluate the quals unless the hash values match
    4640                 :             :                  * exactly.  For lack of a better idea, halve the cost estimate to
    4641                 :             :                  * allow for that.
    4642                 :             :                  */
    4643                 :       42521 :                 startup_cost += hash_qual_cost.startup;
    4644                 :       85042 :                 run_cost += hash_qual_cost.per_tuple * outer_path_rows *
    4645                 :       42521 :                         clamp_row_est(inner_path_rows * innerbucketsize) * 0.5;
    4646                 :             : 
    4647                 :             :                 /*
    4648                 :             :                  * Get approx # tuples passing the hashquals.  We use
    4649                 :             :                  * approx_tuple_count here because we need an estimate done with
    4650                 :             :                  * JOIN_INNER semantics.
    4651                 :             :                  */
    4652                 :       42521 :                 hashjointuples = approx_tuple_count(root, &path->jpath, hashclauses);
    4653                 :             :         }
    4654                 :             : 
    4655                 :             :         /*
    4656                 :             :          * For each tuple that gets through the hashjoin proper, we charge
    4657                 :             :          * cpu_tuple_cost plus the cost of evaluating additional restriction
    4658                 :             :          * clauses that are to be applied at the join.  (This is pessimistic since
    4659                 :             :          * not all of the quals may get evaluated at each tuple.)
    4660                 :             :          */
    4661                 :       52877 :         startup_cost += qp_qual_cost.startup;
    4662                 :       52877 :         cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
    4663                 :       52877 :         run_cost += cpu_per_tuple * hashjointuples;
    4664                 :             : 
    4665                 :             :         /* tlist eval costs are paid per output row, not per tuple scanned */
    4666                 :       52877 :         startup_cost += path->jpath.path.pathtarget->cost.startup;
    4667                 :       52877 :         run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
    4668                 :             : 
    4669                 :       52877 :         path->jpath.path.startup_cost = startup_cost;
    4670                 :       52877 :         path->jpath.path.total_cost = startup_cost + run_cost;
    4671                 :       52877 : }
    4672                 :             : 
    4673                 :             : 
    4674                 :             : /*
    4675                 :             :  * cost_subplan
    4676                 :             :  *              Figure the costs for a SubPlan (or initplan).
    4677                 :             :  *
    4678                 :             :  * Note: we could dig the subplan's Plan out of the root list, but in practice
    4679                 :             :  * all callers have it handy already, so we make them pass it.
    4680                 :             :  */
    4681                 :             : void
    4682                 :        4383 : cost_subplan(PlannerInfo *root, SubPlan *subplan, Plan *plan)
    4683                 :             : {
    4684                 :        4383 :         QualCost        sp_cost;
    4685                 :             : 
    4686                 :             :         /*
    4687                 :             :          * Figure any cost for evaluating the testexpr.
    4688                 :             :          *
    4689                 :             :          * Usually, SubPlan nodes are built very early, before we have constructed
    4690                 :             :          * any RelOptInfos for the parent query level, which means the parent root
    4691                 :             :          * does not yet contain enough information to safely consult statistics.
    4692                 :             :          * Therefore, we pass root as NULL here.  cost_qual_eval() is already
    4693                 :             :          * well-equipped to handle a NULL root.
    4694                 :             :          *
    4695                 :             :          * One exception is SubPlan nodes built for the initplans of MIN/MAX
    4696                 :             :          * aggregates from indexes (cf. SS_make_initplan_from_plan).  In this
    4697                 :             :          * case, having a NULL root is safe because testexpr will be NULL.
    4698                 :             :          * Besides, an initplan will by definition not consult anything from the
    4699                 :             :          * parent plan.
    4700                 :             :          */
    4701                 :        4383 :         cost_qual_eval(&sp_cost,
    4702                 :        4383 :                                    make_ands_implicit((Expr *) subplan->testexpr),
    4703                 :             :                                    NULL);
    4704                 :             : 
    4705         [ +  + ]:        4383 :         if (subplan->useHashTable)
    4706                 :             :         {
    4707                 :             :                 /*
    4708                 :             :                  * If we are using a hash table for the subquery outputs, then the
    4709                 :             :                  * cost of evaluating the query is a one-time cost.  We charge one
    4710                 :             :                  * cpu_operator_cost per tuple for the work of loading the hashtable,
    4711                 :             :                  * too.
    4712                 :             :                  */
    4713                 :         530 :                 sp_cost.startup += plan->total_cost +
    4714                 :         265 :                         cpu_operator_cost * plan->plan_rows;
    4715                 :             : 
    4716                 :             :                 /*
    4717                 :             :                  * The per-tuple costs include the cost of evaluating the lefthand
    4718                 :             :                  * expressions, plus the cost of probing the hashtable.  We already
    4719                 :             :                  * accounted for the lefthand expressions as part of the testexpr, and
    4720                 :             :                  * will also have counted one cpu_operator_cost for each comparison
    4721                 :             :                  * operator.  That is probably too low for the probing cost, but it's
    4722                 :             :                  * hard to make a better estimate, so live with it for now.
    4723                 :             :                  */
    4724                 :         265 :         }
    4725                 :             :         else
    4726                 :             :         {
    4727                 :             :                 /*
    4728                 :             :                  * Otherwise we will be rescanning the subplan output on each
    4729                 :             :                  * evaluation.  We need to estimate how much of the output we will
    4730                 :             :                  * actually need to scan.  NOTE: this logic should agree with the
    4731                 :             :                  * tuple_fraction estimates used by make_subplan() in
    4732                 :             :                  * plan/subselect.c.
    4733                 :             :                  */
    4734                 :        4118 :                 Cost            plan_run_cost = plan->total_cost - plan->startup_cost;
    4735                 :             : 
    4736         [ +  + ]:        4118 :                 if (subplan->subLinkType == EXISTS_SUBLINK)
    4737                 :             :                 {
    4738                 :             :                         /* we only need to fetch 1 tuple; clamp to avoid zero divide */
    4739                 :         227 :                         sp_cost.per_tuple += plan_run_cost / clamp_row_est(plan->plan_rows);
    4740                 :         227 :                 }
    4741   [ +  +  +  + ]:        3891 :                 else if (subplan->subLinkType == ALL_SUBLINK ||
    4742                 :        3888 :                                  subplan->subLinkType == ANY_SUBLINK)
    4743                 :             :                 {
    4744                 :             :                         /* assume we need 50% of the tuples */
    4745                 :          19 :                         sp_cost.per_tuple += 0.50 * plan_run_cost;
    4746                 :             :                         /* also charge a cpu_operator_cost per row examined */
    4747                 :          19 :                         sp_cost.per_tuple += 0.50 * plan->plan_rows * cpu_operator_cost;
    4748                 :          19 :                 }
    4749                 :             :                 else
    4750                 :             :                 {
    4751                 :             :                         /* assume we need all tuples */
    4752                 :        3872 :                         sp_cost.per_tuple += plan_run_cost;
    4753                 :             :                 }
    4754                 :             : 
    4755                 :             :                 /*
    4756                 :             :                  * Also account for subplan's startup cost. If the subplan is
    4757                 :             :                  * uncorrelated or undirect correlated, AND its topmost node is one
    4758                 :             :                  * that materializes its output, assume that we'll only need to pay
    4759                 :             :                  * its startup cost once; otherwise assume we pay the startup cost
    4760                 :             :                  * every time.
    4761                 :             :                  */
    4762   [ +  +  +  + ]:        4118 :                 if (subplan->parParam == NIL &&
    4763                 :         951 :                         ExecMaterializesOutput(nodeTag(plan)))
    4764                 :          59 :                         sp_cost.startup += plan->startup_cost;
    4765                 :             :                 else
    4766                 :        4059 :                         sp_cost.per_tuple += plan->startup_cost;
    4767                 :        4118 :         }
    4768                 :             : 
    4769                 :        4383 :         subplan->startup_cost = sp_cost.startup;
    4770                 :        4383 :         subplan->per_call_cost = sp_cost.per_tuple;
    4771                 :        4383 : }
    4772                 :             : 
    4773                 :             : 
    4774                 :             : /*
    4775                 :             :  * cost_rescan
    4776                 :             :  *              Given a finished Path, estimate the costs of rescanning it after
    4777                 :             :  *              having done so the first time.  For some Path types a rescan is
    4778                 :             :  *              cheaper than an original scan (if no parameters change), and this
    4779                 :             :  *              function embodies knowledge about that.  The default is to return
    4780                 :             :  *              the same costs stored in the Path.  (Note that the cost estimates
    4781                 :             :  *              actually stored in Paths are always for first scans.)
    4782                 :             :  *
    4783                 :             :  * This function is not currently intended to model effects such as rescans
    4784                 :             :  * being cheaper due to disk block caching; what we are concerned with is
    4785                 :             :  * plan types wherein the executor caches results explicitly, or doesn't
    4786                 :             :  * redo startup calculations, etc.
    4787                 :             :  */
    4788                 :             : static void
    4789                 :      284672 : cost_rescan(PlannerInfo *root, Path *path,
    4790                 :             :                         Cost *rescan_startup_cost,      /* output parameters */
    4791                 :             :                         Cost *rescan_total_cost)
    4792                 :             : {
    4793   [ +  +  +  +  :      284672 :         switch (path->pathtype)
                   +  + ]
    4794                 :             :         {
    4795                 :             :                 case T_FunctionScan:
    4796                 :             : 
    4797                 :             :                         /*
    4798                 :             :                          * Currently, nodeFunctionscan.c always executes the function to
    4799                 :             :                          * completion before returning any rows, and caches the results in
    4800                 :             :                          * a tuplestore.  So the function eval cost is all startup cost
    4801                 :             :                          * and isn't paid over again on rescans. However, all run costs
    4802                 :             :                          * will be paid over again.
    4803                 :             :                          */
    4804                 :        1646 :                         *rescan_startup_cost = 0;
    4805                 :        1646 :                         *rescan_total_cost = path->total_cost - path->startup_cost;
    4806                 :        1646 :                         break;
    4807                 :             :                 case T_HashJoin:
    4808                 :             : 
    4809                 :             :                         /*
    4810                 :             :                          * If it's a single-batch join, we don't need to rebuild the hash
    4811                 :             :                          * table during a rescan.
    4812                 :             :                          */
    4813         [ +  - ]:        8133 :                         if (((HashPath *) path)->num_batches == 1)
    4814                 :             :                         {
    4815                 :             :                                 /* Startup cost is exactly the cost of hash table building */
    4816                 :        8133 :                                 *rescan_startup_cost = 0;
    4817                 :        8133 :                                 *rescan_total_cost = path->total_cost - path->startup_cost;
    4818                 :        8133 :                         }
    4819                 :             :                         else
    4820                 :             :                         {
    4821                 :             :                                 /* Otherwise, no special treatment */
    4822                 :           0 :                                 *rescan_startup_cost = path->startup_cost;
    4823                 :           0 :                                 *rescan_total_cost = path->total_cost;
    4824                 :             :                         }
    4825                 :        8133 :                         break;
    4826                 :             :                 case T_CteScan:
    4827                 :             :                 case T_WorkTableScan:
    4828                 :             :                         {
    4829                 :             :                                 /*
    4830                 :             :                                  * These plan types materialize their final result in a
    4831                 :             :                                  * tuplestore or tuplesort object.  So the rescan cost is only
    4832                 :             :                                  * cpu_tuple_cost per tuple, unless the result is large enough
    4833                 :             :                                  * to spill to disk.
    4834                 :             :                                  */
    4835                 :         117 :                                 Cost            run_cost = cpu_tuple_cost * path->rows;
    4836                 :         234 :                                 double          nbytes = relation_byte_size(path->rows,
    4837                 :         117 :                                                                                                                 path->pathtarget->width);
    4838                 :         117 :                                 double          work_mem_bytes = work_mem * (Size) 1024;
    4839                 :             : 
    4840         [ +  - ]:         117 :                                 if (nbytes > work_mem_bytes)
    4841                 :             :                                 {
    4842                 :             :                                         /* It will spill, so account for re-read cost */
    4843                 :           0 :                                         double          npages = ceil(nbytes / BLCKSZ);
    4844                 :             : 
    4845                 :           0 :                                         run_cost += seq_page_cost * npages;
    4846                 :           0 :                                 }
    4847                 :         117 :                                 *rescan_startup_cost = 0;
    4848                 :         117 :                                 *rescan_total_cost = run_cost;
    4849                 :         117 :                         }
    4850                 :         117 :                         break;
    4851                 :             :                 case T_Material:
    4852                 :             :                 case T_Sort:
    4853                 :             :                         {
    4854                 :             :                                 /*
    4855                 :             :                                  * These plan types not only materialize their results, but do
    4856                 :             :                                  * not implement qual filtering or projection.  So they are
    4857                 :             :                                  * even cheaper to rescan than the ones above.  We charge only
    4858                 :             :                                  * cpu_operator_cost per tuple.  (Note: keep that in sync with
    4859                 :             :                                  * the run_cost charge in cost_sort, and also see comments in
    4860                 :             :                                  * cost_material before you change it.)
    4861                 :             :                                  */
    4862                 :      111580 :                                 Cost            run_cost = cpu_operator_cost * path->rows;
    4863                 :      223160 :                                 double          nbytes = relation_byte_size(path->rows,
    4864                 :      111580 :                                                                                                                 path->pathtarget->width);
    4865                 :      111580 :                                 double          work_mem_bytes = work_mem * (Size) 1024;
    4866                 :             : 
    4867         [ +  + ]:      111580 :                                 if (nbytes > work_mem_bytes)
    4868                 :             :                                 {
    4869                 :             :                                         /* It will spill, so account for re-read cost */
    4870                 :         602 :                                         double          npages = ceil(nbytes / BLCKSZ);
    4871                 :             : 
    4872                 :         602 :                                         run_cost += seq_page_cost * npages;
    4873                 :         602 :                                 }
    4874                 :      111580 :                                 *rescan_startup_cost = 0;
    4875                 :      111580 :                                 *rescan_total_cost = run_cost;
    4876                 :      111580 :                         }
    4877                 :      111580 :                         break;
    4878                 :             :                 case T_Memoize:
    4879                 :             :                         /* All the hard work is done by cost_memoize_rescan */
    4880                 :       36806 :                         cost_memoize_rescan(root, (MemoizePath *) path,
    4881                 :       18403 :                                                                 rescan_startup_cost, rescan_total_cost);
    4882                 :       18403 :                         break;
    4883                 :             :                 default:
    4884                 :      144793 :                         *rescan_startup_cost = path->startup_cost;
    4885                 :      144793 :                         *rescan_total_cost = path->total_cost;
    4886                 :      144793 :                         break;
    4887                 :             :         }
    4888                 :      284672 : }
    4889                 :             : 
    4890                 :             : 
    4891                 :             : /*
    4892                 :             :  * cost_qual_eval
    4893                 :             :  *              Estimate the CPU costs of evaluating a WHERE clause.
    4894                 :             :  *              The input can be either an implicitly-ANDed list of boolean
    4895                 :             :  *              expressions, or a list of RestrictInfo nodes.  (The latter is
    4896                 :             :  *              preferred since it allows caching of the results.)
    4897                 :             :  *              The result includes both a one-time (startup) component,
    4898                 :             :  *              and a per-evaluation component.
    4899                 :             :  *
    4900                 :             :  * Note: in some code paths root can be passed as NULL, resulting in
    4901                 :             :  * slightly worse estimates.
    4902                 :             :  */
    4903                 :             : void
    4904                 :      464549 : cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
    4905                 :             : {
    4906                 :      464549 :         cost_qual_eval_context context;
    4907                 :      464549 :         ListCell   *l;
    4908                 :             : 
    4909                 :      464549 :         context.root = root;
    4910                 :      464549 :         context.total.startup = 0;
    4911                 :      464549 :         context.total.per_tuple = 0;
    4912                 :             : 
    4913                 :             :         /* We don't charge any cost for the implicit ANDing at top level ... */
    4914                 :             : 
    4915   [ +  +  +  +  :      876316 :         foreach(l, quals)
                   +  + ]
    4916                 :             :         {
    4917                 :      411767 :                 Node       *qual = (Node *) lfirst(l);
    4918                 :             : 
    4919                 :      411767 :                 cost_qual_eval_walker(qual, &context);
    4920                 :      411767 :         }
    4921                 :             : 
    4922                 :      464549 :         *cost = context.total;
    4923                 :      464549 : }
    4924                 :             : 
    4925                 :             : /*
    4926                 :             :  * cost_qual_eval_node
    4927                 :             :  *              As above, for a single RestrictInfo or expression.
    4928                 :             :  */
    4929                 :             : void
    4930                 :      181587 : cost_qual_eval_node(QualCost *cost, Node *qual, PlannerInfo *root)
    4931                 :             : {
    4932                 :      181587 :         cost_qual_eval_context context;
    4933                 :             : 
    4934                 :      181587 :         context.root = root;
    4935                 :      181587 :         context.total.startup = 0;
    4936                 :      181587 :         context.total.per_tuple = 0;
    4937                 :             : 
    4938                 :      181587 :         cost_qual_eval_walker(qual, &context);
    4939                 :             : 
    4940                 :      181587 :         *cost = context.total;
    4941                 :      181587 : }
    4942                 :             : 
    4943                 :             : static bool
    4944                 :      950352 : cost_qual_eval_walker(Node *node, cost_qual_eval_context *context)
    4945                 :             : {
    4946         [ +  + ]:      950352 :         if (node == NULL)
    4947                 :       11425 :                 return false;
    4948                 :             : 
    4949                 :             :         /*
    4950                 :             :          * RestrictInfo nodes contain an eval_cost field reserved for this
    4951                 :             :          * routine's use, so that it's not necessary to evaluate the qual clause's
    4952                 :             :          * cost more than once.  If the clause's cost hasn't been computed yet,
    4953                 :             :          * the field's startup value will contain -1.
    4954                 :             :          */
    4955         [ +  + ]:      938927 :         if (IsA(node, RestrictInfo))
    4956                 :             :         {
    4957                 :      429807 :                 RestrictInfo *rinfo = (RestrictInfo *) node;
    4958                 :             : 
    4959         [ +  + ]:      429807 :                 if (rinfo->eval_cost.startup < 0)
    4960                 :             :                 {
    4961                 :       57130 :                         cost_qual_eval_context locContext;
    4962                 :             : 
    4963                 :       57130 :                         locContext.root = context->root;
    4964                 :       57130 :                         locContext.total.startup = 0;
    4965                 :       57130 :                         locContext.total.per_tuple = 0;
    4966                 :             : 
    4967                 :             :                         /*
    4968                 :             :                          * For an OR clause, recurse into the marked-up tree so that we
    4969                 :             :                          * set the eval_cost for contained RestrictInfos too.
    4970                 :             :                          */
    4971         [ +  + ]:       57130 :                         if (rinfo->orclause)
    4972                 :         827 :                                 cost_qual_eval_walker((Node *) rinfo->orclause, &locContext);
    4973                 :             :                         else
    4974                 :       56303 :                                 cost_qual_eval_walker((Node *) rinfo->clause, &locContext);
    4975                 :             : 
    4976                 :             :                         /*
    4977                 :             :                          * If the RestrictInfo is marked pseudoconstant, it will be tested
    4978                 :             :                          * only once, so treat its cost as all startup cost.
    4979                 :             :                          */
    4980         [ +  + ]:       57130 :                         if (rinfo->pseudoconstant)
    4981                 :             :                         {
    4982                 :             :                                 /* count one execution during startup */
    4983                 :        1657 :                                 locContext.total.startup += locContext.total.per_tuple;
    4984                 :        1657 :                                 locContext.total.per_tuple = 0;
    4985                 :        1657 :                         }
    4986                 :       57130 :                         rinfo->eval_cost = locContext.total;
    4987                 :       57130 :                 }
    4988                 :      429807 :                 context->total.startup += rinfo->eval_cost.startup;
    4989                 :      429807 :                 context->total.per_tuple += rinfo->eval_cost.per_tuple;
    4990                 :             :                 /* do NOT recurse into children */
    4991                 :      429807 :                 return false;
    4992                 :      429807 :         }
    4993                 :             : 
    4994                 :             :         /*
    4995                 :             :          * For each operator or function node in the given tree, we charge the
    4996                 :             :          * estimated execution cost given by pg_proc.procost (remember to multiply
    4997                 :             :          * this by cpu_operator_cost).
    4998                 :             :          *
    4999                 :             :          * Vars and Consts are charged zero, and so are boolean operators (AND,
    5000                 :             :          * OR, NOT). Simplistic, but a lot better than no model at all.
    5001                 :             :          *
    5002                 :             :          * Should we try to account for the possibility of short-circuit
    5003                 :             :          * evaluation of AND/OR?  Probably *not*, because that would make the
    5004                 :             :          * results depend on the clause ordering, and we are not in any position
    5005                 :             :          * to expect that the current ordering of the clauses is the one that's
    5006                 :             :          * going to end up being used.  The above per-RestrictInfo caching would
    5007                 :             :          * not mix well with trying to re-order clauses anyway.
    5008                 :             :          *
    5009                 :             :          * Another issue that is entirely ignored here is that if a set-returning
    5010                 :             :          * function is below top level in the tree, the functions/operators above
    5011                 :             :          * it will need to be evaluated multiple times.  In practical use, such
    5012                 :             :          * cases arise so seldom as to not be worth the added complexity needed;
    5013                 :             :          * moreover, since our rowcount estimates for functions tend to be pretty
    5014                 :             :          * phony, the results would also be pretty phony.
    5015                 :             :          */
    5016         [ +  + ]:      509120 :         if (IsA(node, FuncExpr))
    5017                 :             :         {
    5018                 :       68254 :                 add_function_cost(context->root, ((FuncExpr *) node)->funcid, node,
    5019                 :       34127 :                                                   &context->total);
    5020                 :       34127 :         }
    5021         [ +  + ]:      474993 :         else if (IsA(node, OpExpr) ||
    5022   [ +  +  +  + ]:      407329 :                          IsA(node, DistinctExpr) ||
    5023                 :      407293 :                          IsA(node, NullIfExpr))
    5024                 :             :         {
    5025                 :             :                 /* rely on struct equivalence to treat these all alike */
    5026                 :       67720 :                 set_opfuncid((OpExpr *) node);
    5027                 :      135440 :                 add_function_cost(context->root, ((OpExpr *) node)->opfuncid, node,
    5028                 :       67720 :                                                   &context->total);
    5029                 :       67720 :         }
    5030         [ +  + ]:      407273 :         else if (IsA(node, ScalarArrayOpExpr))
    5031                 :             :         {
    5032                 :        5459 :                 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
    5033                 :        5459 :                 Node       *arraynode = (Node *) lsecond(saop->args);
    5034                 :        5459 :                 QualCost        sacosts;
    5035                 :        5459 :                 QualCost        hcosts;
    5036                 :        5459 :                 double          estarraylen = estimate_array_length(context->root, arraynode);
    5037                 :             : 
    5038                 :        5459 :                 set_sa_opfuncid(saop);
    5039                 :        5459 :                 sacosts.startup = sacosts.per_tuple = 0;
    5040                 :        5459 :                 add_function_cost(context->root, saop->opfuncid, NULL,
    5041                 :             :                                                   &sacosts);
    5042                 :             : 
    5043         [ +  + ]:        5459 :                 if (OidIsValid(saop->hashfuncid))
    5044                 :             :                 {
    5045                 :             :                         /* Handle costs for hashed ScalarArrayOpExpr */
    5046                 :          21 :                         hcosts.startup = hcosts.per_tuple = 0;
    5047                 :             : 
    5048                 :          21 :                         add_function_cost(context->root, saop->hashfuncid, NULL, &hcosts);
    5049                 :          21 :                         context->total.startup += sacosts.startup + hcosts.startup;
    5050                 :             : 
    5051                 :             :                         /* Estimate the cost of building the hashtable. */
    5052                 :          21 :                         context->total.startup += estarraylen * hcosts.per_tuple;
    5053                 :             : 
    5054                 :             :                         /*
    5055                 :             :                          * XXX should we charge a little bit for sacosts.per_tuple when
    5056                 :             :                          * building the table, or is it ok to assume there will be zero
    5057                 :             :                          * hash collision?
    5058                 :             :                          */
    5059                 :             : 
    5060                 :             :                         /*
    5061                 :             :                          * Charge for hashtable lookups.  Charge a single hash and a
    5062                 :             :                          * single comparison.
    5063                 :             :                          */
    5064                 :          21 :                         context->total.per_tuple += hcosts.per_tuple + sacosts.per_tuple;
    5065                 :          21 :                 }
    5066                 :             :                 else
    5067                 :             :                 {
    5068                 :             :                         /*
    5069                 :             :                          * Estimate that the operator will be applied to about half of the
    5070                 :             :                          * array elements before the answer is determined.
    5071                 :             :                          */
    5072                 :        5438 :                         context->total.startup += sacosts.startup;
    5073                 :       10876 :                         context->total.per_tuple += sacosts.per_tuple *
    5074                 :        5438 :                                 estimate_array_length(context->root, arraynode) * 0.5;
    5075                 :             :                 }
    5076                 :        5459 :         }
    5077   [ +  +  +  + ]:      401814 :         else if (IsA(node, Aggref) ||
    5078                 :      393031 :                          IsA(node, WindowFunc))
    5079                 :             :         {
    5080                 :             :                 /*
    5081                 :             :                  * Aggref and WindowFunc nodes are (and should be) treated like Vars,
    5082                 :             :                  * ie, zero execution cost in the current model, because they behave
    5083                 :             :                  * essentially like Vars at execution.  We disregard the costs of
    5084                 :             :                  * their input expressions for the same reason.  The actual execution
    5085                 :             :                  * costs of the aggregate/window functions and their arguments have to
    5086                 :             :                  * be factored into plan-node-specific costing of the Agg or WindowAgg
    5087                 :             :                  * plan node.
    5088                 :             :                  */
    5089                 :        9424 :                 return false;                   /* don't recurse into children */
    5090                 :             :         }
    5091         [ +  + ]:      392390 :         else if (IsA(node, GroupingFunc))
    5092                 :             :         {
    5093                 :             :                 /* Treat this as having cost 1 */
    5094                 :          69 :                 context->total.per_tuple += cpu_operator_cost;
    5095                 :          69 :                 return false;                   /* don't recurse into children */
    5096                 :             :         }
    5097         [ +  + ]:      392321 :         else if (IsA(node, CoerceViaIO))
    5098                 :             :         {
    5099                 :        2915 :                 CoerceViaIO *iocoerce = (CoerceViaIO *) node;
    5100                 :        2915 :                 Oid                     iofunc;
    5101                 :        2915 :                 Oid                     typioparam;
    5102                 :        2915 :                 bool            typisvarlena;
    5103                 :             : 
    5104                 :             :                 /* check the result type's input function */
    5105                 :        2915 :                 getTypeInputInfo(iocoerce->resulttype,
    5106                 :             :                                                  &iofunc, &typioparam);
    5107                 :        5830 :                 add_function_cost(context->root, iofunc, NULL,
    5108                 :        2915 :                                                   &context->total);
    5109                 :             :                 /* check the input type's output function */
    5110                 :        2915 :                 getTypeOutputInfo(exprType((Node *) iocoerce->arg),
    5111                 :             :                                                   &iofunc, &typisvarlena);
    5112                 :        5830 :                 add_function_cost(context->root, iofunc, NULL,
    5113                 :        2915 :                                                   &context->total);
    5114                 :        2915 :         }
    5115         [ +  + ]:      389406 :         else if (IsA(node, ArrayCoerceExpr))
    5116                 :             :         {
    5117                 :         608 :                 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
    5118                 :         608 :                 QualCost        perelemcost;
    5119                 :             : 
    5120                 :        1216 :                 cost_qual_eval_node(&perelemcost, (Node *) acoerce->elemexpr,
    5121                 :         608 :                                                         context->root);
    5122                 :         608 :                 context->total.startup += perelemcost.startup;
    5123         [ +  + ]:         608 :                 if (perelemcost.per_tuple > 0)
    5124                 :          10 :                         context->total.per_tuple += perelemcost.per_tuple *
    5125                 :           5 :                                 estimate_array_length(context->root, (Node *) acoerce->arg);
    5126                 :         608 :         }
    5127         [ +  + ]:      388798 :         else if (IsA(node, RowCompareExpr))
    5128                 :             :         {
    5129                 :             :                 /* Conservatively assume we will check all the columns */
    5130                 :          42 :                 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
    5131                 :          42 :                 ListCell   *lc;
    5132                 :             : 
    5133   [ +  -  +  +  :         135 :                 foreach(lc, rcexpr->opnos)
                   +  + ]
    5134                 :             :                 {
    5135                 :          93 :                         Oid                     opid = lfirst_oid(lc);
    5136                 :             : 
    5137                 :         186 :                         add_function_cost(context->root, get_opcode(opid), NULL,
    5138                 :          93 :                                                           &context->total);
    5139                 :          93 :                 }
    5140                 :          42 :         }
    5141         [ +  + ]:      388756 :         else if (IsA(node, MinMaxExpr) ||
    5142         [ +  + ]:      388714 :                          IsA(node, SQLValueFunction) ||
    5143         [ +  + ]:      388157 :                          IsA(node, XmlExpr) ||
    5144         [ +  + ]:      388040 :                          IsA(node, CoerceToDomain) ||
    5145   [ +  +  +  + ]:      387495 :                          IsA(node, NextValueExpr) ||
    5146                 :      387430 :                          IsA(node, JsonExpr))
    5147                 :             :         {
    5148                 :             :                 /* Treat all these as having cost 1 */
    5149                 :        1752 :                 context->total.per_tuple += cpu_operator_cost;
    5150                 :        1752 :         }
    5151         [ +  - ]:      387004 :         else if (IsA(node, SubLink))
    5152                 :             :         {
    5153                 :             :                 /* This routine should not be applied to un-planned expressions */
    5154   [ #  #  #  # ]:           0 :                 elog(ERROR, "cannot handle unplanned sub-select");
    5155                 :           0 :         }
    5156         [ +  + ]:      387004 :         else if (IsA(node, SubPlan))
    5157                 :             :         {
    5158                 :             :                 /*
    5159                 :             :                  * A subplan node in an expression typically indicates that the
    5160                 :             :                  * subplan will be executed on each evaluation, so charge accordingly.
    5161                 :             :                  * (Sub-selects that can be executed as InitPlans have already been
    5162                 :             :                  * removed from the expression.)
    5163                 :             :                  */
    5164                 :        5118 :                 SubPlan    *subplan = (SubPlan *) node;
    5165                 :             : 
    5166                 :        5118 :                 context->total.startup += subplan->startup_cost;
    5167                 :        5118 :                 context->total.per_tuple += subplan->per_call_cost;
    5168                 :             : 
    5169                 :             :                 /*
    5170                 :             :                  * We don't want to recurse into the testexpr, because it was already
    5171                 :             :                  * counted in the SubPlan node's costs.  So we're done.
    5172                 :             :                  */
    5173                 :        5118 :                 return false;
    5174                 :        5118 :         }
    5175         [ +  + ]:      381886 :         else if (IsA(node, AlternativeSubPlan))
    5176                 :             :         {
    5177                 :             :                 /*
    5178                 :             :                  * Arbitrarily use the first alternative plan for costing.  (We should
    5179                 :             :                  * certainly only include one alternative, and we don't yet have
    5180                 :             :                  * enough information to know which one the executor is most likely to
    5181                 :             :                  * use.)
    5182                 :             :                  */
    5183                 :         221 :                 AlternativeSubPlan *asplan = (AlternativeSubPlan *) node;
    5184                 :             : 
    5185                 :         442 :                 return cost_qual_eval_walker((Node *) linitial(asplan->subplans),
    5186                 :         221 :                                                                          context);
    5187                 :         221 :         }
    5188         [ +  + ]:      381665 :         else if (IsA(node, PlaceHolderVar))
    5189                 :             :         {
    5190                 :             :                 /*
    5191                 :             :                  * A PlaceHolderVar should be given cost zero when considering general
    5192                 :             :                  * expression evaluation costs.  The expense of doing the contained
    5193                 :             :                  * expression is charged as part of the tlist eval costs of the scan
    5194                 :             :                  * or join where the PHV is first computed (see set_rel_width and
    5195                 :             :                  * add_placeholders_to_joinrel).  If we charged it again here, we'd be
    5196                 :             :                  * double-counting the cost for each level of plan that the PHV
    5197                 :             :                  * bubbles up through.  Hence, return without recursing into the
    5198                 :             :                  * phexpr.
    5199                 :             :                  */
    5200                 :         876 :                 return false;
    5201                 :             :         }
    5202                 :             : 
    5203                 :             :         /* recurse into children */
    5204                 :      493412 :         return expression_tree_walker(node, cost_qual_eval_walker, context);
    5205                 :      950352 : }
    5206                 :             : 
    5207                 :             : /*
    5208                 :             :  * get_restriction_qual_cost
    5209                 :             :  *        Compute evaluation costs of a baserel's restriction quals, plus any
    5210                 :             :  *        movable join quals that have been pushed down to the scan.
    5211                 :             :  *        Results are returned into *qpqual_cost.
    5212                 :             :  *
    5213                 :             :  * This is a convenience subroutine that works for seqscans and other cases
    5214                 :             :  * where all the given quals will be evaluated the hard way.  It's not useful
    5215                 :             :  * for cost_index(), for example, where the index machinery takes care of
    5216                 :             :  * some of the quals.  We assume baserestrictcost was previously set by
    5217                 :             :  * set_baserel_size_estimates().
    5218                 :             :  */
    5219                 :             : static void
    5220                 :      107816 : get_restriction_qual_cost(PlannerInfo *root, RelOptInfo *baserel,
    5221                 :             :                                                   ParamPathInfo *param_info,
    5222                 :             :                                                   QualCost *qpqual_cost)
    5223                 :             : {
    5224         [ +  + ]:      107816 :         if (param_info)
    5225                 :             :         {
    5226                 :             :                 /* Include costs of pushed-down clauses */
    5227                 :       23841 :                 cost_qual_eval(qpqual_cost, param_info->ppi_clauses, root);
    5228                 :             : 
    5229                 :       23841 :                 qpqual_cost->startup += baserel->baserestrictcost.startup;
    5230                 :       23841 :                 qpqual_cost->per_tuple += baserel->baserestrictcost.per_tuple;
    5231                 :       23841 :         }
    5232                 :             :         else
    5233                 :       83975 :                 *qpqual_cost = baserel->baserestrictcost;
    5234                 :      107816 : }
    5235                 :             : 
    5236                 :             : 
    5237                 :             : /*
    5238                 :             :  * compute_semi_anti_join_factors
    5239                 :             :  *        Estimate how much of the inner input a SEMI, ANTI, or inner_unique join
    5240                 :             :  *        can be expected to scan.
    5241                 :             :  *
    5242                 :             :  * In a hash or nestloop SEMI/ANTI join, the executor will stop scanning
    5243                 :             :  * inner rows as soon as it finds a match to the current outer row.
    5244                 :             :  * The same happens if we have detected the inner rel is unique.
    5245                 :             :  * We should therefore adjust some of the cost components for this effect.
    5246                 :             :  * This function computes some estimates needed for these adjustments.
    5247                 :             :  * These estimates will be the same regardless of the particular paths used
    5248                 :             :  * for the outer and inner relation, so we compute these once and then pass
    5249                 :             :  * them to all the join cost estimation functions.
    5250                 :             :  *
    5251                 :             :  * Input parameters:
    5252                 :             :  *      joinrel: join relation under consideration
    5253                 :             :  *      outerrel: outer relation under consideration
    5254                 :             :  *      innerrel: inner relation under consideration
    5255                 :             :  *      jointype: if not JOIN_SEMI or JOIN_ANTI, we assume it's inner_unique
    5256                 :             :  *      sjinfo: SpecialJoinInfo relevant to this join
    5257                 :             :  *      restrictlist: join quals
    5258                 :             :  * Output parameters:
    5259                 :             :  *      *semifactors is filled in (see pathnodes.h for field definitions)
    5260                 :             :  */
    5261                 :             : void
    5262                 :       18559 : compute_semi_anti_join_factors(PlannerInfo *root,
    5263                 :             :                                                            RelOptInfo *joinrel,
    5264                 :             :                                                            RelOptInfo *outerrel,
    5265                 :             :                                                            RelOptInfo *innerrel,
    5266                 :             :                                                            JoinType jointype,
    5267                 :             :                                                            SpecialJoinInfo *sjinfo,
    5268                 :             :                                                            List *restrictlist,
    5269                 :             :                                                            SemiAntiJoinFactors *semifactors)
    5270                 :             : {
    5271                 :       18559 :         Selectivity jselec;
    5272                 :       18559 :         Selectivity nselec;
    5273                 :       18559 :         Selectivity avgmatch;
    5274                 :       18559 :         SpecialJoinInfo norm_sjinfo;
    5275                 :       18559 :         List       *joinquals;
    5276                 :       18559 :         ListCell   *l;
    5277                 :             : 
    5278                 :             :         /*
    5279                 :             :          * In an ANTI join, we must ignore clauses that are "pushed down", since
    5280                 :             :          * those won't affect the match logic.  In a SEMI join, we do not
    5281                 :             :          * distinguish joinquals from "pushed down" quals, so just use the whole
    5282                 :             :          * restrictinfo list.  For other outer join types, we should consider only
    5283                 :             :          * non-pushed-down quals, so that this devolves to an IS_OUTER_JOIN check.
    5284                 :             :          */
    5285         [ +  + ]:       18559 :         if (IS_OUTER_JOIN(jointype))
    5286                 :             :         {
    5287                 :        5160 :                 joinquals = NIL;
    5288   [ +  +  +  +  :       10867 :                 foreach(l, restrictlist)
                   +  + ]
    5289                 :             :                 {
    5290                 :        5707 :                         RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    5291                 :             : 
    5292   [ +  +  -  + ]:        5707 :                         if (!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    5293                 :        5630 :                                 joinquals = lappend(joinquals, rinfo);
    5294                 :        5707 :                 }
    5295                 :        5160 :         }
    5296                 :             :         else
    5297                 :       13399 :                 joinquals = restrictlist;
    5298                 :             : 
    5299                 :             :         /*
    5300                 :             :          * Get the JOIN_SEMI or JOIN_ANTI selectivity of the join clauses.
    5301                 :             :          */
    5302                 :       37118 :         jselec = clauselist_selectivity(root,
    5303                 :       18559 :                                                                         joinquals,
    5304                 :             :                                                                         0,
    5305                 :       18559 :                                                                         (jointype == JOIN_ANTI) ? JOIN_ANTI : JOIN_SEMI,
    5306                 :       18559 :                                                                         sjinfo);
    5307                 :             : 
    5308                 :             :         /*
    5309                 :             :          * Also get the normal inner-join selectivity of the join clauses.
    5310                 :             :          */
    5311                 :       18559 :         init_dummy_sjinfo(&norm_sjinfo, outerrel->relids, innerrel->relids);
    5312                 :             : 
    5313                 :       37118 :         nselec = clauselist_selectivity(root,
    5314                 :       18559 :                                                                         joinquals,
    5315                 :             :                                                                         0,
    5316                 :             :                                                                         JOIN_INNER,
    5317                 :             :                                                                         &norm_sjinfo);
    5318                 :             : 
    5319                 :             :         /* Avoid leaking a lot of ListCells */
    5320         [ +  + ]:       18559 :         if (IS_OUTER_JOIN(jointype))
    5321                 :        5160 :                 list_free(joinquals);
    5322                 :             : 
    5323                 :             :         /*
    5324                 :             :          * jselec can be interpreted as the fraction of outer-rel rows that have
    5325                 :             :          * any matches (this is true for both SEMI and ANTI cases).  And nselec is
    5326                 :             :          * the fraction of the Cartesian product that matches.  So, the average
    5327                 :             :          * number of matches for each outer-rel row that has at least one match is
    5328                 :             :          * nselec * inner_rows / jselec.
    5329                 :             :          *
    5330                 :             :          * Note: it is correct to use the inner rel's "rows" count here, even
    5331                 :             :          * though we might later be considering a parameterized inner path with
    5332                 :             :          * fewer rows.  This is because we have included all the join clauses in
    5333                 :             :          * the selectivity estimate.
    5334                 :             :          */
    5335         [ +  - ]:       18559 :         if (jselec > 0)                              /* protect against zero divide */
    5336                 :             :         {
    5337                 :       18559 :                 avgmatch = nselec * innerrel->rows / jselec;
    5338                 :             :                 /* Clamp to sane range */
    5339         [ +  + ]:       18559 :                 avgmatch = Max(1.0, avgmatch);
    5340                 :       18559 :         }
    5341                 :             :         else
    5342                 :           0 :                 avgmatch = 1.0;
    5343                 :             : 
    5344                 :       18559 :         semifactors->outer_match_frac = jselec;
    5345                 :       18559 :         semifactors->match_count = avgmatch;
    5346                 :       18559 : }
    5347                 :             : 
    5348                 :             : /*
    5349                 :             :  * has_indexed_join_quals
    5350                 :             :  *        Check whether all the joinquals of a nestloop join are used as
    5351                 :             :  *        inner index quals.
    5352                 :             :  *
    5353                 :             :  * If the inner path of a SEMI/ANTI join is an indexscan (including bitmap
    5354                 :             :  * indexscan) that uses all the joinquals as indexquals, we can assume that an
    5355                 :             :  * unmatched outer tuple is cheap to process, whereas otherwise it's probably
    5356                 :             :  * expensive.
    5357                 :             :  */
    5358                 :             : static bool
    5359                 :       69247 : has_indexed_join_quals(NestPath *path)
    5360                 :             : {
    5361                 :       69247 :         JoinPath   *joinpath = &path->jpath;
    5362                 :       69247 :         Relids          joinrelids = joinpath->path.parent->relids;
    5363                 :       69247 :         Path       *innerpath = joinpath->innerjoinpath;
    5364                 :       69247 :         List       *indexclauses;
    5365                 :       69247 :         bool            found_one;
    5366                 :       69247 :         ListCell   *lc;
    5367                 :             : 
    5368                 :             :         /* If join still has quals to evaluate, it's not fast */
    5369         [ +  + ]:       69247 :         if (joinpath->joinrestrictinfo != NIL)
    5370                 :       49997 :                 return false;
    5371                 :             :         /* Nor if the inner path isn't parameterized at all */
    5372         [ +  + ]:       19250 :         if (innerpath->param_info == NULL)
    5373                 :         550 :                 return false;
    5374                 :             : 
    5375                 :             :         /* Find the indexclauses list for the inner scan */
    5376      [ +  +  + ]:       18700 :         switch (innerpath->pathtype)
    5377                 :             :         {
    5378                 :             :                 case T_IndexScan:
    5379                 :             :                 case T_IndexOnlyScan:
    5380                 :       13227 :                         indexclauses = ((IndexPath *) innerpath)->indexclauses;
    5381                 :       13227 :                         break;
    5382                 :             :                 case T_BitmapHeapScan:
    5383                 :             :                         {
    5384                 :             :                                 /* Accept only a simple bitmap scan, not AND/OR cases */
    5385                 :          45 :                                 Path       *bmqual = ((BitmapHeapPath *) innerpath)->bitmapqual;
    5386                 :             : 
    5387         [ +  + ]:          45 :                                 if (IsA(bmqual, IndexPath))
    5388                 :          37 :                                         indexclauses = ((IndexPath *) bmqual)->indexclauses;
    5389                 :             :                                 else
    5390                 :           8 :                                         return false;
    5391                 :          37 :                                 break;
    5392         [ +  + ]:          45 :                         }
    5393                 :             :                 default:
    5394                 :             : 
    5395                 :             :                         /*
    5396                 :             :                          * If it's not a simple indexscan, it probably doesn't run quickly
    5397                 :             :                          * for zero rows out, even if it's a parameterized path using all
    5398                 :             :                          * the joinquals.
    5399                 :             :                          */
    5400                 :        5428 :                         return false;
    5401                 :             :         }
    5402                 :             : 
    5403                 :             :         /*
    5404                 :             :          * Examine the inner path's param clauses.  Any that are from the outer
    5405                 :             :          * path must be found in the indexclauses list, either exactly or in an
    5406                 :             :          * equivalent form generated by equivclass.c.  Also, we must find at least
    5407                 :             :          * one such clause, else it's a clauseless join which isn't fast.
    5408                 :             :          */
    5409                 :       13264 :         found_one = false;
    5410   [ +  -  +  +  :       26960 :         foreach(lc, innerpath->param_info->ppi_clauses)
             +  +  +  + ]
    5411                 :             :         {
    5412                 :       13696 :                 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
    5413                 :             : 
    5414   [ +  +  +  + ]:       27392 :                 if (join_clause_is_movable_into(rinfo,
    5415                 :       13696 :                                                                                 innerpath->parent->relids,
    5416                 :       13696 :                                                                                 joinrelids))
    5417                 :             :                 {
    5418         [ +  + ]:       13604 :                         if (!is_redundant_with_indexclauses(rinfo, indexclauses))
    5419                 :         281 :                                 return false;
    5420                 :       13323 :                         found_one = true;
    5421                 :       13323 :                 }
    5422         [ +  + ]:       13696 :         }
    5423                 :       12983 :         return found_one;
    5424                 :       69247 : }
    5425                 :             : 
    5426                 :             : 
    5427                 :             : /*
    5428                 :             :  * approx_tuple_count
    5429                 :             :  *              Quick-and-dirty estimation of the number of join rows passing
    5430                 :             :  *              a set of qual conditions.
    5431                 :             :  *
    5432                 :             :  * The quals can be either an implicitly-ANDed list of boolean expressions,
    5433                 :             :  * or a list of RestrictInfo nodes (typically the latter).
    5434                 :             :  *
    5435                 :             :  * We intentionally compute the selectivity under JOIN_INNER rules, even
    5436                 :             :  * if it's some type of outer join.  This is appropriate because we are
    5437                 :             :  * trying to figure out how many tuples pass the initial merge or hash
    5438                 :             :  * join step.
    5439                 :             :  *
    5440                 :             :  * This is quick-and-dirty because we bypass clauselist_selectivity, and
    5441                 :             :  * simply multiply the independent clause selectivities together.  Now
    5442                 :             :  * clauselist_selectivity often can't do any better than that anyhow, but
    5443                 :             :  * for some situations (such as range constraints) it is smarter.  However,
    5444                 :             :  * we can't effectively cache the results of clauselist_selectivity, whereas
    5445                 :             :  * the individual clause selectivities can be and are cached.
    5446                 :             :  *
    5447                 :             :  * Since we are only using the results to estimate how many potential
    5448                 :             :  * output tuples are generated and passed through qpqual checking, it
    5449                 :             :  * seems OK to live with the approximation.
    5450                 :             :  */
    5451                 :             : static double
    5452                 :       91240 : approx_tuple_count(PlannerInfo *root, JoinPath *path, List *quals)
    5453                 :             : {
    5454                 :       91240 :         double          tuples;
    5455                 :       91240 :         double          outer_tuples = path->outerjoinpath->rows;
    5456                 :       91240 :         double          inner_tuples = path->innerjoinpath->rows;
    5457                 :       91240 :         SpecialJoinInfo sjinfo;
    5458                 :       91240 :         Selectivity selec = 1.0;
    5459                 :       91240 :         ListCell   *l;
    5460                 :             : 
    5461                 :             :         /*
    5462                 :             :          * Make up a SpecialJoinInfo for JOIN_INNER semantics.
    5463                 :             :          */
    5464                 :      182480 :         init_dummy_sjinfo(&sjinfo, path->outerjoinpath->parent->relids,
    5465                 :       91240 :                                           path->innerjoinpath->parent->relids);
    5466                 :             : 
    5467                 :             :         /* Get the approximate selectivity */
    5468   [ +  +  +  +  :      188903 :         foreach(l, quals)
                   +  + ]
    5469                 :             :         {
    5470                 :       97663 :                 Node       *qual = (Node *) lfirst(l);
    5471                 :             : 
    5472                 :             :                 /* Note that clause_selectivity will be able to cache its result */
    5473                 :       97663 :                 selec *= clause_selectivity(root, qual, 0, JOIN_INNER, &sjinfo);
    5474                 :       97663 :         }
    5475                 :             : 
    5476                 :             :         /* Apply it to the input relation sizes */
    5477                 :       91240 :         tuples = selec * outer_tuples * inner_tuples;
    5478                 :             : 
    5479                 :      182480 :         return clamp_row_est(tuples);
    5480                 :       91240 : }
    5481                 :             : 
    5482                 :             : 
    5483                 :             : /*
    5484                 :             :  * set_baserel_size_estimates
    5485                 :             :  *              Set the size estimates for the given base relation.
    5486                 :             :  *
    5487                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    5488                 :             :  * already, and rel->tuples must be set.
    5489                 :             :  *
    5490                 :             :  * We set the following fields of the rel node:
    5491                 :             :  *      rows: the estimated number of output tuples (after applying
    5492                 :             :  *                restriction clauses).
    5493                 :             :  *      width: the estimated average output tuple width in bytes.
    5494                 :             :  *      baserestrictcost: estimated cost of evaluating baserestrictinfo clauses.
    5495                 :             :  */
    5496                 :             : void
    5497                 :       52740 : set_baserel_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    5498                 :             : {
    5499                 :       52740 :         double          nrows;
    5500                 :             : 
    5501                 :             :         /* Should only be applied to base relations */
    5502         [ +  - ]:       52740 :         Assert(rel->relid > 0);
    5503                 :             : 
    5504                 :      105480 :         nrows = rel->tuples *
    5505                 :      105480 :                 clauselist_selectivity(root,
    5506                 :       52740 :                                                            rel->baserestrictinfo,
    5507                 :             :                                                            0,
    5508                 :             :                                                            JOIN_INNER,
    5509                 :             :                                                            NULL);
    5510                 :             : 
    5511                 :       52740 :         rel->rows = clamp_row_est(nrows);
    5512                 :             : 
    5513                 :       52740 :         cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    5514                 :             : 
    5515                 :       52740 :         set_rel_width(root, rel);
    5516                 :       52740 : }
    5517                 :             : 
    5518                 :             : /*
    5519                 :             :  * get_parameterized_baserel_size
    5520                 :             :  *              Make a size estimate for a parameterized scan of a base relation.
    5521                 :             :  *
    5522                 :             :  * 'param_clauses' lists the additional join clauses to be used.
    5523                 :             :  *
    5524                 :             :  * set_baserel_size_estimates must have been applied already.
    5525                 :             :  */
    5526                 :             : double
    5527                 :       14689 : get_parameterized_baserel_size(PlannerInfo *root, RelOptInfo *rel,
    5528                 :             :                                                            List *param_clauses)
    5529                 :             : {
    5530                 :       14689 :         List       *allclauses;
    5531                 :       14689 :         double          nrows;
    5532                 :             : 
    5533                 :             :         /*
    5534                 :             :          * Estimate the number of rows returned by the parameterized scan, knowing
    5535                 :             :          * that it will apply all the extra join clauses as well as the rel's own
    5536                 :             :          * restriction clauses.  Note that we force the clauses to be treated as
    5537                 :             :          * non-join clauses during selectivity estimation.
    5538                 :             :          */
    5539                 :       14689 :         allclauses = list_concat_copy(param_clauses, rel->baserestrictinfo);
    5540                 :       29378 :         nrows = rel->tuples *
    5541                 :       29378 :                 clauselist_selectivity(root,
    5542                 :       14689 :                                                            allclauses,
    5543                 :       14689 :                                                            rel->relid,       /* do not use 0! */
    5544                 :             :                                                            JOIN_INNER,
    5545                 :             :                                                            NULL);
    5546                 :       14689 :         nrows = clamp_row_est(nrows);
    5547                 :             :         /* For safety, make sure result is not more than the base estimate */
    5548         [ +  - ]:       14689 :         if (nrows > rel->rows)
    5549                 :           0 :                 nrows = rel->rows;
    5550                 :       29378 :         return nrows;
    5551                 :       14689 : }
    5552                 :             : 
    5553                 :             : /*
    5554                 :             :  * set_joinrel_size_estimates
    5555                 :             :  *              Set the size estimates for the given join relation.
    5556                 :             :  *
    5557                 :             :  * The rel's targetlist must have been constructed already, and a
    5558                 :             :  * restriction clause list that matches the given component rels must
    5559                 :             :  * be provided.
    5560                 :             :  *
    5561                 :             :  * Since there is more than one way to make a joinrel for more than two
    5562                 :             :  * base relations, the results we get here could depend on which component
    5563                 :             :  * rel pair is provided.  In theory we should get the same answers no matter
    5564                 :             :  * which pair is provided; in practice, since the selectivity estimation
    5565                 :             :  * routines don't handle all cases equally well, we might not.  But there's
    5566                 :             :  * not much to be done about it.  (Would it make sense to repeat the
    5567                 :             :  * calculations for each pair of input rels that's encountered, and somehow
    5568                 :             :  * average the results?  Probably way more trouble than it's worth, and
    5569                 :             :  * anyway we must keep the rowcount estimate the same for all paths for the
    5570                 :             :  * joinrel.)
    5571                 :             :  *
    5572                 :             :  * We set only the rows field here.  The reltarget field was already set by
    5573                 :             :  * build_joinrel_tlist, and baserestrictcost is not used for join rels.
    5574                 :             :  */
    5575                 :             : void
    5576                 :       24661 : set_joinrel_size_estimates(PlannerInfo *root, RelOptInfo *rel,
    5577                 :             :                                                    RelOptInfo *outer_rel,
    5578                 :             :                                                    RelOptInfo *inner_rel,
    5579                 :             :                                                    SpecialJoinInfo *sjinfo,
    5580                 :             :                                                    List *restrictlist)
    5581                 :             : {
    5582                 :       49322 :         rel->rows = calc_joinrel_size_estimate(root,
    5583                 :       24661 :                                                                                    rel,
    5584                 :       24661 :                                                                                    outer_rel,
    5585                 :       24661 :                                                                                    inner_rel,
    5586                 :       24661 :                                                                                    outer_rel->rows,
    5587                 :       24661 :                                                                                    inner_rel->rows,
    5588                 :       24661 :                                                                                    sjinfo,
    5589                 :       24661 :                                                                                    restrictlist);
    5590                 :       24661 : }
    5591                 :             : 
    5592                 :             : /*
    5593                 :             :  * get_parameterized_joinrel_size
    5594                 :             :  *              Make a size estimate for a parameterized scan of a join relation.
    5595                 :             :  *
    5596                 :             :  * 'rel' is the joinrel under consideration.
    5597                 :             :  * 'outer_path', 'inner_path' are (probably also parameterized) Paths that
    5598                 :             :  *              produce the relations being joined.
    5599                 :             :  * 'sjinfo' is any SpecialJoinInfo relevant to this join.
    5600                 :             :  * 'restrict_clauses' lists the join clauses that need to be applied at the
    5601                 :             :  * join node (including any movable clauses that were moved down to this join,
    5602                 :             :  * and not including any movable clauses that were pushed down into the
    5603                 :             :  * child paths).
    5604                 :             :  *
    5605                 :             :  * set_joinrel_size_estimates must have been applied already.
    5606                 :             :  */
    5607                 :             : double
    5608                 :         488 : get_parameterized_joinrel_size(PlannerInfo *root, RelOptInfo *rel,
    5609                 :             :                                                            Path *outer_path,
    5610                 :             :                                                            Path *inner_path,
    5611                 :             :                                                            SpecialJoinInfo *sjinfo,
    5612                 :             :                                                            List *restrict_clauses)
    5613                 :             : {
    5614                 :         488 :         double          nrows;
    5615                 :             : 
    5616                 :             :         /*
    5617                 :             :          * Estimate the number of rows returned by the parameterized join as the
    5618                 :             :          * sizes of the input paths times the selectivity of the clauses that have
    5619                 :             :          * ended up at this join node.
    5620                 :             :          *
    5621                 :             :          * As with set_joinrel_size_estimates, the rowcount estimate could depend
    5622                 :             :          * on the pair of input paths provided, though ideally we'd get the same
    5623                 :             :          * estimate for any pair with the same parameterization.
    5624                 :             :          */
    5625                 :         976 :         nrows = calc_joinrel_size_estimate(root,
    5626                 :         488 :                                                                            rel,
    5627                 :         488 :                                                                            outer_path->parent,
    5628                 :         488 :                                                                            inner_path->parent,
    5629                 :         488 :                                                                            outer_path->rows,
    5630                 :         488 :                                                                            inner_path->rows,
    5631                 :         488 :                                                                            sjinfo,
    5632                 :         488 :                                                                            restrict_clauses);
    5633                 :             :         /* For safety, make sure result is not more than the base estimate */
    5634         [ +  + ]:         488 :         if (nrows > rel->rows)
    5635                 :           2 :                 nrows = rel->rows;
    5636                 :         976 :         return nrows;
    5637                 :         488 : }
    5638                 :             : 
    5639                 :             : /*
    5640                 :             :  * calc_joinrel_size_estimate
    5641                 :             :  *              Workhorse for set_joinrel_size_estimates and
    5642                 :             :  *              get_parameterized_joinrel_size.
    5643                 :             :  *
    5644                 :             :  * outer_rel/inner_rel are the relations being joined, but they should be
    5645                 :             :  * assumed to have sizes outer_rows/inner_rows; those numbers might be less
    5646                 :             :  * than what rel->rows says, when we are considering parameterized paths.
    5647                 :             :  */
    5648                 :             : static double
    5649                 :       25149 : calc_joinrel_size_estimate(PlannerInfo *root,
    5650                 :             :                                                    RelOptInfo *joinrel,
    5651                 :             :                                                    RelOptInfo *outer_rel,
    5652                 :             :                                                    RelOptInfo *inner_rel,
    5653                 :             :                                                    double outer_rows,
    5654                 :             :                                                    double inner_rows,
    5655                 :             :                                                    SpecialJoinInfo *sjinfo,
    5656                 :             :                                                    List *restrictlist)
    5657                 :             : {
    5658                 :       25149 :         JoinType        jointype = sjinfo->jointype;
    5659                 :       25149 :         Selectivity fkselec;
    5660                 :       25149 :         Selectivity jselec;
    5661                 :       25149 :         Selectivity pselec;
    5662                 :       25149 :         double          nrows;
    5663                 :             : 
    5664                 :             :         /*
    5665                 :             :          * Compute joinclause selectivity.  Note that we are only considering
    5666                 :             :          * clauses that become restriction clauses at this join level; we are not
    5667                 :             :          * double-counting them because they were not considered in estimating the
    5668                 :             :          * sizes of the component rels.
    5669                 :             :          *
    5670                 :             :          * First, see whether any of the joinclauses can be matched to known FK
    5671                 :             :          * constraints.  If so, drop those clauses from the restrictlist, and
    5672                 :             :          * instead estimate their selectivity using FK semantics.  (We do this
    5673                 :             :          * without regard to whether said clauses are local or "pushed down".
    5674                 :             :          * Probably, an FK-matching clause could never be seen as pushed down at
    5675                 :             :          * an outer join, since it would be strict and hence would be grounds for
    5676                 :             :          * join strength reduction.)  fkselec gets the net selectivity for
    5677                 :             :          * FK-matching clauses, or 1.0 if there are none.
    5678                 :             :          */
    5679                 :       50298 :         fkselec = get_foreign_key_join_selectivity(root,
    5680                 :       25149 :                                                                                            outer_rel->relids,
    5681                 :       25149 :                                                                                            inner_rel->relids,
    5682                 :       25149 :                                                                                            sjinfo,
    5683                 :             :                                                                                            &restrictlist);
    5684                 :             : 
    5685                 :             :         /*
    5686                 :             :          * For an outer join, we have to distinguish the selectivity of the join's
    5687                 :             :          * own clauses (JOIN/ON conditions) from any clauses that were "pushed
    5688                 :             :          * down".  For inner joins we just count them all as joinclauses.
    5689                 :             :          */
    5690         [ +  + ]:       25149 :         if (IS_OUTER_JOIN(jointype))
    5691                 :             :         {
    5692                 :        5288 :                 List       *joinquals = NIL;
    5693                 :        5288 :                 List       *pushedquals = NIL;
    5694                 :        5288 :                 ListCell   *l;
    5695                 :             : 
    5696                 :             :                 /* Grovel through the clauses to separate into two lists */
    5697   [ +  +  +  +  :       11761 :                 foreach(l, restrictlist)
                   +  + ]
    5698                 :             :                 {
    5699                 :        6473 :                         RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
    5700                 :             : 
    5701   [ +  +  +  + ]:        6473 :                         if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
    5702                 :         283 :                                 pushedquals = lappend(pushedquals, rinfo);
    5703                 :             :                         else
    5704                 :        6190 :                                 joinquals = lappend(joinquals, rinfo);
    5705                 :        6473 :                 }
    5706                 :             : 
    5707                 :             :                 /* Get the separate selectivities */
    5708                 :       10576 :                 jselec = clauselist_selectivity(root,
    5709                 :        5288 :                                                                                 joinquals,
    5710                 :             :                                                                                 0,
    5711                 :        5288 :                                                                                 jointype,
    5712                 :        5288 :                                                                                 sjinfo);
    5713                 :       10576 :                 pselec = clauselist_selectivity(root,
    5714                 :        5288 :                                                                                 pushedquals,
    5715                 :             :                                                                                 0,
    5716                 :        5288 :                                                                                 jointype,
    5717                 :        5288 :                                                                                 sjinfo);
    5718                 :             : 
    5719                 :             :                 /* Avoid leaking a lot of ListCells */
    5720                 :        5288 :                 list_free(joinquals);
    5721                 :        5288 :                 list_free(pushedquals);
    5722                 :        5288 :         }
    5723                 :             :         else
    5724                 :             :         {
    5725                 :       39722 :                 jselec = clauselist_selectivity(root,
    5726                 :       19861 :                                                                                 restrictlist,
    5727                 :             :                                                                                 0,
    5728                 :       19861 :                                                                                 jointype,
    5729                 :       19861 :                                                                                 sjinfo);
    5730                 :       19861 :                 pselec = 0.0;                   /* not used, keep compiler quiet */
    5731                 :             :         }
    5732                 :             : 
    5733                 :             :         /*
    5734                 :             :          * Basically, we multiply size of Cartesian product by selectivity.
    5735                 :             :          *
    5736                 :             :          * If we are doing an outer join, take that into account: the joinqual
    5737                 :             :          * selectivity has to be clamped using the knowledge that the output must
    5738                 :             :          * be at least as large as the non-nullable input.  However, any
    5739                 :             :          * pushed-down quals are applied after the outer join, so their
    5740                 :             :          * selectivity applies fully.
    5741                 :             :          *
    5742                 :             :          * For JOIN_SEMI and JOIN_ANTI, the selectivity is defined as the fraction
    5743                 :             :          * of LHS rows that have matches, and we apply that straightforwardly.
    5744                 :             :          */
    5745   [ +  +  +  +  :       25149 :         switch (jointype)
                   +  - ]
    5746                 :             :         {
    5747                 :             :                 case JOIN_INNER:
    5748                 :       18758 :                         nrows = outer_rows * inner_rows * fkselec * jselec;
    5749                 :             :                         /* pselec not used */
    5750                 :       18758 :                         break;
    5751                 :             :                 case JOIN_LEFT:
    5752                 :        4549 :                         nrows = outer_rows * inner_rows * fkselec * jselec;
    5753         [ +  + ]:        4549 :                         if (nrows < outer_rows)
    5754                 :        1344 :                                 nrows = outer_rows;
    5755                 :        4549 :                         nrows *= pselec;
    5756                 :        4549 :                         break;
    5757                 :             :                 case JOIN_FULL:
    5758                 :         254 :                         nrows = outer_rows * inner_rows * fkselec * jselec;
    5759         [ +  + ]:         254 :                         if (nrows < outer_rows)
    5760                 :         170 :                                 nrows = outer_rows;
    5761         [ +  + ]:         254 :                         if (nrows < inner_rows)
    5762                 :          15 :                                 nrows = inner_rows;
    5763                 :         254 :                         nrows *= pselec;
    5764                 :         254 :                         break;
    5765                 :             :                 case JOIN_SEMI:
    5766                 :        1103 :                         nrows = outer_rows * fkselec * jselec;
    5767                 :             :                         /* pselec not used */
    5768                 :        1103 :                         break;
    5769                 :             :                 case JOIN_ANTI:
    5770                 :         485 :                         nrows = outer_rows * (1.0 - fkselec * jselec);
    5771                 :         485 :                         nrows *= pselec;
    5772                 :         485 :                         break;
    5773                 :             :                 default:
    5774                 :             :                         /* other values not expected here */
    5775   [ #  #  #  # ]:           0 :                         elog(ERROR, "unrecognized join type: %d", (int) jointype);
    5776                 :           0 :                         nrows = 0;                      /* keep compiler quiet */
    5777                 :           0 :                         break;
    5778                 :             :         }
    5779                 :             : 
    5780                 :       50298 :         return clamp_row_est(nrows);
    5781                 :       25149 : }
    5782                 :             : 
    5783                 :             : /*
    5784                 :             :  * get_foreign_key_join_selectivity
    5785                 :             :  *              Estimate join selectivity for foreign-key-related clauses.
    5786                 :             :  *
    5787                 :             :  * Remove any clauses that can be matched to FK constraints from *restrictlist,
    5788                 :             :  * and return a substitute estimate of their selectivity.  1.0 is returned
    5789                 :             :  * when there are no such clauses.
    5790                 :             :  *
    5791                 :             :  * The reason for treating such clauses specially is that we can get better
    5792                 :             :  * estimates this way than by relying on clauselist_selectivity(), especially
    5793                 :             :  * for multi-column FKs where that function's assumption that the clauses are
    5794                 :             :  * independent falls down badly.  But even with single-column FKs, we may be
    5795                 :             :  * able to get a better answer when the pg_statistic stats are missing or out
    5796                 :             :  * of date.
    5797                 :             :  */
    5798                 :             : static Selectivity
    5799                 :       25111 : get_foreign_key_join_selectivity(PlannerInfo *root,
    5800                 :             :                                                                  Relids outer_relids,
    5801                 :             :                                                                  Relids inner_relids,
    5802                 :             :                                                                  SpecialJoinInfo *sjinfo,
    5803                 :             :                                                                  List **restrictlist)
    5804                 :             : {
    5805                 :       25111 :         Selectivity fkselec = 1.0;
    5806                 :       25111 :         JoinType        jointype = sjinfo->jointype;
    5807                 :       25111 :         List       *worklist = *restrictlist;
    5808                 :       25111 :         ListCell   *lc;
    5809                 :             : 
    5810                 :             :         /* Consider each FK constraint that is known to match the query */
    5811   [ +  +  +  +  :       25479 :         foreach(lc, root->fkey_list)
                   +  + ]
    5812                 :             :         {
    5813                 :         330 :                 ForeignKeyOptInfo *fkinfo = (ForeignKeyOptInfo *) lfirst(lc);
    5814                 :         330 :                 bool            ref_is_outer;
    5815                 :         330 :                 List       *removedlist;
    5816                 :         330 :                 ListCell   *cell;
    5817                 :             : 
    5818                 :             :                 /*
    5819                 :             :                  * This FK is not relevant unless it connects a baserel on one side of
    5820                 :             :                  * this join to a baserel on the other side.
    5821                 :             :                  */
    5822   [ +  +  +  + ]:         330 :                 if (bms_is_member(fkinfo->con_relid, outer_relids) &&
    5823                 :         293 :                         bms_is_member(fkinfo->ref_relid, inner_relids))
    5824                 :         464 :                         ref_is_outer = false;
    5825   [ +  +  +  + ]:         208 :                 else if (bms_is_member(fkinfo->ref_relid, outer_relids) &&
    5826                 :          73 :                                  bms_is_member(fkinfo->con_relid, inner_relids))
    5827                 :          18 :                         ref_is_outer = true;
    5828                 :             :                 else
    5829                 :         116 :                         continue;
    5830                 :             : 
    5831                 :             :                 /*
    5832                 :             :                  * If we're dealing with a semi/anti join, and the FK's referenced
    5833                 :             :                  * relation is on the outside, then knowledge of the FK doesn't help
    5834                 :             :                  * us figure out what we need to know (which is the fraction of outer
    5835                 :             :                  * rows that have matches).  On the other hand, if the referenced rel
    5836                 :             :                  * is on the inside, then all outer rows must have matches in the
    5837                 :             :                  * referenced table (ignoring nulls).  But any restriction or join
    5838                 :             :                  * clauses that filter that table will reduce the fraction of matches.
    5839                 :             :                  * We can account for restriction clauses, but it's too hard to guess
    5840                 :             :                  * how many table rows would get through a join that's inside the RHS.
    5841                 :             :                  * Hence, if either case applies, punt and ignore the FK.
    5842                 :             :                  */
    5843   [ +  +  +  + ]:         599 :                 if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
    5844         [ +  + ]:         232 :                         (ref_is_outer || bms_membership(inner_relids) != BMS_SINGLETON))
    5845                 :         232 :                         continue;
    5846                 :             : 
    5847                 :             :                 /*
    5848                 :             :                  * Modify the restrictlist by removing clauses that match the FK (and
    5849                 :             :                  * putting them into removedlist instead).  It seems unsafe to modify
    5850                 :             :                  * the originally-passed List structure, so we make a shallow copy the
    5851                 :             :                  * first time through.
    5852                 :             :                  */
    5853         [ +  + ]:         250 :                 if (worklist == *restrictlist)
    5854                 :         215 :                         worklist = list_copy(worklist);
    5855                 :             : 
    5856                 :         250 :                 removedlist = NIL;
    5857   [ +  +  +  +  :         529 :                 foreach(cell, worklist)
                   +  + ]
    5858                 :             :                 {
    5859                 :         279 :                         RestrictInfo *rinfo = (RestrictInfo *) lfirst(cell);
    5860                 :         279 :                         bool            remove_it = false;
    5861                 :         279 :                         int                     i;
    5862                 :             : 
    5863                 :             :                         /* Drop this clause if it matches any column of the FK */
    5864         [ +  + ]:         349 :                         for (i = 0; i < fkinfo->nkeys; i++)
    5865                 :             :                         {
    5866         [ +  + ]:         344 :                                 if (rinfo->parent_ec)
    5867                 :             :                                 {
    5868                 :             :                                         /*
    5869                 :             :                                          * EC-derived clauses can only match by EC.  It is okay to
    5870                 :             :                                          * consider any clause derived from the same EC as
    5871                 :             :                                          * matching the FK: even if equivclass.c chose to generate
    5872                 :             :                                          * a clause equating some other pair of Vars, it could
    5873                 :             :                                          * have generated one equating the FK's Vars.  So for
    5874                 :             :                                          * purposes of estimation, we can act as though it did so.
    5875                 :             :                                          *
    5876                 :             :                                          * Note: checking parent_ec is a bit of a cheat because
    5877                 :             :                                          * there are EC-derived clauses that don't have parent_ec
    5878                 :             :                                          * set; but such clauses must compare expressions that
    5879                 :             :                                          * aren't just Vars, so they cannot match the FK anyway.
    5880                 :             :                                          */
    5881         [ +  + ]:         107 :                                         if (fkinfo->eclass[i] == rinfo->parent_ec)
    5882                 :             :                                         {
    5883                 :         106 :                                                 remove_it = true;
    5884                 :         106 :                                                 break;
    5885                 :             :                                         }
    5886                 :           1 :                                 }
    5887                 :             :                                 else
    5888                 :             :                                 {
    5889                 :             :                                         /*
    5890                 :             :                                          * Otherwise, see if rinfo was previously matched to FK as
    5891                 :             :                                          * a "loose" clause.
    5892                 :             :                                          */
    5893         [ +  + ]:         237 :                                         if (list_member_ptr(fkinfo->rinfos[i], rinfo))
    5894                 :             :                                         {
    5895                 :         168 :                                                 remove_it = true;
    5896                 :         168 :                                                 break;
    5897                 :             :                                         }
    5898                 :             :                                 }
    5899                 :          70 :                         }
    5900         [ +  + ]:         279 :                         if (remove_it)
    5901                 :             :                         {
    5902                 :         274 :                                 worklist = foreach_delete_current(worklist, cell);
    5903                 :         274 :                                 removedlist = lappend(removedlist, rinfo);
    5904                 :         274 :                         }
    5905                 :         279 :                 }
    5906                 :             : 
    5907                 :             :                 /*
    5908                 :             :                  * If we failed to remove all the matching clauses we expected to
    5909                 :             :                  * find, chicken out and ignore this FK; applying its selectivity
    5910                 :             :                  * might result in double-counting.  Put any clauses we did manage to
    5911                 :             :                  * remove back into the worklist.
    5912                 :             :                  *
    5913                 :             :                  * Since the matching clauses are known not outerjoin-delayed, they
    5914                 :             :                  * would normally have appeared in the initial joinclause list.  If we
    5915                 :             :                  * didn't find them, there are two possibilities:
    5916                 :             :                  *
    5917                 :             :                  * 1. If the FK match is based on an EC that is ec_has_const, it won't
    5918                 :             :                  * have generated any join clauses at all.  We discount such ECs while
    5919                 :             :                  * checking to see if we have "all" the clauses.  (Below, we'll adjust
    5920                 :             :                  * the selectivity estimate for this case.)
    5921                 :             :                  *
    5922                 :             :                  * 2. The clauses were matched to some other FK in a previous
    5923                 :             :                  * iteration of this loop, and thus removed from worklist.  (A likely
    5924                 :             :                  * case is that two FKs are matched to the same EC; there will be only
    5925                 :             :                  * one EC-derived clause in the initial list, so the first FK will
    5926                 :             :                  * consume it.)  Applying both FKs' selectivity independently risks
    5927                 :             :                  * underestimating the join size; in particular, this would undo one
    5928                 :             :                  * of the main things that ECs were invented for, namely to avoid
    5929                 :             :                  * double-counting the selectivity of redundant equality conditions.
    5930                 :             :                  * Later we might think of a reasonable way to combine the estimates,
    5931                 :             :                  * but for now, just punt, since this is a fairly uncommon situation.
    5932                 :             :                  */
    5933   [ +  +  -  + ]:         250 :                 if (removedlist == NIL ||
    5934                 :         426 :                         list_length(removedlist) !=
    5935                 :         213 :                         (fkinfo->nmatched_ec - fkinfo->nconst_ec + fkinfo->nmatched_ri))
    5936                 :             :                 {
    5937                 :          37 :                         worklist = list_concat(worklist, removedlist);
    5938                 :          37 :                         continue;
    5939                 :             :                 }
    5940                 :             : 
    5941                 :             :                 /*
    5942                 :             :                  * Finally we get to the payoff: estimate selectivity using the
    5943                 :             :                  * knowledge that each referencing row will match exactly one row in
    5944                 :             :                  * the referenced table.
    5945                 :             :                  *
    5946                 :             :                  * XXX that's not true in the presence of nulls in the referencing
    5947                 :             :                  * column(s), so in principle we should derate the estimate for those.
    5948                 :             :                  * However (1) if there are any strict restriction clauses for the
    5949                 :             :                  * referencing column(s) elsewhere in the query, derating here would
    5950                 :             :                  * be double-counting the null fraction, and (2) it's not very clear
    5951                 :             :                  * how to combine null fractions for multiple referencing columns. So
    5952                 :             :                  * we do nothing for now about correcting for nulls.
    5953                 :             :                  *
    5954                 :             :                  * XXX another point here is that if either side of an FK constraint
    5955                 :             :                  * is an inheritance parent, we estimate as though the constraint
    5956                 :             :                  * covers all its children as well.  This is not an unreasonable
    5957                 :             :                  * assumption for a referencing table, ie the user probably applied
    5958                 :             :                  * identical constraints to all child tables (though perhaps we ought
    5959                 :             :                  * to check that).  But it's not possible to have done that for a
    5960                 :             :                  * referenced table.  Fortunately, precisely because that doesn't
    5961                 :             :                  * work, it is uncommon in practice to have an FK referencing a parent
    5962                 :             :                  * table.  So, at least for now, disregard inheritance here.
    5963                 :             :                  */
    5964   [ +  -  +  + ]:         213 :                 if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
    5965                 :             :                 {
    5966                 :             :                         /*
    5967                 :             :                          * For JOIN_SEMI and JOIN_ANTI, we only get here when the FK's
    5968                 :             :                          * referenced table is exactly the inside of the join.  The join
    5969                 :             :                          * selectivity is defined as the fraction of LHS rows that have
    5970                 :             :                          * matches.  The FK implies that every LHS row has a match *in the
    5971                 :             :                          * referenced table*; but any restriction clauses on it will
    5972                 :             :                          * reduce the number of matches.  Hence we take the join
    5973                 :             :                          * selectivity as equal to the selectivity of the table's
    5974                 :             :                          * restriction clauses, which is rows / tuples; but we must guard
    5975                 :             :                          * against tuples == 0.
    5976                 :             :                          */
    5977                 :          82 :                         RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5978         [ +  + ]:          82 :                         double          ref_tuples = Max(ref_rel->tuples, 1.0);
    5979                 :             : 
    5980                 :          82 :                         fkselec *= ref_rel->rows / ref_tuples;
    5981                 :          82 :                 }
    5982                 :             :                 else
    5983                 :             :                 {
    5984                 :             :                         /*
    5985                 :             :                          * Otherwise, selectivity is exactly 1/referenced-table-size; but
    5986                 :             :                          * guard against tuples == 0.  Note we should use the raw table
    5987                 :             :                          * tuple count, not any estimate of its filtered or joined size.
    5988                 :             :                          */
    5989                 :         131 :                         RelOptInfo *ref_rel = find_base_rel(root, fkinfo->ref_relid);
    5990         [ +  - ]:         131 :                         double          ref_tuples = Max(ref_rel->tuples, 1.0);
    5991                 :             : 
    5992                 :         131 :                         fkselec *= 1.0 / ref_tuples;
    5993                 :         131 :                 }
    5994                 :             : 
    5995                 :             :                 /*
    5996                 :             :                  * If any of the FK columns participated in ec_has_const ECs, then
    5997                 :             :                  * equivclass.c will have generated "var = const" restrictions for
    5998                 :             :                  * each side of the join, thus reducing the sizes of both input
    5999                 :             :                  * relations.  Taking the fkselec at face value would amount to
    6000                 :             :                  * double-counting the selectivity of the constant restriction for the
    6001                 :             :                  * referencing Var.  Hence, look for the restriction clause(s) that
    6002                 :             :                  * were applied to the referencing Var(s), and divide out their
    6003                 :             :                  * selectivity to correct for this.
    6004                 :             :                  */
    6005         [ +  + ]:         213 :                 if (fkinfo->nconst_ec > 0)
    6006                 :             :                 {
    6007         [ +  + ]:           4 :                         for (int i = 0; i < fkinfo->nkeys; i++)
    6008                 :             :                         {
    6009                 :           3 :                                 EquivalenceClass *ec = fkinfo->eclass[i];
    6010                 :             : 
    6011   [ +  -  +  + ]:           3 :                                 if (ec && ec->ec_has_const)
    6012                 :             :                                 {
    6013                 :           1 :                                         EquivalenceMember *em = fkinfo->fk_eclass_member[i];
    6014                 :           2 :                                         RestrictInfo *rinfo = find_derived_clause_for_ec_member(root,
    6015                 :           1 :                                                                                                                                                         ec,
    6016                 :           1 :                                                                                                                                                         em);
    6017                 :             : 
    6018         [ -  + ]:           1 :                                         if (rinfo)
    6019                 :             :                                         {
    6020                 :           1 :                                                 Selectivity s0;
    6021                 :             : 
    6022                 :           2 :                                                 s0 = clause_selectivity(root,
    6023                 :           1 :                                                                                                 (Node *) rinfo,
    6024                 :             :                                                                                                 0,
    6025                 :           1 :                                                                                                 jointype,
    6026                 :           1 :                                                                                                 sjinfo);
    6027         [ -  + ]:           1 :                                                 if (s0 > 0)
    6028                 :           1 :                                                         fkselec /= s0;
    6029                 :           1 :                                         }
    6030                 :           1 :                                 }
    6031                 :           3 :                         }
    6032                 :           1 :                 }
    6033      [ -  +  + ]:         368 :         }
    6034                 :             : 
    6035                 :       25149 :         *restrictlist = worklist;
    6036   [ -  +  +  - ]:       50298 :         CLAMP_PROBABILITY(fkselec);
    6037                 :       50298 :         return fkselec;
    6038                 :       25149 : }
    6039                 :             : 
    6040                 :             : /*
    6041                 :             :  * set_subquery_size_estimates
    6042                 :             :  *              Set the size estimates for a base relation that is a subquery.
    6043                 :             :  *
    6044                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6045                 :             :  * already, and the Paths for the subquery must have been completed.
    6046                 :             :  * We look at the subquery's PlannerInfo to extract data.
    6047                 :             :  *
    6048                 :             :  * We set the same fields as set_baserel_size_estimates.
    6049                 :             :  */
    6050                 :             : void
    6051                 :        3600 : set_subquery_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6052                 :             : {
    6053                 :        3600 :         PlannerInfo *subroot = rel->subroot;
    6054                 :        3600 :         RelOptInfo *sub_final_rel;
    6055                 :        3600 :         ListCell   *lc;
    6056                 :             : 
    6057                 :             :         /* Should only be applied to base relations that are subqueries */
    6058         [ +  - ]:        3600 :         Assert(rel->relid > 0);
    6059   [ +  -  +  - ]:        3600 :         Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_SUBQUERY);
    6060                 :             : 
    6061                 :             :         /*
    6062                 :             :          * Copy raw number of output rows from subquery.  All of its paths should
    6063                 :             :          * have the same output rowcount, so just look at cheapest-total.
    6064                 :             :          */
    6065                 :        3600 :         sub_final_rel = fetch_upper_rel(subroot, UPPERREL_FINAL, NULL);
    6066                 :        3600 :         rel->tuples = sub_final_rel->cheapest_total_path->rows;
    6067                 :             : 
    6068                 :             :         /*
    6069                 :             :          * Compute per-output-column width estimates by examining the subquery's
    6070                 :             :          * targetlist.  For any output that is a plain Var, get the width estimate
    6071                 :             :          * that was made while planning the subquery.  Otherwise, we leave it to
    6072                 :             :          * set_rel_width to fill in a datatype-based default estimate.
    6073                 :             :          */
    6074   [ +  +  +  +  :       14706 :         foreach(lc, subroot->parse->targetList)
                   +  + ]
    6075                 :             :         {
    6076                 :       11106 :                 TargetEntry *te = lfirst_node(TargetEntry, lc);
    6077                 :       11106 :                 Node       *texpr = (Node *) te->expr;
    6078                 :       11106 :                 int32           item_width = 0;
    6079                 :             : 
    6080                 :             :                 /* junk columns aren't visible to upper query */
    6081         [ +  + ]:       11106 :                 if (te->resjunk)
    6082                 :         175 :                         continue;
    6083                 :             : 
    6084                 :             :                 /*
    6085                 :             :                  * The subquery could be an expansion of a view that's had columns
    6086                 :             :                  * added to it since the current query was parsed, so that there are
    6087                 :             :                  * non-junk tlist columns in it that don't correspond to any column
    6088                 :             :                  * visible at our query level.  Ignore such columns.
    6089                 :             :                  */
    6090   [ +  -  -  + ]:       10931 :                 if (te->resno < rel->min_attr || te->resno > rel->max_attr)
    6091                 :           0 :                         continue;
    6092                 :             : 
    6093                 :             :                 /*
    6094                 :             :                  * XXX This currently doesn't work for subqueries containing set
    6095                 :             :                  * operations, because the Vars in their tlists are bogus references
    6096                 :             :                  * to the first leaf subquery, which wouldn't give the right answer
    6097                 :             :                  * even if we could still get to its PlannerInfo.
    6098                 :             :                  *
    6099                 :             :                  * Also, the subquery could be an appendrel for which all branches are
    6100                 :             :                  * known empty due to constraint exclusion, in which case
    6101                 :             :                  * set_append_rel_pathlist will have left the attr_widths set to zero.
    6102                 :             :                  *
    6103                 :             :                  * In either case, we just leave the width estimate zero until
    6104                 :             :                  * set_rel_width fixes it.
    6105                 :             :                  */
    6106   [ +  +  +  + ]:       10931 :                 if (IsA(texpr, Var) &&
    6107                 :        4081 :                         subroot->parse->setOperations == NULL)
    6108                 :             :                 {
    6109                 :        3948 :                         Var                *var = (Var *) texpr;
    6110                 :        3948 :                         RelOptInfo *subrel = find_base_rel(subroot, var->varno);
    6111                 :             : 
    6112                 :        3948 :                         item_width = subrel->attr_widths[var->varattno - subrel->min_attr];
    6113                 :        3948 :                 }
    6114                 :       10931 :                 rel->attr_widths[te->resno - rel->min_attr] = item_width;
    6115      [ -  +  + ]:       11106 :         }
    6116                 :             : 
    6117                 :             :         /* Now estimate number of output rows, etc */
    6118                 :        3600 :         set_baserel_size_estimates(root, rel);
    6119                 :        3600 : }
    6120                 :             : 
    6121                 :             : /*
    6122                 :             :  * set_function_size_estimates
    6123                 :             :  *              Set the size estimates for a base relation that is a function call.
    6124                 :             :  *
    6125                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6126                 :             :  * already.
    6127                 :             :  *
    6128                 :             :  * We set the same fields as set_baserel_size_estimates.
    6129                 :             :  */
    6130                 :             : void
    6131                 :        3642 : set_function_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6132                 :             : {
    6133                 :        3642 :         RangeTblEntry *rte;
    6134                 :        3642 :         ListCell   *lc;
    6135                 :             : 
    6136                 :             :         /* Should only be applied to base relations that are functions */
    6137         [ +  - ]:        3642 :         Assert(rel->relid > 0);
    6138         [ +  - ]:        3642 :         rte = planner_rt_fetch(rel->relid, root);
    6139         [ +  - ]:        3642 :         Assert(rte->rtekind == RTE_FUNCTION);
    6140                 :             : 
    6141                 :             :         /*
    6142                 :             :          * Estimate number of rows the functions will return. The rowcount of the
    6143                 :             :          * node is that of the largest function result.
    6144                 :             :          */
    6145                 :        3642 :         rel->tuples = 0;
    6146   [ +  -  +  +  :        7332 :         foreach(lc, rte->functions)
                   +  + ]
    6147                 :             :         {
    6148                 :        3690 :                 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
    6149                 :        3690 :                 double          ntup = expression_returns_set_rows(root, rtfunc->funcexpr);
    6150                 :             : 
    6151         [ +  + ]:        3690 :                 if (ntup > rel->tuples)
    6152                 :        3646 :                         rel->tuples = ntup;
    6153                 :        3690 :         }
    6154                 :             : 
    6155                 :             :         /* Now estimate number of output rows, etc */
    6156                 :        3642 :         set_baserel_size_estimates(root, rel);
    6157                 :        3642 : }
    6158                 :             : 
    6159                 :             : /*
    6160                 :             :  * set_function_size_estimates
    6161                 :             :  *              Set the size estimates for a base relation that is a function call.
    6162                 :             :  *
    6163                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6164                 :             :  * already.
    6165                 :             :  *
    6166                 :             :  * We set the same fields as set_tablefunc_size_estimates.
    6167                 :             :  */
    6168                 :             : void
    6169                 :         103 : set_tablefunc_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6170                 :             : {
    6171                 :             :         /* Should only be applied to base relations that are functions */
    6172         [ +  - ]:         103 :         Assert(rel->relid > 0);
    6173   [ +  -  +  - ]:         103 :         Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_TABLEFUNC);
    6174                 :             : 
    6175                 :         103 :         rel->tuples = 100;
    6176                 :             : 
    6177                 :             :         /* Now estimate number of output rows, etc */
    6178                 :         103 :         set_baserel_size_estimates(root, rel);
    6179                 :         103 : }
    6180                 :             : 
    6181                 :             : /*
    6182                 :             :  * set_values_size_estimates
    6183                 :             :  *              Set the size estimates for a base relation that is a values list.
    6184                 :             :  *
    6185                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6186                 :             :  * already.
    6187                 :             :  *
    6188                 :             :  * We set the same fields as set_baserel_size_estimates.
    6189                 :             :  */
    6190                 :             : void
    6191                 :        1114 : set_values_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6192                 :             : {
    6193                 :        1114 :         RangeTblEntry *rte;
    6194                 :             : 
    6195                 :             :         /* Should only be applied to base relations that are values lists */
    6196         [ +  - ]:        1114 :         Assert(rel->relid > 0);
    6197         [ +  - ]:        1114 :         rte = planner_rt_fetch(rel->relid, root);
    6198         [ +  - ]:        1114 :         Assert(rte->rtekind == RTE_VALUES);
    6199                 :             : 
    6200                 :             :         /*
    6201                 :             :          * Estimate number of rows the values list will return. We know this
    6202                 :             :          * precisely based on the list length (well, barring set-returning
    6203                 :             :          * functions in list items, but that's a refinement not catered for
    6204                 :             :          * anywhere else either).
    6205                 :             :          */
    6206                 :        1114 :         rel->tuples = list_length(rte->values_lists);
    6207                 :             : 
    6208                 :             :         /* Now estimate number of output rows, etc */
    6209                 :        1114 :         set_baserel_size_estimates(root, rel);
    6210                 :        1114 : }
    6211                 :             : 
    6212                 :             : /*
    6213                 :             :  * set_cte_size_estimates
    6214                 :             :  *              Set the size estimates for a base relation that is a CTE reference.
    6215                 :             :  *
    6216                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6217                 :             :  * already, and we need an estimate of the number of rows returned by the CTE
    6218                 :             :  * (if a regular CTE) or the non-recursive term (if a self-reference).
    6219                 :             :  *
    6220                 :             :  * We set the same fields as set_baserel_size_estimates.
    6221                 :             :  */
    6222                 :             : void
    6223                 :         286 : set_cte_size_estimates(PlannerInfo *root, RelOptInfo *rel, double cte_rows)
    6224                 :             : {
    6225                 :         286 :         RangeTblEntry *rte;
    6226                 :             : 
    6227                 :             :         /* Should only be applied to base relations that are CTE references */
    6228         [ +  - ]:         286 :         Assert(rel->relid > 0);
    6229         [ +  - ]:         286 :         rte = planner_rt_fetch(rel->relid, root);
    6230         [ +  - ]:         286 :         Assert(rte->rtekind == RTE_CTE);
    6231                 :             : 
    6232         [ +  + ]:         286 :         if (rte->self_reference)
    6233                 :             :         {
    6234                 :             :                 /*
    6235                 :             :                  * In a self-reference, we assume the average worktable size is a
    6236                 :             :                  * multiple of the nonrecursive term's size.  The best multiplier will
    6237                 :             :                  * vary depending on query "fan-out", so make its value adjustable.
    6238                 :             :                  */
    6239                 :          74 :                 rel->tuples = clamp_row_est(recursive_worktable_factor * cte_rows);
    6240                 :          74 :         }
    6241                 :             :         else
    6242                 :             :         {
    6243                 :             :                 /* Otherwise just believe the CTE's rowcount estimate */
    6244                 :         212 :                 rel->tuples = cte_rows;
    6245                 :             :         }
    6246                 :             : 
    6247                 :             :         /* Now estimate number of output rows, etc */
    6248                 :         286 :         set_baserel_size_estimates(root, rel);
    6249                 :         286 : }
    6250                 :             : 
    6251                 :             : /*
    6252                 :             :  * set_namedtuplestore_size_estimates
    6253                 :             :  *              Set the size estimates for a base relation that is a tuplestore reference.
    6254                 :             :  *
    6255                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6256                 :             :  * already.
    6257                 :             :  *
    6258                 :             :  * We set the same fields as set_baserel_size_estimates.
    6259                 :             :  */
    6260                 :             : void
    6261                 :          77 : set_namedtuplestore_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6262                 :             : {
    6263                 :          77 :         RangeTblEntry *rte;
    6264                 :             : 
    6265                 :             :         /* Should only be applied to base relations that are tuplestore references */
    6266         [ +  - ]:          77 :         Assert(rel->relid > 0);
    6267         [ +  - ]:          77 :         rte = planner_rt_fetch(rel->relid, root);
    6268         [ +  - ]:          77 :         Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
    6269                 :             : 
    6270                 :             :         /*
    6271                 :             :          * Use the estimate provided by the code which is generating the named
    6272                 :             :          * tuplestore.  In some cases, the actual number might be available; in
    6273                 :             :          * others the same plan will be re-used, so a "typical" value might be
    6274                 :             :          * estimated and used.
    6275                 :             :          */
    6276                 :          77 :         rel->tuples = rte->enrtuples;
    6277         [ +  - ]:          77 :         if (rel->tuples < 0)
    6278                 :           0 :                 rel->tuples = 1000;
    6279                 :             : 
    6280                 :             :         /* Now estimate number of output rows, etc */
    6281                 :          77 :         set_baserel_size_estimates(root, rel);
    6282                 :          77 : }
    6283                 :             : 
    6284                 :             : /*
    6285                 :             :  * set_result_size_estimates
    6286                 :             :  *              Set the size estimates for an RTE_RESULT base relation
    6287                 :             :  *
    6288                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6289                 :             :  * already.
    6290                 :             :  *
    6291                 :             :  * We set the same fields as set_baserel_size_estimates.
    6292                 :             :  */
    6293                 :             : void
    6294                 :         676 : set_result_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6295                 :             : {
    6296                 :             :         /* Should only be applied to RTE_RESULT base relations */
    6297         [ +  - ]:         676 :         Assert(rel->relid > 0);
    6298   [ +  -  +  - ]:         676 :         Assert(planner_rt_fetch(rel->relid, root)->rtekind == RTE_RESULT);
    6299                 :             : 
    6300                 :             :         /* RTE_RESULT always generates a single row, natively */
    6301                 :         676 :         rel->tuples = 1;
    6302                 :             : 
    6303                 :             :         /* Now estimate number of output rows, etc */
    6304                 :         676 :         set_baserel_size_estimates(root, rel);
    6305                 :         676 : }
    6306                 :             : 
    6307                 :             : /*
    6308                 :             :  * set_foreign_size_estimates
    6309                 :             :  *              Set the size estimates for a base relation that is a foreign table.
    6310                 :             :  *
    6311                 :             :  * There is not a whole lot that we can do here; the foreign-data wrapper
    6312                 :             :  * is responsible for producing useful estimates.  We can do a decent job
    6313                 :             :  * of estimating baserestrictcost, so we set that, and we also set up width
    6314                 :             :  * using what will be purely datatype-driven estimates from the targetlist.
    6315                 :             :  * There is no way to do anything sane with the rows value, so we just put
    6316                 :             :  * a default estimate and hope that the wrapper can improve on it.  The
    6317                 :             :  * wrapper's GetForeignRelSize function will be called momentarily.
    6318                 :             :  *
    6319                 :             :  * The rel's targetlist and restrictinfo list must have been constructed
    6320                 :             :  * already.
    6321                 :             :  */
    6322                 :             : void
    6323                 :           0 : set_foreign_size_estimates(PlannerInfo *root, RelOptInfo *rel)
    6324                 :             : {
    6325                 :             :         /* Should only be applied to base relations */
    6326         [ #  # ]:           0 :         Assert(rel->relid > 0);
    6327                 :             : 
    6328                 :           0 :         rel->rows = 1000;                    /* entirely bogus default estimate */
    6329                 :             : 
    6330                 :           0 :         cost_qual_eval(&rel->baserestrictcost, rel->baserestrictinfo, root);
    6331                 :             : 
    6332                 :           0 :         set_rel_width(root, rel);
    6333                 :           0 : }
    6334                 :             : 
    6335                 :             : 
    6336                 :             : /*
    6337                 :             :  * set_rel_width
    6338                 :             :  *              Set the estimated output width of a base relation.
    6339                 :             :  *
    6340                 :             :  * The estimated output width is the sum of the per-attribute width estimates
    6341                 :             :  * for the actually-referenced columns, plus any PHVs or other expressions
    6342                 :             :  * that have to be calculated at this relation.  This is the amount of data
    6343                 :             :  * we'd need to pass upwards in case of a sort, hash, etc.
    6344                 :             :  *
    6345                 :             :  * This function also sets reltarget->cost, so it's a bit misnamed now.
    6346                 :             :  *
    6347                 :             :  * NB: this works best on plain relations because it prefers to look at
    6348                 :             :  * real Vars.  For subqueries, set_subquery_size_estimates will already have
    6349                 :             :  * copied up whatever per-column estimates were made within the subquery,
    6350                 :             :  * and for other types of rels there isn't much we can do anyway.  We fall
    6351                 :             :  * back on (fairly stupid) datatype-based width estimates if we can't get
    6352                 :             :  * any better number.
    6353                 :             :  *
    6354                 :             :  * The per-attribute width estimates are cached for possible re-use while
    6355                 :             :  * building join relations or post-scan/join pathtargets.
    6356                 :             :  */
    6357                 :             : static void
    6358                 :       52735 : set_rel_width(PlannerInfo *root, RelOptInfo *rel)
    6359                 :             : {
    6360         [ -  + ]:       52735 :         Oid                     reloid = planner_rt_fetch(rel->relid, root)->relid;
    6361                 :       52735 :         int64           tuple_width = 0;
    6362                 :       52735 :         bool            have_wholerow_var = false;
    6363                 :       52735 :         ListCell   *lc;
    6364                 :             : 
    6365                 :             :         /* Vars are assumed to have cost zero, but other exprs do not */
    6366                 :       52735 :         rel->reltarget->cost.startup = 0;
    6367                 :       52735 :         rel->reltarget->cost.per_tuple = 0;
    6368                 :             : 
    6369   [ +  +  +  +  :      182314 :         foreach(lc, rel->reltarget->exprs)
                   +  + ]
    6370                 :             :         {
    6371                 :      129579 :                 Node       *node = (Node *) lfirst(lc);
    6372                 :             : 
    6373                 :             :                 /*
    6374                 :             :                  * Ordinarily, a Var in a rel's targetlist must belong to that rel;
    6375                 :             :                  * but there are corner cases involving LATERAL references where that
    6376                 :             :                  * isn't so.  If the Var has the wrong varno, fall through to the
    6377                 :             :                  * generic case (it doesn't seem worth the trouble to be any smarter).
    6378                 :             :                  */
    6379   [ +  +  +  + ]:      129579 :                 if (IsA(node, Var) &&
    6380                 :      126152 :                         ((Var *) node)->varno == rel->relid)
    6381                 :             :                 {
    6382                 :      126141 :                         Var                *var = (Var *) node;
    6383                 :      126141 :                         int                     ndx;
    6384                 :      126141 :                         int32           item_width;
    6385                 :             : 
    6386         [ +  - ]:      126141 :                         Assert(var->varattno >= rel->min_attr);
    6387         [ +  - ]:      126141 :                         Assert(var->varattno <= rel->max_attr);
    6388                 :             : 
    6389                 :      126141 :                         ndx = var->varattno - rel->min_attr;
    6390                 :             : 
    6391                 :             :                         /*
    6392                 :             :                          * If it's a whole-row Var, we'll deal with it below after we have
    6393                 :             :                          * already cached as many attr widths as possible.
    6394                 :             :                          */
    6395         [ +  + ]:      126141 :                         if (var->varattno == 0)
    6396                 :             :                         {
    6397                 :         269 :                                 have_wholerow_var = true;
    6398                 :         269 :                                 continue;
    6399                 :             :                         }
    6400                 :             : 
    6401                 :             :                         /*
    6402                 :             :                          * The width may have been cached already (especially if it's a
    6403                 :             :                          * subquery), so don't duplicate effort.
    6404                 :             :                          */
    6405         [ +  + ]:      125872 :                         if (rel->attr_widths[ndx] > 0)
    6406                 :             :                         {
    6407                 :       36175 :                                 tuple_width += rel->attr_widths[ndx];
    6408                 :       36175 :                                 continue;
    6409                 :             :                         }
    6410                 :             : 
    6411                 :             :                         /* Try to get column width from statistics */
    6412   [ +  +  +  + ]:       89697 :                         if (reloid != InvalidOid && var->varattno > 0)
    6413                 :             :                         {
    6414                 :       71530 :                                 item_width = get_attavgwidth(reloid, var->varattno);
    6415         [ +  + ]:       71530 :                                 if (item_width > 0)
    6416                 :             :                                 {
    6417                 :       60357 :                                         rel->attr_widths[ndx] = item_width;
    6418                 :       60357 :                                         tuple_width += item_width;
    6419                 :       60357 :                                         continue;
    6420                 :             :                                 }
    6421                 :       11173 :                         }
    6422                 :             : 
    6423                 :             :                         /*
    6424                 :             :                          * Not a plain relation, or can't find statistics for it. Estimate
    6425                 :             :                          * using just the type info.
    6426                 :             :                          */
    6427                 :       29340 :                         item_width = get_typavgwidth(var->vartype, var->vartypmod);
    6428         [ -  + ]:       29340 :                         Assert(item_width > 0);
    6429                 :       29340 :                         rel->attr_widths[ndx] = item_width;
    6430                 :       29340 :                         tuple_width += item_width;
    6431         [ +  + ]:      126141 :                 }
    6432         [ +  + ]:        3438 :                 else if (IsA(node, PlaceHolderVar))
    6433                 :             :                 {
    6434                 :             :                         /*
    6435                 :             :                          * We will need to evaluate the PHV's contained expression while
    6436                 :             :                          * scanning this rel, so be sure to include it in reltarget->cost.
    6437                 :             :                          */
    6438                 :         325 :                         PlaceHolderVar *phv = (PlaceHolderVar *) node;
    6439                 :         325 :                         PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
    6440                 :         325 :                         QualCost        cost;
    6441                 :             : 
    6442                 :         325 :                         tuple_width += phinfo->ph_width;
    6443                 :         325 :                         cost_qual_eval_node(&cost, (Node *) phv->phexpr, root);
    6444                 :         325 :                         rel->reltarget->cost.startup += cost.startup;
    6445                 :         325 :                         rel->reltarget->cost.per_tuple += cost.per_tuple;
    6446                 :         325 :                 }
    6447                 :             :                 else
    6448                 :             :                 {
    6449                 :             :                         /*
    6450                 :             :                          * We could be looking at an expression pulled up from a subquery,
    6451                 :             :                          * or a ROW() representing a whole-row child Var, etc.  Do what we
    6452                 :             :                          * can using the expression type information.
    6453                 :             :                          */
    6454                 :        3113 :                         int32           item_width;
    6455                 :        3113 :                         QualCost        cost;
    6456                 :             : 
    6457                 :        3113 :                         item_width = get_typavgwidth(exprType(node), exprTypmod(node));
    6458         [ +  - ]:        3113 :                         Assert(item_width > 0);
    6459                 :        3113 :                         tuple_width += item_width;
    6460                 :             :                         /* Not entirely clear if we need to account for cost, but do so */
    6461                 :        3113 :                         cost_qual_eval_node(&cost, node, root);
    6462                 :        3113 :                         rel->reltarget->cost.startup += cost.startup;
    6463                 :        3113 :                         rel->reltarget->cost.per_tuple += cost.per_tuple;
    6464                 :        3113 :                 }
    6465      [ -  +  + ]:      129579 :         }
    6466                 :             : 
    6467                 :             :         /*
    6468                 :             :          * If we have a whole-row reference, estimate its width as the sum of
    6469                 :             :          * per-column widths plus heap tuple header overhead.
    6470                 :             :          */
    6471         [ +  + ]:       52735 :         if (have_wholerow_var)
    6472                 :             :         {
    6473                 :         269 :                 int64           wholerow_width = MAXALIGN(SizeofHeapTupleHeader);
    6474                 :             : 
    6475         [ +  + ]:         269 :                 if (reloid != InvalidOid)
    6476                 :             :                 {
    6477                 :             :                         /* Real relation, so estimate true tuple width */
    6478                 :         374 :                         wholerow_width += get_relation_data_width(reloid,
    6479                 :         187 :                                                                                                           rel->attr_widths - rel->min_attr);
    6480                 :         187 :                 }
    6481                 :             :                 else
    6482                 :             :                 {
    6483                 :             :                         /* Do what we can with info for a phony rel */
    6484                 :          82 :                         AttrNumber      i;
    6485                 :             : 
    6486         [ +  + ]:         223 :                         for (i = 1; i <= rel->max_attr; i++)
    6487                 :         141 :                                 wholerow_width += rel->attr_widths[i - rel->min_attr];
    6488                 :          82 :                 }
    6489                 :             : 
    6490                 :         269 :                 rel->attr_widths[0 - rel->min_attr] = clamp_width_est(wholerow_width);
    6491                 :             : 
    6492                 :             :                 /*
    6493                 :             :                  * Include the whole-row Var as part of the output tuple.  Yes, that
    6494                 :             :                  * really is what happens at runtime.
    6495                 :             :                  */
    6496                 :         269 :                 tuple_width += wholerow_width;
    6497                 :         269 :         }
    6498                 :             : 
    6499                 :       52735 :         rel->reltarget->width = clamp_width_est(tuple_width);
    6500                 :       52735 : }
    6501                 :             : 
    6502                 :             : /*
    6503                 :             :  * set_pathtarget_cost_width
    6504                 :             :  *              Set the estimated eval cost and output width of a PathTarget tlist.
    6505                 :             :  *
    6506                 :             :  * As a notational convenience, returns the same PathTarget pointer passed in.
    6507                 :             :  *
    6508                 :             :  * Most, though not quite all, uses of this function occur after we've run
    6509                 :             :  * set_rel_width() for base relations; so we can usually obtain cached width
    6510                 :             :  * estimates for Vars.  If we can't, fall back on datatype-based width
    6511                 :             :  * estimates.  Present early-planning uses of PathTargets don't need accurate
    6512                 :             :  * widths badly enough to justify going to the catalogs for better data.
    6513                 :             :  */
    6514                 :             : PathTarget *
    6515                 :       63879 : set_pathtarget_cost_width(PlannerInfo *root, PathTarget *target)
    6516                 :             : {
    6517                 :       63879 :         int64           tuple_width = 0;
    6518                 :       63879 :         ListCell   *lc;
    6519                 :             : 
    6520                 :             :         /* Vars are assumed to have cost zero, but other exprs do not */
    6521                 :       63879 :         target->cost.startup = 0;
    6522                 :       63879 :         target->cost.per_tuple = 0;
    6523                 :             : 
    6524   [ +  +  +  +  :      216028 :         foreach(lc, target->exprs)
                   +  + ]
    6525                 :             :         {
    6526                 :      152149 :                 Node       *node = (Node *) lfirst(lc);
    6527                 :             : 
    6528                 :      152149 :                 tuple_width += get_expr_width(root, node);
    6529                 :             : 
    6530                 :             :                 /* For non-Vars, account for evaluation cost */
    6531         [ +  + ]:      152149 :                 if (!IsA(node, Var))
    6532                 :             :                 {
    6533                 :       68157 :                         QualCost        cost;
    6534                 :             : 
    6535                 :       68157 :                         cost_qual_eval_node(&cost, node, root);
    6536                 :       68157 :                         target->cost.startup += cost.startup;
    6537                 :       68157 :                         target->cost.per_tuple += cost.per_tuple;
    6538                 :       68157 :                 }
    6539                 :      152149 :         }
    6540                 :             : 
    6541                 :       63879 :         target->width = clamp_width_est(tuple_width);
    6542                 :             : 
    6543                 :      127758 :         return target;
    6544                 :       63879 : }
    6545                 :             : 
    6546                 :             : /*
    6547                 :             :  * get_expr_width
    6548                 :             :  *              Estimate the width of the given expr attempting to use the width
    6549                 :             :  *              cached in a Var's owning RelOptInfo, else fallback on the type's
    6550                 :             :  *              average width when unable to or when the given Node is not a Var.
    6551                 :             :  */
    6552                 :             : static int32
    6553                 :      171978 : get_expr_width(PlannerInfo *root, const Node *expr)
    6554                 :             : {
    6555                 :      171978 :         int32           width;
    6556                 :             : 
    6557         [ +  + ]:      171978 :         if (IsA(expr, Var))
    6558                 :             :         {
    6559                 :      102367 :                 const Var  *var = (const Var *) expr;
    6560                 :             : 
    6561                 :             :                 /* We should not see any upper-level Vars here */
    6562         [ +  - ]:      102367 :                 Assert(var->varlevelsup == 0);
    6563                 :             : 
    6564                 :             :                 /* Try to get data from RelOptInfo cache */
    6565   [ +  +  -  + ]:      102367 :                 if (!IS_SPECIAL_VARNO(var->varno) &&
    6566                 :      101627 :                         var->varno < root->simple_rel_array_size)
    6567                 :             :                 {
    6568                 :      101627 :                         RelOptInfo *rel = root->simple_rel_array[var->varno];
    6569                 :             : 
    6570         [ +  + ]:      101627 :                         if (rel != NULL &&
    6571   [ +  -  -  + ]:       99375 :                                 var->varattno >= rel->min_attr &&
    6572                 :       99375 :                                 var->varattno <= rel->max_attr)
    6573                 :             :                         {
    6574                 :       99375 :                                 int                     ndx = var->varattno - rel->min_attr;
    6575                 :             : 
    6576         [ +  + ]:       99375 :                                 if (rel->attr_widths[ndx] > 0)
    6577                 :       95540 :                                         return rel->attr_widths[ndx];
    6578         [ +  + ]:       99375 :                         }
    6579         [ +  + ]:      101627 :                 }
    6580                 :             : 
    6581                 :             :                 /*
    6582                 :             :                  * No cached data available, so estimate using just the type info.
    6583                 :             :                  */
    6584                 :        6827 :                 width = get_typavgwidth(var->vartype, var->vartypmod);
    6585         [ +  - ]:        6827 :                 Assert(width > 0);
    6586                 :             : 
    6587                 :        6827 :                 return width;
    6588                 :      102367 :         }
    6589                 :             : 
    6590                 :       69611 :         width = get_typavgwidth(exprType(expr), exprTypmod(expr));
    6591         [ +  - ]:       69611 :         Assert(width > 0);
    6592                 :       69611 :         return width;
    6593                 :      171978 : }
    6594                 :             : 
    6595                 :             : /*
    6596                 :             :  * relation_byte_size
    6597                 :             :  *        Estimate the storage space in bytes for a given number of tuples
    6598                 :             :  *        of a given width (size in bytes).
    6599                 :             :  */
    6600                 :             : static double
    6601                 :      482581 : relation_byte_size(double tuples, int width)
    6602                 :             : {
    6603                 :      482581 :         return tuples * (MAXALIGN(width) + MAXALIGN(SizeofHeapTupleHeader));
    6604                 :             : }
    6605                 :             : 
    6606                 :             : /*
    6607                 :             :  * page_size
    6608                 :             :  *        Returns an estimate of the number of pages covered by a given
    6609                 :             :  *        number of tuples of a given width (size in bytes).
    6610                 :             :  */
    6611                 :             : static double
    6612                 :         696 : page_size(double tuples, int width)
    6613                 :             : {
    6614                 :         696 :         return ceil(relation_byte_size(tuples, width) / BLCKSZ);
    6615                 :             : }
    6616                 :             : 
    6617                 :             : /*
    6618                 :             :  * Estimate the fraction of the work that each worker will do given the
    6619                 :             :  * number of workers budgeted for the path.
    6620                 :             :  */
    6621                 :             : static double
    6622                 :       75484 : get_parallel_divisor(Path *path)
    6623                 :             : {
    6624                 :       75484 :         double          parallel_divisor = path->parallel_workers;
    6625                 :             : 
    6626                 :             :         /*
    6627                 :             :          * Early experience with parallel query suggests that when there is only
    6628                 :             :          * one worker, the leader often makes a very substantial contribution to
    6629                 :             :          * executing the parallel portion of the plan, but as more workers are
    6630                 :             :          * added, it does less and less, because it's busy reading tuples from the
    6631                 :             :          * workers and doing whatever non-parallel post-processing is needed.  By
    6632                 :             :          * the time we reach 4 workers, the leader no longer makes a meaningful
    6633                 :             :          * contribution.  Thus, for now, estimate that the leader spends 30% of
    6634                 :             :          * its time servicing each worker, and the remainder executing the
    6635                 :             :          * parallel plan.
    6636                 :             :          */
    6637         [ +  + ]:       75484 :         if (parallel_leader_participation)
    6638                 :             :         {
    6639                 :       75285 :                 double          leader_contribution;
    6640                 :             : 
    6641                 :       75285 :                 leader_contribution = 1.0 - (0.3 * path->parallel_workers);
    6642         [ +  + ]:       75285 :                 if (leader_contribution > 0)
    6643                 :       74855 :                         parallel_divisor += leader_contribution;
    6644                 :       75285 :         }
    6645                 :             : 
    6646                 :      150968 :         return parallel_divisor;
    6647                 :       75484 : }
    6648                 :             : 
    6649                 :             : /*
    6650                 :             :  * compute_bitmap_pages
    6651                 :             :  *        Estimate number of pages fetched from heap in a bitmap heap scan.
    6652                 :             :  *
    6653                 :             :  * 'baserel' is the relation to be scanned
    6654                 :             :  * 'bitmapqual' is a tree of IndexPaths, BitmapAndPaths, and BitmapOrPaths
    6655                 :             :  * 'loop_count' is the number of repetitions of the indexscan to factor into
    6656                 :             :  *              estimates of caching behavior
    6657                 :             :  *
    6658                 :             :  * If cost_p isn't NULL, the indexTotalCost estimate is returned in *cost_p.
    6659                 :             :  * If tuples_p isn't NULL, the tuples_fetched estimate is returned in *tuples_p.
    6660                 :             :  */
    6661                 :             : double
    6662                 :       63469 : compute_bitmap_pages(PlannerInfo *root, RelOptInfo *baserel,
    6663                 :             :                                          Path *bitmapqual, double loop_count,
    6664                 :             :                                          Cost *cost_p, double *tuples_p)
    6665                 :             : {
    6666                 :       63469 :         Cost            indexTotalCost;
    6667                 :       63469 :         Selectivity indexSelectivity;
    6668                 :       63469 :         double          T;
    6669                 :       63469 :         double          pages_fetched;
    6670                 :       63469 :         double          tuples_fetched;
    6671                 :       63469 :         double          heap_pages;
    6672                 :       63469 :         double          maxentries;
    6673                 :             : 
    6674                 :             :         /*
    6675                 :             :          * Fetch total cost of obtaining the bitmap, as well as its total
    6676                 :             :          * selectivity.
    6677                 :             :          */
    6678                 :       63469 :         cost_bitmap_tree_node(bitmapqual, &indexTotalCost, &indexSelectivity);
    6679                 :             : 
    6680                 :             :         /*
    6681                 :             :          * Estimate number of main-table pages fetched.
    6682                 :             :          */
    6683                 :       63469 :         tuples_fetched = clamp_row_est(indexSelectivity * baserel->tuples);
    6684                 :             : 
    6685         [ +  + ]:       63469 :         T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
    6686                 :             : 
    6687                 :             :         /*
    6688                 :             :          * For a single scan, the number of heap pages that need to be fetched is
    6689                 :             :          * the same as the Mackert and Lohman formula for the case T <= b (ie, no
    6690                 :             :          * re-reads needed).
    6691                 :             :          */
    6692                 :       63469 :         pages_fetched = (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
    6693                 :             : 
    6694                 :             :         /*
    6695                 :             :          * Calculate the number of pages fetched from the heap.  Then based on
    6696                 :             :          * current work_mem estimate get the estimated maxentries in the bitmap.
    6697                 :             :          * (Note that we always do this calculation based on the number of pages
    6698                 :             :          * that would be fetched in a single iteration, even if loop_count > 1.
    6699                 :             :          * That's correct, because only that number of entries will be stored in
    6700                 :             :          * the bitmap at one time.)
    6701                 :             :          */
    6702         [ +  + ]:       63469 :         heap_pages = Min(pages_fetched, baserel->pages);
    6703                 :       63469 :         maxentries = tbm_calculate_entries(work_mem * (Size) 1024);
    6704                 :             : 
    6705         [ +  + ]:       63469 :         if (loop_count > 1)
    6706                 :             :         {
    6707                 :             :                 /*
    6708                 :             :                  * For repeated bitmap scans, scale up the number of tuples fetched in
    6709                 :             :                  * the Mackert and Lohman formula by the number of scans, so that we
    6710                 :             :                  * estimate the number of pages fetched by all the scans. Then
    6711                 :             :                  * pro-rate for one scan.
    6712                 :             :                  */
    6713                 :       28204 :                 pages_fetched = index_pages_fetched(tuples_fetched * loop_count,
    6714                 :       14102 :                                                                                         baserel->pages,
    6715                 :       14102 :                                                                                         get_indexpath_pages(bitmapqual),
    6716                 :       14102 :                                                                                         root);
    6717                 :       14102 :                 pages_fetched /= loop_count;
    6718                 :       14102 :         }
    6719                 :             : 
    6720         [ +  + ]:       63469 :         if (pages_fetched >= T)
    6721                 :        7397 :                 pages_fetched = T;
    6722                 :             :         else
    6723                 :       56072 :                 pages_fetched = ceil(pages_fetched);
    6724                 :             : 
    6725         [ +  + ]:       63469 :         if (maxentries < heap_pages)
    6726                 :             :         {
    6727                 :           3 :                 double          exact_pages;
    6728                 :           3 :                 double          lossy_pages;
    6729                 :             : 
    6730                 :             :                 /*
    6731                 :             :                  * Crude approximation of the number of lossy pages.  Because of the
    6732                 :             :                  * way tbm_lossify() is coded, the number of lossy pages increases
    6733                 :             :                  * very sharply as soon as we run short of memory; this formula has
    6734                 :             :                  * that property and seems to perform adequately in testing, but it's
    6735                 :             :                  * possible we could do better somehow.
    6736                 :             :                  */
    6737         [ -  + ]:           3 :                 lossy_pages = Max(0, heap_pages - maxentries / 2);
    6738                 :           3 :                 exact_pages = heap_pages - lossy_pages;
    6739                 :             : 
    6740                 :             :                 /*
    6741                 :             :                  * If there are lossy pages then recompute the number of tuples
    6742                 :             :                  * processed by the bitmap heap node.  We assume here that the chance
    6743                 :             :                  * of a given tuple coming from an exact page is the same as the
    6744                 :             :                  * chance that a given page is exact.  This might not be true, but
    6745                 :             :                  * it's not clear how we can do any better.
    6746                 :             :                  */
    6747         [ -  + ]:           3 :                 if (lossy_pages > 0)
    6748                 :           3 :                         tuples_fetched =
    6749                 :           9 :                                 clamp_row_est(indexSelectivity *
    6750                 :           9 :                                                           (exact_pages / heap_pages) * baserel->tuples +
    6751                 :           3 :                                                           (lossy_pages / heap_pages) * baserel->tuples);
    6752                 :           3 :         }
    6753                 :             : 
    6754         [ +  + ]:       63469 :         if (cost_p)
    6755                 :       50395 :                 *cost_p = indexTotalCost;
    6756         [ +  + ]:       63469 :         if (tuples_p)
    6757                 :       50395 :                 *tuples_p = tuples_fetched;
    6758                 :             : 
    6759                 :      126938 :         return pages_fetched;
    6760                 :       63469 : }
    6761                 :             : 
    6762                 :             : /*
    6763                 :             :  * compute_gather_rows
    6764                 :             :  *        Estimate number of rows for gather (merge) nodes.
    6765                 :             :  *
    6766                 :             :  * In a parallel plan, each worker's row estimate is determined by dividing the
    6767                 :             :  * total number of rows by parallel_divisor, which accounts for the leader's
    6768                 :             :  * contribution in addition to the number of workers.  Accordingly, when
    6769                 :             :  * estimating the number of rows for gather (merge) nodes, we multiply the rows
    6770                 :             :  * per worker by the same parallel_divisor to undo the division.
    6771                 :             :  */
    6772                 :             : double
    6773                 :        6643 : compute_gather_rows(Path *path)
    6774                 :             : {
    6775         [ +  - ]:        6643 :         Assert(path->parallel_workers > 0);
    6776                 :             : 
    6777                 :        6643 :         return clamp_row_est(path->rows * get_parallel_divisor(path));
    6778                 :             : }
        

Generated by: LCOV version 2.3.2-1