Branch data Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * createplan.c
4 : : * Routines to create the desired plan for processing a query.
5 : : * Planning is complete, we just need to convert the selected
6 : : * Path into a Plan.
7 : : *
8 : : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
9 : : * Portions Copyright (c) 1994, Regents of the University of California
10 : : *
11 : : *
12 : : * IDENTIFICATION
13 : : * src/backend/optimizer/plan/createplan.c
14 : : *
15 : : *-------------------------------------------------------------------------
16 : : */
17 : : #include "postgres.h"
18 : :
19 : : #include "access/sysattr.h"
20 : : #include "catalog/pg_class.h"
21 : : #include "foreign/fdwapi.h"
22 : : #include "miscadmin.h"
23 : : #include "nodes/extensible.h"
24 : : #include "nodes/makefuncs.h"
25 : : #include "nodes/nodeFuncs.h"
26 : : #include "optimizer/clauses.h"
27 : : #include "optimizer/cost.h"
28 : : #include "optimizer/optimizer.h"
29 : : #include "optimizer/paramassign.h"
30 : : #include "optimizer/pathnode.h"
31 : : #include "optimizer/paths.h"
32 : : #include "optimizer/placeholder.h"
33 : : #include "optimizer/plancat.h"
34 : : #include "optimizer/planmain.h"
35 : : #include "optimizer/prep.h"
36 : : #include "optimizer/restrictinfo.h"
37 : : #include "optimizer/subselect.h"
38 : : #include "optimizer/tlist.h"
39 : : #include "parser/parse_clause.h"
40 : : #include "parser/parsetree.h"
41 : : #include "partitioning/partprune.h"
42 : : #include "tcop/tcopprot.h"
43 : : #include "utils/lsyscache.h"
44 : :
45 : :
46 : : /*
47 : : * Flag bits that can appear in the flags argument of create_plan_recurse().
48 : : * These can be OR-ed together.
49 : : *
50 : : * CP_EXACT_TLIST specifies that the generated plan node must return exactly
51 : : * the tlist specified by the path's pathtarget (this overrides both
52 : : * CP_SMALL_TLIST and CP_LABEL_TLIST, if those are set). Otherwise, the
53 : : * plan node is allowed to return just the Vars and PlaceHolderVars needed
54 : : * to evaluate the pathtarget.
55 : : *
56 : : * CP_SMALL_TLIST specifies that a narrower tlist is preferred. This is
57 : : * passed down by parent nodes such as Sort and Hash, which will have to
58 : : * store the returned tuples.
59 : : *
60 : : * CP_LABEL_TLIST specifies that the plan node must return columns matching
61 : : * any sortgrouprefs specified in its pathtarget, with appropriate
62 : : * ressortgroupref labels. This is passed down by parent nodes such as Sort
63 : : * and Group, which need these values to be available in their inputs.
64 : : *
65 : : * CP_IGNORE_TLIST specifies that the caller plans to replace the targetlist,
66 : : * and therefore it doesn't matter a bit what target list gets generated.
67 : : */
68 : : #define CP_EXACT_TLIST 0x0001 /* Plan must return specified tlist */
69 : : #define CP_SMALL_TLIST 0x0002 /* Prefer narrower tlists */
70 : : #define CP_LABEL_TLIST 0x0004 /* tlist must contain sortgrouprefs */
71 : : #define CP_IGNORE_TLIST 0x0008 /* caller will replace tlist */
72 : :
73 : :
74 : : static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path,
75 : : int flags);
76 : : static Plan *create_scan_plan(PlannerInfo *root, Path *best_path,
77 : : int flags);
78 : : static List *build_path_tlist(PlannerInfo *root, Path *path);
79 : : static bool use_physical_tlist(PlannerInfo *root, Path *path, int flags);
80 : : static List *get_gating_quals(PlannerInfo *root, List *quals);
81 : : static Plan *create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
82 : : List *gating_quals);
83 : : static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
84 : : static bool mark_async_capable_plan(Plan *plan, Path *path);
85 : : static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path,
86 : : int flags);
87 : : static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
88 : : int flags);
89 : : static Result *create_group_result_plan(PlannerInfo *root,
90 : : GroupResultPath *best_path);
91 : : static ProjectSet *create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path);
92 : : static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path,
93 : : int flags);
94 : : static Memoize *create_memoize_plan(PlannerInfo *root, MemoizePath *best_path,
95 : : int flags);
96 : : static Gather *create_gather_plan(PlannerInfo *root, GatherPath *best_path);
97 : : static Plan *create_projection_plan(PlannerInfo *root,
98 : : ProjectionPath *best_path,
99 : : int flags);
100 : : static Plan *inject_projection_plan(Plan *subplan, List *tlist,
101 : : bool parallel_safe);
102 : : static Sort *create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags);
103 : : static IncrementalSort *create_incrementalsort_plan(PlannerInfo *root,
104 : : IncrementalSortPath *best_path, int flags);
105 : : static Group *create_group_plan(PlannerInfo *root, GroupPath *best_path);
106 : : static Unique *create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags);
107 : : static Agg *create_agg_plan(PlannerInfo *root, AggPath *best_path);
108 : : static Plan *create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path);
109 : : static Result *create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path);
110 : : static WindowAgg *create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path);
111 : : static SetOp *create_setop_plan(PlannerInfo *root, SetOpPath *best_path,
112 : : int flags);
113 : : static RecursiveUnion *create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path);
114 : : static LockRows *create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
115 : : int flags);
116 : : static ModifyTable *create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path);
117 : : static Limit *create_limit_plan(PlannerInfo *root, LimitPath *best_path,
118 : : int flags);
119 : : static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
120 : : List *tlist, List *scan_clauses);
121 : : static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
122 : : List *tlist, List *scan_clauses);
123 : : static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
124 : : List *tlist, List *scan_clauses, bool indexonly);
125 : : static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
126 : : BitmapHeapPath *best_path,
127 : : List *tlist, List *scan_clauses);
128 : : static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
129 : : List **qual, List **indexqual, List **indexECs);
130 : : static void bitmap_subplan_mark_shared(Plan *plan);
131 : : static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
132 : : List *tlist, List *scan_clauses);
133 : : static TidRangeScan *create_tidrangescan_plan(PlannerInfo *root,
134 : : TidRangePath *best_path,
135 : : List *tlist,
136 : : List *scan_clauses);
137 : : static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root,
138 : : SubqueryScanPath *best_path,
139 : : List *tlist, List *scan_clauses);
140 : : static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
141 : : List *tlist, List *scan_clauses);
142 : : static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
143 : : List *tlist, List *scan_clauses);
144 : : static TableFuncScan *create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
145 : : List *tlist, List *scan_clauses);
146 : : static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
147 : : List *tlist, List *scan_clauses);
148 : : static NamedTuplestoreScan *create_namedtuplestorescan_plan(PlannerInfo *root,
149 : : Path *best_path, List *tlist, List *scan_clauses);
150 : : static Result *create_resultscan_plan(PlannerInfo *root, Path *best_path,
151 : : List *tlist, List *scan_clauses);
152 : : static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
153 : : List *tlist, List *scan_clauses);
154 : : static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
155 : : List *tlist, List *scan_clauses);
156 : : static CustomScan *create_customscan_plan(PlannerInfo *root,
157 : : CustomPath *best_path,
158 : : List *tlist, List *scan_clauses);
159 : : static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path);
160 : : static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path);
161 : : static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path);
162 : : static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
163 : : static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
164 : : static void fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
165 : : List **stripped_indexquals_p,
166 : : List **fixed_indexquals_p);
167 : : static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
168 : : static Node *fix_indexqual_clause(PlannerInfo *root,
169 : : IndexOptInfo *index, int indexcol,
170 : : Node *clause, List *indexcolnos);
171 : : static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
172 : : static List *get_switched_clauses(List *clauses, Relids outerrelids);
173 : : static List *order_qual_clauses(PlannerInfo *root, List *clauses);
174 : : static void copy_generic_path_info(Plan *dest, Path *src);
175 : : static void copy_plan_costsize(Plan *dest, Plan *src);
176 : : static void label_sort_with_costsize(PlannerInfo *root, Sort *plan,
177 : : double limit_tuples);
178 : : static void label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
179 : : List *pathkeys, double limit_tuples);
180 : : static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
181 : : static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
182 : : TableSampleClause *tsc);
183 : : static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
184 : : Oid indexid, List *indexqual, List *indexqualorig,
185 : : List *indexorderby, List *indexorderbyorig,
186 : : List *indexorderbyops,
187 : : ScanDirection indexscandir);
188 : : static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
189 : : Index scanrelid, Oid indexid,
190 : : List *indexqual, List *recheckqual,
191 : : List *indexorderby,
192 : : List *indextlist,
193 : : ScanDirection indexscandir);
194 : : static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
195 : : List *indexqual,
196 : : List *indexqualorig);
197 : : static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
198 : : List *qpqual,
199 : : Plan *lefttree,
200 : : List *bitmapqualorig,
201 : : Index scanrelid);
202 : : static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
203 : : List *tidquals);
204 : : static TidRangeScan *make_tidrangescan(List *qptlist, List *qpqual,
205 : : Index scanrelid, List *tidrangequals);
206 : : static SubqueryScan *make_subqueryscan(List *qptlist,
207 : : List *qpqual,
208 : : Index scanrelid,
209 : : Plan *subplan);
210 : : static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
211 : : Index scanrelid, List *functions, bool funcordinality);
212 : : static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
213 : : Index scanrelid, List *values_lists);
214 : : static TableFuncScan *make_tablefuncscan(List *qptlist, List *qpqual,
215 : : Index scanrelid, TableFunc *tablefunc);
216 : : static CteScan *make_ctescan(List *qptlist, List *qpqual,
217 : : Index scanrelid, int ctePlanId, int cteParam);
218 : : static NamedTuplestoreScan *make_namedtuplestorescan(List *qptlist, List *qpqual,
219 : : Index scanrelid, char *enrname);
220 : : static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
221 : : Index scanrelid, int wtParam);
222 : : static RecursiveUnion *make_recursive_union(List *tlist,
223 : : Plan *lefttree,
224 : : Plan *righttree,
225 : : int wtParam,
226 : : List *distinctList,
227 : : Cardinality numGroups);
228 : : static BitmapAnd *make_bitmap_and(List *bitmapplans);
229 : : static BitmapOr *make_bitmap_or(List *bitmapplans);
230 : : static NestLoop *make_nestloop(List *tlist,
231 : : List *joinclauses, List *otherclauses, List *nestParams,
232 : : Plan *lefttree, Plan *righttree,
233 : : JoinType jointype, bool inner_unique);
234 : : static HashJoin *make_hashjoin(List *tlist,
235 : : List *joinclauses, List *otherclauses,
236 : : List *hashclauses,
237 : : List *hashoperators, List *hashcollations,
238 : : List *hashkeys,
239 : : Plan *lefttree, Plan *righttree,
240 : : JoinType jointype, bool inner_unique);
241 : : static Hash *make_hash(Plan *lefttree,
242 : : List *hashkeys,
243 : : Oid skewTable,
244 : : AttrNumber skewColumn,
245 : : bool skewInherit);
246 : : static MergeJoin *make_mergejoin(List *tlist,
247 : : List *joinclauses, List *otherclauses,
248 : : List *mergeclauses,
249 : : Oid *mergefamilies,
250 : : Oid *mergecollations,
251 : : bool *mergereversals,
252 : : bool *mergenullsfirst,
253 : : Plan *lefttree, Plan *righttree,
254 : : JoinType jointype, bool inner_unique,
255 : : bool skip_mark_restore);
256 : : static Sort *make_sort(Plan *lefttree, int numCols,
257 : : AttrNumber *sortColIdx, Oid *sortOperators,
258 : : Oid *collations, bool *nullsFirst);
259 : : static IncrementalSort *make_incrementalsort(Plan *lefttree,
260 : : int numCols, int nPresortedCols,
261 : : AttrNumber *sortColIdx, Oid *sortOperators,
262 : : Oid *collations, bool *nullsFirst);
263 : : static Plan *prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
264 : : Relids relids,
265 : : const AttrNumber *reqColIdx,
266 : : bool adjust_tlist_in_place,
267 : : int *p_numsortkeys,
268 : : AttrNumber **p_sortColIdx,
269 : : Oid **p_sortOperators,
270 : : Oid **p_collations,
271 : : bool **p_nullsFirst);
272 : : static Sort *make_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
273 : : Relids relids);
274 : : static IncrementalSort *make_incrementalsort_from_pathkeys(Plan *lefttree,
275 : : List *pathkeys, Relids relids, int nPresortedCols);
276 : : static Sort *make_sort_from_groupcols(List *groupcls,
277 : : AttrNumber *grpColIdx,
278 : : Plan *lefttree);
279 : : static Material *make_material(Plan *lefttree);
280 : : static Memoize *make_memoize(Plan *lefttree, Oid *hashoperators,
281 : : Oid *collations, List *param_exprs,
282 : : bool singlerow, bool binary_mode,
283 : : uint32 est_entries, Bitmapset *keyparamids,
284 : : Cardinality est_calls,
285 : : Cardinality est_unique_keys,
286 : : double est_hit_ratio);
287 : : static WindowAgg *make_windowagg(List *tlist, WindowClause *wc,
288 : : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
289 : : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
290 : : List *runCondition, List *qual, bool topWindow,
291 : : Plan *lefttree);
292 : : static Group *make_group(List *tlist, List *qual, int numGroupCols,
293 : : AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
294 : : Plan *lefttree);
295 : : static Unique *make_unique_from_pathkeys(Plan *lefttree,
296 : : List *pathkeys, int numCols,
297 : : Relids relids);
298 : : static Gather *make_gather(List *qptlist, List *qpqual,
299 : : int nworkers, int rescan_param, bool single_copy, Plan *subplan);
300 : : static SetOp *make_setop(SetOpCmd cmd, SetOpStrategy strategy,
301 : : List *tlist, Plan *lefttree, Plan *righttree,
302 : : List *groupList, Cardinality numGroups);
303 : : static LockRows *make_lockrows(Plan *lefttree, List *rowMarks, int epqParam);
304 : : static Result *make_gating_result(List *tlist, Node *resconstantqual,
305 : : Plan *subplan);
306 : : static Result *make_one_row_result(List *tlist, Node *resconstantqual,
307 : : RelOptInfo *rel);
308 : : static ProjectSet *make_project_set(List *tlist, Plan *subplan);
309 : : static ModifyTable *make_modifytable(PlannerInfo *root, Plan *subplan,
310 : : CmdType operation, bool canSetTag,
311 : : Index nominalRelation, Index rootRelation,
312 : : List *resultRelations,
313 : : List *updateColnosLists,
314 : : List *withCheckOptionLists, List *returningLists,
315 : : List *rowMarks, OnConflictExpr *onconflict,
316 : : List *mergeActionLists, List *mergeJoinConditions,
317 : : int epqParam);
318 : : static GatherMerge *create_gather_merge_plan(PlannerInfo *root,
319 : : GatherMergePath *best_path);
320 : :
321 : :
322 : : /*
323 : : * create_plan
324 : : * Creates the access plan for a query by recursively processing the
325 : : * desired tree of pathnodes, starting at the node 'best_path'. For
326 : : * every pathnode found, we create a corresponding plan node containing
327 : : * appropriate id, target list, and qualification information.
328 : : *
329 : : * The tlists and quals in the plan tree are still in planner format,
330 : : * ie, Vars still correspond to the parser's numbering. This will be
331 : : * fixed later by setrefs.c.
332 : : *
333 : : * best_path is the best access path
334 : : *
335 : : * Returns a Plan tree.
336 : : */
337 : : Plan *
338 : 51652 : create_plan(PlannerInfo *root, Path *best_path)
339 : : {
340 : 51652 : Plan *plan;
341 : :
342 : : /* plan_params should not be in use in current query level */
343 [ + - ]: 51652 : Assert(root->plan_params == NIL);
344 : :
345 : : /* Initialize this module's workspace in PlannerInfo */
346 : 51652 : root->curOuterRels = NULL;
347 : 51652 : root->curOuterParams = NIL;
348 : :
349 : : /* Recursively process the path tree, demanding the correct tlist result */
350 : 51652 : plan = create_plan_recurse(root, best_path, CP_EXACT_TLIST);
351 : :
352 : : /*
353 : : * Make sure the topmost plan node's targetlist exposes the original
354 : : * column names and other decorative info. Targetlists generated within
355 : : * the planner don't bother with that stuff, but we must have it on the
356 : : * top-level tlist seen at execution time. However, ModifyTable plan
357 : : * nodes don't have a tlist matching the querytree targetlist.
358 : : */
359 [ + + ]: 51652 : if (!IsA(plan, ModifyTable))
360 : 44418 : apply_tlist_labeling(plan->targetlist, root->processed_tlist);
361 : :
362 : : /*
363 : : * Attach any initPlans created in this query level to the topmost plan
364 : : * node. (In principle the initplans could go in any plan node at or
365 : : * above where they're referenced, but there seems no reason to put them
366 : : * any lower than the topmost node for the query level. Also, see
367 : : * comments for SS_finalize_plan before you try to change this.)
368 : : */
369 : 51652 : SS_attach_initplans(root, plan);
370 : :
371 : : /* Check we successfully assigned all NestLoopParams to plan nodes */
372 [ + - ]: 51652 : if (root->curOuterParams != NIL)
373 [ # # # # ]: 0 : elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
374 : :
375 : : /*
376 : : * Reset plan_params to ensure param IDs used for nestloop params are not
377 : : * re-used later
378 : : */
379 : 51652 : root->plan_params = NIL;
380 : :
381 : 103304 : return plan;
382 : 51652 : }
383 : :
384 : : /*
385 : : * create_plan_recurse
386 : : * Recursive guts of create_plan().
387 : : */
388 : : static Plan *
389 : 145783 : create_plan_recurse(PlannerInfo *root, Path *best_path, int flags)
390 : : {
391 : 145783 : Plan *plan;
392 : :
393 : : /* Guard against stack overflow due to overly complex plans */
394 : 145783 : check_stack_depth();
395 : :
396 [ + + + + : 145783 : switch (best_path->pathtype)
+ + + + +
+ + + + +
+ + + + +
+ + - ]
397 : : {
398 : : case T_SeqScan:
399 : : case T_SampleScan:
400 : : case T_IndexScan:
401 : : case T_IndexOnlyScan:
402 : : case T_BitmapHeapScan:
403 : : case T_TidScan:
404 : : case T_TidRangeScan:
405 : : case T_SubqueryScan:
406 : : case T_FunctionScan:
407 : : case T_TableFuncScan:
408 : : case T_ValuesScan:
409 : : case T_CteScan:
410 : : case T_WorkTableScan:
411 : : case T_NamedTuplestoreScan:
412 : : case T_ForeignScan:
413 : : case T_CustomScan:
414 : 51630 : plan = create_scan_plan(root, best_path, flags);
415 : 51630 : break;
416 : : case T_HashJoin:
417 : : case T_MergeJoin:
418 : : case T_NestLoop:
419 : 25972 : plan = create_join_plan(root,
420 : 12986 : (JoinPath *) best_path);
421 : 12986 : break;
422 : : case T_Append:
423 : 6520 : plan = create_append_plan(root,
424 : 3260 : (AppendPath *) best_path,
425 : 3260 : flags);
426 : 3260 : break;
427 : : case T_MergeAppend:
428 : 182 : plan = create_merge_append_plan(root,
429 : 91 : (MergeAppendPath *) best_path,
430 : 91 : flags);
431 : 91 : break;
432 : : case T_Result:
433 [ + + ]: 51170 : if (IsA(best_path, ProjectionPath))
434 : : {
435 : 66676 : plan = create_projection_plan(root,
436 : 33338 : (ProjectionPath *) best_path,
437 : 33338 : flags);
438 : 33338 : }
439 [ + + ]: 17832 : else if (IsA(best_path, MinMaxAggPath))
440 : : {
441 : 108 : plan = (Plan *) create_minmaxagg_plan(root,
442 : 54 : (MinMaxAggPath *) best_path);
443 : 54 : }
444 [ + + ]: 17778 : else if (IsA(best_path, GroupResultPath))
445 : : {
446 : 34234 : plan = (Plan *) create_group_result_plan(root,
447 : 17117 : (GroupResultPath *) best_path);
448 : 17117 : }
449 : : else
450 : : {
451 : : /* Simple RTE_RESULT base relation */
452 [ + - ]: 661 : Assert(IsA(best_path, Path));
453 : 661 : plan = create_scan_plan(root, best_path, flags);
454 : : }
455 : 51170 : break;
456 : : case T_ProjectSet:
457 : 3292 : plan = (Plan *) create_project_set_plan(root,
458 : 1646 : (ProjectSetPath *) best_path);
459 : 1646 : break;
460 : : case T_Material:
461 : 994 : plan = (Plan *) create_material_plan(root,
462 : 497 : (MaterialPath *) best_path,
463 : 497 : flags);
464 : 497 : break;
465 : : case T_Memoize:
466 : 430 : plan = (Plan *) create_memoize_plan(root,
467 : 215 : (MemoizePath *) best_path,
468 : 215 : flags);
469 : 215 : break;
470 : : case T_Unique:
471 : 1422 : plan = (Plan *) create_unique_plan(root,
472 : 711 : (UniquePath *) best_path,
473 : 711 : flags);
474 : 711 : break;
475 : : case T_Gather:
476 : 346 : plan = (Plan *) create_gather_plan(root,
477 : 173 : (GatherPath *) best_path);
478 : 173 : break;
479 : : case T_Sort:
480 : 17134 : plan = (Plan *) create_sort_plan(root,
481 : 8567 : (SortPath *) best_path,
482 : 8567 : flags);
483 : 8567 : break;
484 : : case T_IncrementalSort:
485 : 226 : plan = (Plan *) create_incrementalsort_plan(root,
486 : 113 : (IncrementalSortPath *) best_path,
487 : 113 : flags);
488 : 113 : break;
489 : : case T_Group:
490 : 78 : plan = (Plan *) create_group_plan(root,
491 : 39 : (GroupPath *) best_path);
492 : 39 : break;
493 : : case T_Agg:
494 [ + + ]: 5512 : if (IsA(best_path, GroupingSetsPath))
495 : 320 : plan = create_groupingsets_plan(root,
496 : 160 : (GroupingSetsPath *) best_path);
497 : : else
498 : : {
499 [ + - ]: 5352 : Assert(IsA(best_path, AggPath));
500 : 10704 : plan = (Plan *) create_agg_plan(root,
501 : 5352 : (AggPath *) best_path);
502 : : }
503 : 5512 : break;
504 : : case T_WindowAgg:
505 : 914 : plan = (Plan *) create_windowagg_plan(root,
506 : 457 : (WindowAggPath *) best_path);
507 : 457 : break;
508 : : case T_SetOp:
509 : 220 : plan = (Plan *) create_setop_plan(root,
510 : 110 : (SetOpPath *) best_path,
511 : 110 : flags);
512 : 110 : break;
513 : : case T_RecursiveUnion:
514 : 146 : plan = (Plan *) create_recursiveunion_plan(root,
515 : 73 : (RecursiveUnionPath *) best_path);
516 : 73 : break;
517 : : case T_LockRows:
518 : 1602 : plan = (Plan *) create_lockrows_plan(root,
519 : 801 : (LockRowsPath *) best_path,
520 : 801 : flags);
521 : 801 : break;
522 : : case T_ModifyTable:
523 : 14468 : plan = (Plan *) create_modifytable_plan(root,
524 : 7234 : (ModifyTablePath *) best_path);
525 : 7234 : break;
526 : : case T_Limit:
527 : 862 : plan = (Plan *) create_limit_plan(root,
528 : 431 : (LimitPath *) best_path,
529 : 431 : flags);
530 : 431 : break;
531 : : case T_GatherMerge:
532 : 134 : plan = (Plan *) create_gather_merge_plan(root,
533 : 67 : (GatherMergePath *) best_path);
534 : 67 : break;
535 : : default:
536 [ # # # # ]: 0 : elog(ERROR, "unrecognized node type: %d",
537 : : (int) best_path->pathtype);
538 : 0 : plan = NULL; /* keep compiler quiet */
539 : 0 : break;
540 : : }
541 : :
542 : 291566 : return plan;
543 : 145783 : }
544 : :
545 : : /*
546 : : * create_scan_plan
547 : : * Create a scan plan for the parent relation of 'best_path'.
548 : : */
549 : : static Plan *
550 : 52291 : create_scan_plan(PlannerInfo *root, Path *best_path, int flags)
551 : : {
552 : 52291 : RelOptInfo *rel = best_path->parent;
553 : 52291 : List *scan_clauses;
554 : 52291 : List *gating_clauses;
555 : 52291 : List *tlist;
556 : 52291 : Plan *plan;
557 : :
558 : : /*
559 : : * Extract the relevant restriction clauses from the parent relation. The
560 : : * executor must apply all these restrictions during the scan, except for
561 : : * pseudoconstants which we'll take care of below.
562 : : *
563 : : * If this is a plain indexscan or index-only scan, we need not consider
564 : : * restriction clauses that are implied by the index's predicate, so use
565 : : * indrestrictinfo not baserestrictinfo. Note that we can't do that for
566 : : * bitmap indexscans, since there's not necessarily a single index
567 : : * involved; but it doesn't matter since create_bitmap_scan_plan() will be
568 : : * able to get rid of such clauses anyway via predicate proof.
569 : : */
570 [ + + ]: 52291 : switch (best_path->pathtype)
571 : : {
572 : : case T_IndexScan:
573 : : case T_IndexOnlyScan:
574 : 13537 : scan_clauses = castNode(IndexPath, best_path)->indexinfo->indrestrictinfo;
575 : 13537 : break;
576 : : default:
577 : 38754 : scan_clauses = rel->baserestrictinfo;
578 : 38754 : break;
579 : : }
580 : :
581 : : /*
582 : : * If this is a parameterized scan, we also need to enforce all the join
583 : : * clauses available from the outer relation(s).
584 : : *
585 : : * For paranoia's sake, don't modify the stored baserestrictinfo list.
586 : : */
587 [ + + ]: 52291 : if (best_path->param_info)
588 : 8100 : scan_clauses = list_concat_copy(scan_clauses,
589 : 4050 : best_path->param_info->ppi_clauses);
590 : :
591 : : /*
592 : : * Detect whether we have any pseudoconstant quals to deal with. Then, if
593 : : * we'll need a gating Result node, it will be able to project, so there
594 : : * are no requirements on the child's tlist.
595 : : *
596 : : * If this replaces a join, it must be a foreign scan or a custom scan,
597 : : * and the FDW or the custom scan provider would have stored in the best
598 : : * path the list of RestrictInfo nodes to apply to the join; check against
599 : : * that list in that case.
600 : : */
601 [ + - - + ]: 52291 : if (IS_JOIN_REL(rel))
602 : : {
603 : 0 : List *join_clauses;
604 : :
605 [ # # # # ]: 0 : Assert(best_path->pathtype == T_ForeignScan ||
606 : : best_path->pathtype == T_CustomScan);
607 [ # # ]: 0 : if (best_path->pathtype == T_ForeignScan)
608 : 0 : join_clauses = ((ForeignPath *) best_path)->fdw_restrictinfo;
609 : : else
610 : 0 : join_clauses = ((CustomPath *) best_path)->custom_restrictinfo;
611 : :
612 : 0 : gating_clauses = get_gating_quals(root, join_clauses);
613 : 0 : }
614 : : else
615 : 52291 : gating_clauses = get_gating_quals(root, scan_clauses);
616 [ + + ]: 52291 : if (gating_clauses)
617 : 1144 : flags = 0;
618 : :
619 : : /*
620 : : * For table scans, rather than using the relation targetlist (which is
621 : : * only those Vars actually needed by the query), we prefer to generate a
622 : : * tlist containing all Vars in order. This will allow the executor to
623 : : * optimize away projection of the table tuples, if possible.
624 : : *
625 : : * But if the caller is going to ignore our tlist anyway, then don't
626 : : * bother generating one at all. We use an exact equality test here, so
627 : : * that this only applies when CP_IGNORE_TLIST is the only flag set.
628 : : */
629 [ + + ]: 52291 : if (flags == CP_IGNORE_TLIST)
630 : : {
631 : 8503 : tlist = NULL;
632 : 8503 : }
633 [ + + ]: 43788 : else if (use_physical_tlist(root, best_path, flags))
634 : : {
635 [ + + ]: 18493 : if (best_path->pathtype == T_IndexOnlyScan)
636 : : {
637 : : /* For index-only scan, the preferred tlist is the index's */
638 : 1221 : tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
639 : :
640 : : /*
641 : : * Transfer sortgroupref data to the replacement tlist, if
642 : : * requested (use_physical_tlist checked that this will work).
643 : : */
644 [ + + ]: 1221 : if (flags & CP_LABEL_TLIST)
645 : 210 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
646 : 1221 : }
647 : : else
648 : : {
649 : 17272 : tlist = build_physical_tlist(root, rel);
650 [ + + ]: 17272 : if (tlist == NIL)
651 : : {
652 : : /* Failed because of dropped cols, so use regular method */
653 : 10 : tlist = build_path_tlist(root, best_path);
654 : 10 : }
655 : : else
656 : : {
657 : : /* As above, transfer sortgroupref data to replacement tlist */
658 [ + + ]: 17262 : if (flags & CP_LABEL_TLIST)
659 : 1167 : apply_pathtarget_labeling_to_tlist(tlist, best_path->pathtarget);
660 : : }
661 : : }
662 : 18493 : }
663 : : else
664 : : {
665 : 25295 : tlist = build_path_tlist(root, best_path);
666 : : }
667 : :
668 [ + + + + : 52291 : switch (best_path->pathtype)
+ + + + +
+ + + + +
+ - - - ]
669 : : {
670 : : case T_SeqScan:
671 : 52336 : plan = (Plan *) create_seqscan_plan(root,
672 : 26168 : best_path,
673 : 26168 : tlist,
674 : 26168 : scan_clauses);
675 : 26168 : break;
676 : :
677 : : case T_SampleScan:
678 : 90 : plan = (Plan *) create_samplescan_plan(root,
679 : 45 : best_path,
680 : 45 : tlist,
681 : 45 : scan_clauses);
682 : 45 : break;
683 : :
684 : : case T_IndexScan:
685 : 23384 : plan = (Plan *) create_indexscan_plan(root,
686 : 11692 : (IndexPath *) best_path,
687 : 11692 : tlist,
688 : 11692 : scan_clauses,
689 : : false);
690 : 11692 : break;
691 : :
692 : : case T_IndexOnlyScan:
693 : 3690 : plan = (Plan *) create_indexscan_plan(root,
694 : 1845 : (IndexPath *) best_path,
695 : 1845 : tlist,
696 : 1845 : scan_clauses,
697 : : true);
698 : 1845 : break;
699 : :
700 : : case T_BitmapHeapScan:
701 : 5332 : plan = (Plan *) create_bitmap_scan_plan(root,
702 : 2666 : (BitmapHeapPath *) best_path,
703 : 2666 : tlist,
704 : 2666 : scan_clauses);
705 : 2666 : break;
706 : :
707 : : case T_TidScan:
708 : 174 : plan = (Plan *) create_tidscan_plan(root,
709 : 87 : (TidPath *) best_path,
710 : 87 : tlist,
711 : 87 : scan_clauses);
712 : 87 : break;
713 : :
714 : : case T_TidRangeScan:
715 : 668 : plan = (Plan *) create_tidrangescan_plan(root,
716 : 334 : (TidRangePath *) best_path,
717 : 334 : tlist,
718 : 334 : scan_clauses);
719 : 334 : break;
720 : :
721 : : case T_SubqueryScan:
722 : 7144 : plan = (Plan *) create_subqueryscan_plan(root,
723 : 3572 : (SubqueryScanPath *) best_path,
724 : 3572 : tlist,
725 : 3572 : scan_clauses);
726 : 3572 : break;
727 : :
728 : : case T_FunctionScan:
729 : 7284 : plan = (Plan *) create_functionscan_plan(root,
730 : 3642 : best_path,
731 : 3642 : tlist,
732 : 3642 : scan_clauses);
733 : 3642 : break;
734 : :
735 : : case T_TableFuncScan:
736 : 206 : plan = (Plan *) create_tablefuncscan_plan(root,
737 : 103 : best_path,
738 : 103 : tlist,
739 : 103 : scan_clauses);
740 : 103 : break;
741 : :
742 : : case T_ValuesScan:
743 : 2228 : plan = (Plan *) create_valuesscan_plan(root,
744 : 1114 : best_path,
745 : 1114 : tlist,
746 : 1114 : scan_clauses);
747 : 1114 : break;
748 : :
749 : : case T_CteScan:
750 : 424 : plan = (Plan *) create_ctescan_plan(root,
751 : 212 : best_path,
752 : 212 : tlist,
753 : 212 : scan_clauses);
754 : 212 : break;
755 : :
756 : : case T_NamedTuplestoreScan:
757 : 154 : plan = (Plan *) create_namedtuplestorescan_plan(root,
758 : 77 : best_path,
759 : 77 : tlist,
760 : 77 : scan_clauses);
761 : 77 : break;
762 : :
763 : : case T_Result:
764 : 1322 : plan = (Plan *) create_resultscan_plan(root,
765 : 661 : best_path,
766 : 661 : tlist,
767 : 661 : scan_clauses);
768 : 661 : break;
769 : :
770 : : case T_WorkTableScan:
771 : 146 : plan = (Plan *) create_worktablescan_plan(root,
772 : 73 : best_path,
773 : 73 : tlist,
774 : 73 : scan_clauses);
775 : 73 : break;
776 : :
777 : : case T_ForeignScan:
778 : 0 : plan = (Plan *) create_foreignscan_plan(root,
779 : 0 : (ForeignPath *) best_path,
780 : 0 : tlist,
781 : 0 : scan_clauses);
782 : 0 : break;
783 : :
784 : : case T_CustomScan:
785 : 0 : plan = (Plan *) create_customscan_plan(root,
786 : 0 : (CustomPath *) best_path,
787 : 0 : tlist,
788 : 0 : scan_clauses);
789 : 0 : break;
790 : :
791 : : default:
792 [ # # # # ]: 0 : elog(ERROR, "unrecognized node type: %d",
793 : : (int) best_path->pathtype);
794 : 0 : plan = NULL; /* keep compiler quiet */
795 : 0 : break;
796 : : }
797 : :
798 : : /*
799 : : * If there are any pseudoconstant clauses attached to this node, insert a
800 : : * gating Result node that evaluates the pseudoconstants as one-time
801 : : * quals.
802 : : */
803 [ + + ]: 52291 : if (gating_clauses)
804 : 1144 : plan = create_gating_plan(root, best_path, plan, gating_clauses);
805 : :
806 : 104582 : return plan;
807 : 52291 : }
808 : :
809 : : /*
810 : : * Build a target list (ie, a list of TargetEntry) for the Path's output.
811 : : *
812 : : * This is almost just make_tlist_from_pathtarget(), but we also have to
813 : : * deal with replacing nestloop params.
814 : : */
815 : : static List *
816 : 101758 : build_path_tlist(PlannerInfo *root, Path *path)
817 : : {
818 : 101758 : List *tlist = NIL;
819 : 101758 : Index *sortgrouprefs = path->pathtarget->sortgrouprefs;
820 : 101758 : int resno = 1;
821 : 101758 : ListCell *v;
822 : :
823 [ + + + + : 330454 : foreach(v, path->pathtarget->exprs)
+ + ]
824 : : {
825 : 228696 : Node *node = (Node *) lfirst(v);
826 : 228696 : TargetEntry *tle;
827 : :
828 : : /*
829 : : * If it's a parameterized path, there might be lateral references in
830 : : * the tlist, which need to be replaced with Params. There's no need
831 : : * to remake the TargetEntry nodes, so apply this to each list item
832 : : * separately.
833 : : */
834 [ + + ]: 228696 : if (path->param_info)
835 : 1671 : node = replace_nestloop_params(root, node);
836 : :
837 : 457392 : tle = makeTargetEntry((Expr *) node,
838 : 228696 : resno,
839 : : NULL,
840 : : false);
841 [ + + ]: 228696 : if (sortgrouprefs)
842 : 152681 : tle->ressortgroupref = sortgrouprefs[resno - 1];
843 : :
844 : 228696 : tlist = lappend(tlist, tle);
845 : 228696 : resno++;
846 : 228696 : }
847 : 203516 : return tlist;
848 : 101758 : }
849 : :
850 : : /*
851 : : * use_physical_tlist
852 : : * Decide whether to use a tlist matching relation structure,
853 : : * rather than only those Vars actually referenced.
854 : : */
855 : : static bool
856 : 77126 : use_physical_tlist(PlannerInfo *root, Path *path, int flags)
857 : : {
858 : 77126 : RelOptInfo *rel = path->parent;
859 : 77126 : int i;
860 : 77126 : ListCell *lc;
861 : :
862 : : /*
863 : : * Forget it if either exact tlist or small tlist is demanded.
864 : : */
865 [ + + ]: 77126 : if (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST))
866 : 52918 : return false;
867 : :
868 : : /*
869 : : * We can do this for real relation scans, subquery scans, function scans,
870 : : * tablefunc scans, values scans, and CTE scans (but not for, eg, joins).
871 : : */
872 [ + + ]: 24208 : if (rel->rtekind != RTE_RELATION &&
873 [ + + ]: 3538 : rel->rtekind != RTE_SUBQUERY &&
874 [ + + ]: 3219 : rel->rtekind != RTE_FUNCTION &&
875 [ + + ]: 1980 : rel->rtekind != RTE_TABLEFUNC &&
876 [ + + + + ]: 1941 : rel->rtekind != RTE_VALUES &&
877 : 1723 : rel->rtekind != RTE_CTE)
878 : 1674 : return false;
879 : :
880 : : /*
881 : : * Can't do it with inheritance cases either (mainly because Append
882 : : * doesn't project; this test may be unnecessary now that
883 : : * create_append_plan instructs its children to return an exact tlist).
884 : : */
885 [ + + ]: 22534 : if (rel->reloptkind != RELOPT_BASEREL)
886 : 1030 : return false;
887 : :
888 : : /*
889 : : * Also, don't do it to a CustomPath; the premise that we're extracting
890 : : * columns from a simple physical tuple is unlikely to hold for those.
891 : : * (When it does make sense, the custom path creator can set up the path's
892 : : * pathtarget that way.)
893 : : */
894 [ - + ]: 21504 : if (IsA(path, CustomPath))
895 : 0 : return false;
896 : :
897 : : /*
898 : : * If a bitmap scan's tlist is empty, keep it as-is. This may allow the
899 : : * executor to skip heap page fetches, and in any case, the benefit of
900 : : * using a physical tlist instead would be minimal.
901 : : */
902 [ + + + + ]: 21504 : if (IsA(path, BitmapHeapPath) &&
903 : 1612 : path->pathtarget->exprs == NIL)
904 : 407 : return false;
905 : :
906 : : /*
907 : : * Can't do it if any system columns or whole-row Vars are requested.
908 : : * (This could possibly be fixed but would take some fragile assumptions
909 : : * in setrefs.c, I think.)
910 : : */
911 [ + + ]: 152793 : for (i = rel->min_attr; i <= 0; i++)
912 : : {
913 [ + + ]: 133985 : if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
914 : 2289 : return false;
915 : 131696 : }
916 : :
917 : : /*
918 : : * Can't do it if the rel is required to emit any placeholder expressions,
919 : : * either.
920 : : */
921 [ + + + + : 19115 : foreach(lc, root->placeholder_list)
+ + + + ]
922 : : {
923 : 307 : PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
924 : :
925 [ + + + + ]: 307 : if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
926 : 295 : bms_is_subset(phinfo->ph_eval_at, rel->relids))
927 : 67 : return false;
928 [ + + ]: 307 : }
929 : :
930 : : /*
931 : : * For an index-only scan, the "physical tlist" is the index's indextlist.
932 : : * We can only return that without a projection if all the index's columns
933 : : * are returnable.
934 : : */
935 [ + + ]: 18741 : if (path->pathtype == T_IndexOnlyScan)
936 : : {
937 : 1223 : IndexOptInfo *indexinfo = ((IndexPath *) path)->indexinfo;
938 : :
939 [ + + ]: 2563 : for (i = 0; i < indexinfo->ncolumns; i++)
940 : : {
941 [ + + ]: 1342 : if (!indexinfo->canreturn[i])
942 : 2 : return false;
943 : 1340 : }
944 [ + + ]: 1223 : }
945 : :
946 : : /*
947 : : * Also, can't do it if CP_LABEL_TLIST is specified and path is requested
948 : : * to emit any sort/group columns that are not simple Vars. (If they are
949 : : * simple Vars, they should appear in the physical tlist, and
950 : : * apply_pathtarget_labeling_to_tlist will take care of getting them
951 : : * labeled again.) We also have to check that no two sort/group columns
952 : : * are the same Var, else that element of the physical tlist would need
953 : : * conflicting ressortgroupref labels.
954 : : */
955 [ + + + + ]: 18739 : if ((flags & CP_LABEL_TLIST) && path->pathtarget->sortgrouprefs)
956 : : {
957 : 372 : Bitmapset *sortgroupatts = NULL;
958 : :
959 : 372 : i = 0;
960 [ + - + + : 1039 : foreach(lc, path->pathtarget->exprs)
+ + + + ]
961 : : {
962 : 667 : Expr *expr = (Expr *) lfirst(lc);
963 : :
964 [ + + ]: 667 : if (path->pathtarget->sortgrouprefs[i])
965 : : {
966 [ + - + + ]: 544 : if (expr && IsA(expr, Var))
967 : : {
968 : 424 : int attno = ((Var *) expr)->varattno;
969 : :
970 : 424 : attno -= FirstLowInvalidHeapAttributeNumber;
971 [ + + ]: 424 : if (bms_is_member(attno, sortgroupatts))
972 : 2 : return false;
973 : 422 : sortgroupatts = bms_add_member(sortgroupatts, attno);
974 [ + + ]: 424 : }
975 : : else
976 : 120 : return false;
977 : 422 : }
978 : 545 : i++;
979 [ + + ]: 667 : }
980 [ + + ]: 372 : }
981 : :
982 : 18617 : return true;
983 : 77126 : }
984 : :
985 : : /*
986 : : * get_gating_quals
987 : : * See if there are pseudoconstant quals in a node's quals list
988 : : *
989 : : * If the node's quals list includes any pseudoconstant quals,
990 : : * return just those quals.
991 : : */
992 : : static List *
993 : 65277 : get_gating_quals(PlannerInfo *root, List *quals)
994 : : {
995 : : /* No need to look if we know there are no pseudoconstants */
996 [ + + ]: 65277 : if (!root->hasPseudoConstantQuals)
997 : 61538 : return NIL;
998 : :
999 : : /* Sort into desirable execution order while still in RestrictInfo form */
1000 : 3739 : quals = order_qual_clauses(root, quals);
1001 : :
1002 : : /* Pull out any pseudoconstant quals from the RestrictInfo list */
1003 : 3739 : return extract_actual_clauses(quals, true);
1004 : 65277 : }
1005 : :
1006 : : /*
1007 : : * create_gating_plan
1008 : : * Deal with pseudoconstant qual clauses
1009 : : *
1010 : : * Add a gating Result node atop the already-built plan.
1011 : : */
1012 : : static Plan *
1013 : 1654 : create_gating_plan(PlannerInfo *root, Path *path, Plan *plan,
1014 : : List *gating_quals)
1015 : : {
1016 : 1654 : Result *gplan;
1017 : :
1018 [ + - ]: 1654 : Assert(gating_quals);
1019 : :
1020 : : /*
1021 : : * Since we need a Result node anyway, always return the path's requested
1022 : : * tlist; that's never a wrong choice, even if the parent node didn't ask
1023 : : * for CP_EXACT_TLIST.
1024 : : */
1025 : 3308 : gplan = make_gating_result(build_path_tlist(root, path),
1026 : 1654 : (Node *) gating_quals, plan);
1027 : :
1028 : : /*
1029 : : * We might have had a trivial Result plan already. Stacking one Result
1030 : : * atop another is silly, so if that applies, just discard the input plan.
1031 : : * (We're assuming its targetlist is uninteresting; it should be either
1032 : : * the same as the result of build_path_tlist, or a simplified version.
1033 : : * However, we preserve the set of relids that it purports to scan and
1034 : : * attribute that to our replacement Result instead, and likewise for the
1035 : : * result_type.)
1036 : : */
1037 [ + + ]: 1654 : if (IsA(plan, Result))
1038 : : {
1039 : 4 : Result *rplan = (Result *) plan;
1040 : :
1041 : 4 : gplan->plan.lefttree = NULL;
1042 : 4 : gplan->relids = rplan->relids;
1043 : 4 : gplan->result_type = rplan->result_type;
1044 : 4 : }
1045 : :
1046 : : /*
1047 : : * Notice that we don't change cost or size estimates when doing gating.
1048 : : * The costs of qual eval were already included in the subplan's cost.
1049 : : * Leaving the size alone amounts to assuming that the gating qual will
1050 : : * succeed, which is the conservative estimate for planning upper queries.
1051 : : * We certainly don't want to assume the output size is zero (unless the
1052 : : * gating qual is actually constant FALSE, and that case is dealt with in
1053 : : * clausesel.c). Interpolating between the two cases is silly, because it
1054 : : * doesn't reflect what will really happen at runtime, and besides which
1055 : : * in most cases we have only a very bad idea of the probability of the
1056 : : * gating qual being true.
1057 : : */
1058 : 1654 : copy_plan_costsize(&gplan->plan, plan);
1059 : :
1060 : : /* Gating quals could be unsafe, so better use the Path's safety flag */
1061 : 1654 : gplan->plan.parallel_safe = path->parallel_safe;
1062 : :
1063 : 3308 : return &gplan->plan;
1064 : 1654 : }
1065 : :
1066 : : /*
1067 : : * create_join_plan
1068 : : * Create a join plan for 'best_path' and (recursively) plans for its
1069 : : * inner and outer paths.
1070 : : */
1071 : : static Plan *
1072 : 12986 : create_join_plan(PlannerInfo *root, JoinPath *best_path)
1073 : : {
1074 : 12986 : Plan *plan;
1075 : 12986 : List *gating_clauses;
1076 : :
1077 [ + + + - ]: 12986 : switch (best_path->path.pathtype)
1078 : : {
1079 : : case T_MergeJoin:
1080 : 1016 : plan = (Plan *) create_mergejoin_plan(root,
1081 : 508 : (MergePath *) best_path);
1082 : 508 : break;
1083 : : case T_HashJoin:
1084 : 6670 : plan = (Plan *) create_hashjoin_plan(root,
1085 : 3335 : (HashPath *) best_path);
1086 : 3335 : break;
1087 : : case T_NestLoop:
1088 : 18286 : plan = (Plan *) create_nestloop_plan(root,
1089 : 9143 : (NestPath *) best_path);
1090 : 9143 : break;
1091 : : default:
1092 [ # # # # ]: 0 : elog(ERROR, "unrecognized node type: %d",
1093 : : (int) best_path->path.pathtype);
1094 : 0 : plan = NULL; /* keep compiler quiet */
1095 : 0 : break;
1096 : : }
1097 : :
1098 : : /*
1099 : : * If there are any pseudoconstant clauses attached to this node, insert a
1100 : : * gating Result node that evaluates the pseudoconstants as one-time
1101 : : * quals.
1102 : : */
1103 : 12986 : gating_clauses = get_gating_quals(root, best_path->joinrestrictinfo);
1104 [ + + ]: 12986 : if (gating_clauses)
1105 : 1020 : plan = create_gating_plan(root, (Path *) best_path, plan,
1106 : 510 : gating_clauses);
1107 : :
1108 : : #ifdef NOT_USED
1109 : :
1110 : : /*
1111 : : * * Expensive function pullups may have pulled local predicates * into
1112 : : * this path node. Put them in the qpqual of the plan node. * JMH,
1113 : : * 6/15/92
1114 : : */
1115 : : if (get_loc_restrictinfo(best_path) != NIL)
1116 : : set_qpqual((Plan) plan,
1117 : : list_concat(get_qpqual((Plan) plan),
1118 : : get_actual_clauses(get_loc_restrictinfo(best_path))));
1119 : : #endif
1120 : :
1121 : 25972 : return plan;
1122 : 12986 : }
1123 : :
1124 : : /*
1125 : : * mark_async_capable_plan
1126 : : * Check whether the Plan node created from a Path node is async-capable,
1127 : : * and if so, mark the Plan node as such and return true, otherwise
1128 : : * return false.
1129 : : */
1130 : : static bool
1131 : 4250 : mark_async_capable_plan(Plan *plan, Path *path)
1132 : : {
1133 [ + + - + ]: 4250 : switch (nodeTag(path))
1134 : : {
1135 : : case T_SubqueryScanPath:
1136 : : {
1137 : 1568 : SubqueryScan *scan_plan = (SubqueryScan *) plan;
1138 : :
1139 : : /*
1140 : : * If the generated plan node includes a gating Result node,
1141 : : * we can't execute it asynchronously.
1142 : : */
1143 [ - + ]: 1568 : if (IsA(plan, Result))
1144 : 0 : return false;
1145 : :
1146 : : /*
1147 : : * If a SubqueryScan node atop of an async-capable plan node
1148 : : * is deletable, consider it as async-capable.
1149 : : */
1150 [ + + + - ]: 1568 : if (trivial_subqueryscan(scan_plan) &&
1151 : 1098 : mark_async_capable_plan(scan_plan->subplan,
1152 : 549 : ((SubqueryScanPath *) path)->subpath))
1153 : 0 : break;
1154 : 1568 : return false;
1155 [ + - ]: 1568 : }
1156 : : case T_ForeignPath:
1157 : : {
1158 : 0 : FdwRoutine *fdwroutine = path->parent->fdwroutine;
1159 : :
1160 : : /*
1161 : : * If the generated plan node includes a gating Result node,
1162 : : * we can't execute it asynchronously.
1163 : : */
1164 [ # # ]: 0 : if (IsA(plan, Result))
1165 : 0 : return false;
1166 : :
1167 [ # # ]: 0 : Assert(fdwroutine != NULL);
1168 [ # # # # ]: 0 : if (fdwroutine->IsForeignPathAsyncCapable != NULL &&
1169 : 0 : fdwroutine->IsForeignPathAsyncCapable((ForeignPath *) path))
1170 : 0 : break;
1171 : 0 : return false;
1172 : 0 : }
1173 : : case T_ProjectionPath:
1174 : :
1175 : : /*
1176 : : * If the generated plan node includes a Result node for the
1177 : : * projection, we can't execute it asynchronously.
1178 : : */
1179 [ + + ]: 805 : if (IsA(plan, Result))
1180 : 11 : return false;
1181 : :
1182 : : /*
1183 : : * create_projection_plan() would have pulled up the subplan, so
1184 : : * check the capability using the subpath.
1185 : : */
1186 [ - + - + ]: 1588 : if (mark_async_capable_plan(plan,
1187 : 794 : ((ProjectionPath *) path)->subpath))
1188 : 0 : return true;
1189 : 794 : return false;
1190 : : default:
1191 : 1877 : return false;
1192 : : }
1193 : :
1194 : 0 : plan->async_capable = true;
1195 : :
1196 : 0 : return true;
1197 : 4250 : }
1198 : :
1199 : : /*
1200 : : * create_append_plan
1201 : : * Create an Append plan for 'best_path' and (recursively) plans
1202 : : * for its subpaths.
1203 : : *
1204 : : * Returns a Plan node.
1205 : : */
1206 : : static Plan *
1207 : 3260 : create_append_plan(PlannerInfo *root, AppendPath *best_path, int flags)
1208 : : {
1209 : 3260 : Append *plan;
1210 : 3260 : List *tlist = build_path_tlist(root, &best_path->path);
1211 : 3260 : int orig_tlist_length = list_length(tlist);
1212 : 3260 : bool tlist_was_changed = false;
1213 : 3260 : List *pathkeys = best_path->path.pathkeys;
1214 : 3260 : List *subplans = NIL;
1215 : 3260 : ListCell *subpaths;
1216 : 3260 : int nasyncplans = 0;
1217 : 3260 : RelOptInfo *rel = best_path->path.parent;
1218 : 3260 : int nodenumsortkeys = 0;
1219 : 3260 : AttrNumber *nodeSortColIdx = NULL;
1220 : 3260 : Oid *nodeSortOperators = NULL;
1221 : 3260 : Oid *nodeCollations = NULL;
1222 : 3260 : bool *nodeNullsFirst = NULL;
1223 : 3260 : bool consider_async = false;
1224 : :
1225 : : /*
1226 : : * The subpaths list could be empty, if every child was proven empty by
1227 : : * constraint exclusion. In that case generate a dummy plan that returns
1228 : : * no rows.
1229 : : *
1230 : : * Note that an AppendPath with no members is also generated in certain
1231 : : * cases where there was no appending construct at all, but we know the
1232 : : * relation is empty (see set_dummy_rel_pathlist and mark_dummy_rel).
1233 : : */
1234 [ + + ]: 3260 : if (best_path->subpaths == NIL)
1235 : : {
1236 : : /* Generate a Result plan with constant-FALSE gating qual */
1237 : 170 : Plan *plan;
1238 : :
1239 : 340 : plan = (Plan *) make_one_row_result(tlist,
1240 : 170 : (Node *) list_make1(makeBoolConst(false,
1241 : : false)),
1242 : 170 : best_path->path.parent);
1243 : :
1244 : 170 : copy_generic_path_info(plan, (Path *) best_path);
1245 : :
1246 : 170 : return plan;
1247 : 170 : }
1248 : :
1249 : : /*
1250 : : * Otherwise build an Append plan. Note that if there's just one child,
1251 : : * the Append is pretty useless; but we wait till setrefs.c to get rid of
1252 : : * it. Doing so here doesn't work because the varno of the child scan
1253 : : * plan won't match the parent-rel Vars it'll be asked to emit.
1254 : : *
1255 : : * We don't have the actual creation of the Append node split out into a
1256 : : * separate make_xxx function. This is because we want to run
1257 : : * prepare_sort_from_pathkeys on it before we do so on the individual
1258 : : * child plans, to make cross-checking the sort info easier.
1259 : : */
1260 : 3090 : plan = makeNode(Append);
1261 : 3090 : plan->plan.targetlist = tlist;
1262 : 3090 : plan->plan.qual = NIL;
1263 : 3090 : plan->plan.lefttree = NULL;
1264 : 3090 : plan->plan.righttree = NULL;
1265 : 3090 : plan->apprelids = rel->relids;
1266 : 3090 : plan->child_append_relid_sets = best_path->child_append_relid_sets;
1267 : :
1268 [ + + ]: 3090 : if (pathkeys != NIL)
1269 : : {
1270 : : /*
1271 : : * Compute sort column info, and adjust the Append's tlist as needed.
1272 : : * Because we pass adjust_tlist_in_place = true, we may ignore the
1273 : : * function result; it must be the same plan node. However, we then
1274 : : * need to detect whether any tlist entries were added.
1275 : : */
1276 : 92 : (void) prepare_sort_from_pathkeys((Plan *) plan, pathkeys,
1277 : 46 : best_path->path.parent->relids,
1278 : : NULL,
1279 : : true,
1280 : : &nodenumsortkeys,
1281 : : &nodeSortColIdx,
1282 : : &nodeSortOperators,
1283 : : &nodeCollations,
1284 : : &nodeNullsFirst);
1285 : 46 : tlist_was_changed = (orig_tlist_length != list_length(plan->plan.targetlist));
1286 : 46 : }
1287 : :
1288 : : /* If appropriate, consider async append */
1289 [ + - + + ]: 6134 : consider_async = (enable_async_append && pathkeys == NIL &&
1290 [ + + ]: 3044 : !best_path->path.parallel_safe &&
1291 : 1397 : list_length(best_path->subpaths) > 1);
1292 : :
1293 : : /* Build the plan for each child */
1294 [ + - + + : 10824 : foreach(subpaths, best_path->subpaths)
+ + ]
1295 : : {
1296 : 7734 : Path *subpath = (Path *) lfirst(subpaths);
1297 : 7734 : Plan *subplan;
1298 : :
1299 : : /* Must insist that all children return the same tlist */
1300 : 7734 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1301 : :
1302 : : /*
1303 : : * For ordered Appends, we must insert a Sort node if subplan isn't
1304 : : * sufficiently ordered.
1305 : : */
1306 [ + + ]: 7734 : if (pathkeys != NIL)
1307 : : {
1308 : 121 : int numsortkeys;
1309 : 121 : AttrNumber *sortColIdx;
1310 : 121 : Oid *sortOperators;
1311 : 121 : Oid *collations;
1312 : 121 : bool *nullsFirst;
1313 : 121 : int presorted_keys;
1314 : :
1315 : : /*
1316 : : * Compute sort column info, and adjust subplan's tlist as needed.
1317 : : * We must apply prepare_sort_from_pathkeys even to subplans that
1318 : : * don't need an explicit sort, to make sure they are returning
1319 : : * the same sort key columns the Append expects.
1320 : : */
1321 : 242 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1322 : 121 : subpath->parent->relids,
1323 : 121 : nodeSortColIdx,
1324 : : false,
1325 : : &numsortkeys,
1326 : : &sortColIdx,
1327 : : &sortOperators,
1328 : : &collations,
1329 : : &nullsFirst);
1330 : :
1331 : : /*
1332 : : * Check that we got the same sort key information. We just
1333 : : * Assert that the sortops match, since those depend only on the
1334 : : * pathkeys; but it seems like a good idea to check the sort
1335 : : * column numbers explicitly, to ensure the tlists match up.
1336 : : */
1337 [ - + ]: 121 : Assert(numsortkeys == nodenumsortkeys);
1338 : 242 : if (memcmp(sortColIdx, nodeSortColIdx,
1339 [ + - + - ]: 242 : numsortkeys * sizeof(AttrNumber)) != 0)
1340 [ # # # # ]: 0 : elog(ERROR, "Append child's targetlist doesn't match Append");
1341 [ - + ]: 121 : Assert(memcmp(sortOperators, nodeSortOperators,
1342 : : numsortkeys * sizeof(Oid)) == 0);
1343 [ - + ]: 121 : Assert(memcmp(collations, nodeCollations,
1344 : : numsortkeys * sizeof(Oid)) == 0);
1345 [ - + ]: 121 : Assert(memcmp(nullsFirst, nodeNullsFirst,
1346 : : numsortkeys * sizeof(bool)) == 0);
1347 : :
1348 : : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1349 [ + + ]: 121 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1350 : : &presorted_keys))
1351 : : {
1352 : 2 : Plan *sort_plan;
1353 : :
1354 : : /*
1355 : : * We choose to use incremental sort if it is enabled and
1356 : : * there are presorted keys; otherwise we use full sort.
1357 : : */
1358 [ + - + + ]: 2 : if (enable_incremental_sort && presorted_keys > 0)
1359 : : {
1360 : 1 : sort_plan = (Plan *)
1361 : 2 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1362 : 1 : sortColIdx, sortOperators,
1363 : 1 : collations, nullsFirst);
1364 : :
1365 : 2 : label_incrementalsort_with_costsize(root,
1366 : 1 : (IncrementalSort *) sort_plan,
1367 : 1 : pathkeys,
1368 : 1 : best_path->limit_tuples);
1369 : 1 : }
1370 : : else
1371 : : {
1372 : 2 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1373 : 1 : sortColIdx, sortOperators,
1374 : 1 : collations, nullsFirst);
1375 : :
1376 : 2 : label_sort_with_costsize(root, (Sort *) sort_plan,
1377 : 1 : best_path->limit_tuples);
1378 : : }
1379 : :
1380 : 2 : subplan = sort_plan;
1381 : 2 : }
1382 : 121 : }
1383 : :
1384 : : /* If needed, check to see if subplan can be executed asynchronously */
1385 [ + + + - ]: 7734 : if (consider_async && mark_async_capable_plan(subplan, subpath))
1386 : : {
1387 [ # # ]: 0 : Assert(subplan->async_capable);
1388 : 0 : ++nasyncplans;
1389 : 0 : }
1390 : :
1391 : 7734 : subplans = lappend(subplans, subplan);
1392 : 7734 : }
1393 : :
1394 : : /* Set below if we find quals that we can use to run-time prune */
1395 : 3090 : plan->part_prune_index = -1;
1396 : :
1397 : : /*
1398 : : * If any quals exist, they may be useful to perform further partition
1399 : : * pruning during execution. Gather information needed by the executor to
1400 : : * do partition pruning.
1401 : : */
1402 [ + + ]: 3090 : if (enable_partition_pruning)
1403 : : {
1404 : 3081 : List *prunequal;
1405 : :
1406 : 3081 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1407 : :
1408 [ + + ]: 3081 : if (best_path->path.param_info)
1409 : : {
1410 : 60 : List *prmquals = best_path->path.param_info->ppi_clauses;
1411 : :
1412 : 60 : prmquals = extract_actual_clauses(prmquals, false);
1413 : 120 : prmquals = (List *) replace_nestloop_params(root,
1414 : 60 : (Node *) prmquals);
1415 : :
1416 : 60 : prunequal = list_concat(prunequal, prmquals);
1417 : 60 : }
1418 : :
1419 [ + + ]: 3081 : if (prunequal != NIL)
1420 : 2010 : plan->part_prune_index = make_partition_pruneinfo(root, rel,
1421 : 1005 : best_path->subpaths,
1422 : 1005 : prunequal);
1423 : 3081 : }
1424 : :
1425 : 3090 : plan->appendplans = subplans;
1426 : 3090 : plan->nasyncplans = nasyncplans;
1427 : 3090 : plan->first_partial_plan = best_path->first_partial_path;
1428 : :
1429 : 3090 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1430 : :
1431 : : /*
1432 : : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1433 : : * produce either the exact tlist or a narrow tlist, we should get rid of
1434 : : * the sort columns again. We must inject a projection node to do so.
1435 : : */
1436 [ - + # # ]: 3090 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1437 : : {
1438 : 0 : tlist = list_copy_head(plan->plan.targetlist, orig_tlist_length);
1439 : 0 : return inject_projection_plan((Plan *) plan, tlist,
1440 : 0 : plan->plan.parallel_safe);
1441 : : }
1442 : : else
1443 : 3090 : return (Plan *) plan;
1444 : 3260 : }
1445 : :
1446 : : /*
1447 : : * create_merge_append_plan
1448 : : * Create a MergeAppend plan for 'best_path' and (recursively) plans
1449 : : * for its subpaths.
1450 : : *
1451 : : * Returns a Plan node.
1452 : : */
1453 : : static Plan *
1454 : 91 : create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path,
1455 : : int flags)
1456 : : {
1457 : 91 : MergeAppend *node = makeNode(MergeAppend);
1458 : 91 : Plan *plan = &node->plan;
1459 : 91 : List *tlist = build_path_tlist(root, &best_path->path);
1460 : 91 : int orig_tlist_length = list_length(tlist);
1461 : 91 : bool tlist_was_changed;
1462 : 91 : List *pathkeys = best_path->path.pathkeys;
1463 : 91 : List *subplans = NIL;
1464 : 91 : ListCell *subpaths;
1465 : 91 : RelOptInfo *rel = best_path->path.parent;
1466 : :
1467 : : /*
1468 : : * We don't have the actual creation of the MergeAppend node split out
1469 : : * into a separate make_xxx function. This is because we want to run
1470 : : * prepare_sort_from_pathkeys on it before we do so on the individual
1471 : : * child plans, to make cross-checking the sort info easier.
1472 : : */
1473 : 91 : copy_generic_path_info(plan, (Path *) best_path);
1474 : 91 : plan->targetlist = tlist;
1475 : 91 : plan->qual = NIL;
1476 : 91 : plan->lefttree = NULL;
1477 : 91 : plan->righttree = NULL;
1478 : 91 : node->apprelids = rel->relids;
1479 : 91 : node->child_append_relid_sets = best_path->child_append_relid_sets;
1480 : :
1481 : : /*
1482 : : * Compute sort column info, and adjust MergeAppend's tlist as needed.
1483 : : * Because we pass adjust_tlist_in_place = true, we may ignore the
1484 : : * function result; it must be the same plan node. However, we then need
1485 : : * to detect whether any tlist entries were added.
1486 : : */
1487 : 182 : (void) prepare_sort_from_pathkeys(plan, pathkeys,
1488 : 91 : best_path->path.parent->relids,
1489 : : NULL,
1490 : : true,
1491 : 91 : &node->numCols,
1492 : 91 : &node->sortColIdx,
1493 : 91 : &node->sortOperators,
1494 : 91 : &node->collations,
1495 : 91 : &node->nullsFirst);
1496 : 91 : tlist_was_changed = (orig_tlist_length != list_length(plan->targetlist));
1497 : :
1498 : : /*
1499 : : * Now prepare the child plans. We must apply prepare_sort_from_pathkeys
1500 : : * even to subplans that don't need an explicit sort, to make sure they
1501 : : * are returning the same sort key columns the MergeAppend expects.
1502 : : */
1503 [ + - + + : 349 : foreach(subpaths, best_path->subpaths)
+ + ]
1504 : : {
1505 : 258 : Path *subpath = (Path *) lfirst(subpaths);
1506 : 258 : Plan *subplan;
1507 : 258 : int numsortkeys;
1508 : 258 : AttrNumber *sortColIdx;
1509 : 258 : Oid *sortOperators;
1510 : 258 : Oid *collations;
1511 : 258 : bool *nullsFirst;
1512 : 258 : int presorted_keys;
1513 : :
1514 : : /* Build the child plan */
1515 : : /* Must insist that all children return the same tlist */
1516 : 258 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
1517 : :
1518 : : /* Compute sort column info, and adjust subplan's tlist as needed */
1519 : 516 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1520 : 258 : subpath->parent->relids,
1521 : 258 : node->sortColIdx,
1522 : : false,
1523 : : &numsortkeys,
1524 : : &sortColIdx,
1525 : : &sortOperators,
1526 : : &collations,
1527 : : &nullsFirst);
1528 : :
1529 : : /*
1530 : : * Check that we got the same sort key information. We just Assert
1531 : : * that the sortops match, since those depend only on the pathkeys;
1532 : : * but it seems like a good idea to check the sort column numbers
1533 : : * explicitly, to ensure the tlists really do match up.
1534 : : */
1535 [ + - ]: 258 : Assert(numsortkeys == node->numCols);
1536 : 516 : if (memcmp(sortColIdx, node->sortColIdx,
1537 [ + - + - ]: 516 : numsortkeys * sizeof(AttrNumber)) != 0)
1538 [ # # # # ]: 0 : elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
1539 [ - + ]: 258 : Assert(memcmp(sortOperators, node->sortOperators,
1540 : : numsortkeys * sizeof(Oid)) == 0);
1541 [ - + ]: 258 : Assert(memcmp(collations, node->collations,
1542 : : numsortkeys * sizeof(Oid)) == 0);
1543 [ - + ]: 258 : Assert(memcmp(nullsFirst, node->nullsFirst,
1544 : : numsortkeys * sizeof(bool)) == 0);
1545 : :
1546 : : /* Now, insert a Sort node if subplan isn't sufficiently ordered */
1547 [ + + ]: 258 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1548 : : &presorted_keys))
1549 : : {
1550 : 14 : Plan *sort_plan;
1551 : :
1552 : : /*
1553 : : * We choose to use incremental sort if it is enabled and there
1554 : : * are presorted keys; otherwise we use full sort.
1555 : : */
1556 [ + - + + ]: 14 : if (enable_incremental_sort && presorted_keys > 0)
1557 : : {
1558 : 3 : sort_plan = (Plan *)
1559 : 6 : make_incrementalsort(subplan, numsortkeys, presorted_keys,
1560 : 3 : sortColIdx, sortOperators,
1561 : 3 : collations, nullsFirst);
1562 : :
1563 : 6 : label_incrementalsort_with_costsize(root,
1564 : 3 : (IncrementalSort *) sort_plan,
1565 : 3 : pathkeys,
1566 : 3 : best_path->limit_tuples);
1567 : 3 : }
1568 : : else
1569 : : {
1570 : 22 : sort_plan = (Plan *) make_sort(subplan, numsortkeys,
1571 : 11 : sortColIdx, sortOperators,
1572 : 11 : collations, nullsFirst);
1573 : :
1574 : 22 : label_sort_with_costsize(root, (Sort *) sort_plan,
1575 : 11 : best_path->limit_tuples);
1576 : : }
1577 : :
1578 : 14 : subplan = sort_plan;
1579 : 14 : }
1580 : :
1581 : 258 : subplans = lappend(subplans, subplan);
1582 : 258 : }
1583 : :
1584 : : /* Set below if we find quals that we can use to run-time prune */
1585 : 91 : node->part_prune_index = -1;
1586 : :
1587 : : /*
1588 : : * If any quals exist, they may be useful to perform further partition
1589 : : * pruning during execution. Gather information needed by the executor to
1590 : : * do partition pruning.
1591 : : */
1592 [ - + ]: 91 : if (enable_partition_pruning)
1593 : : {
1594 : 91 : List *prunequal;
1595 : :
1596 : 91 : prunequal = extract_actual_clauses(rel->baserestrictinfo, false);
1597 : :
1598 : : /* We don't currently generate any parameterized MergeAppend paths */
1599 [ + - ]: 91 : Assert(best_path->path.param_info == NULL);
1600 : :
1601 [ + + ]: 91 : if (prunequal != NIL)
1602 : 56 : node->part_prune_index = make_partition_pruneinfo(root, rel,
1603 : 28 : best_path->subpaths,
1604 : 28 : prunequal);
1605 : 91 : }
1606 : :
1607 : 91 : node->mergeplans = subplans;
1608 : :
1609 : : /*
1610 : : * If prepare_sort_from_pathkeys added sort columns, but we were told to
1611 : : * produce either the exact tlist or a narrow tlist, we should get rid of
1612 : : * the sort columns again. We must inject a projection node to do so.
1613 : : */
1614 [ + + + - ]: 91 : if (tlist_was_changed && (flags & (CP_EXACT_TLIST | CP_SMALL_TLIST)))
1615 : : {
1616 : 0 : tlist = list_copy_head(plan->targetlist, orig_tlist_length);
1617 : 0 : return inject_projection_plan(plan, tlist, plan->parallel_safe);
1618 : : }
1619 : : else
1620 : 91 : return plan;
1621 : 91 : }
1622 : :
1623 : : /*
1624 : : * create_group_result_plan
1625 : : * Create a Result plan for 'best_path'.
1626 : : * This is only used for degenerate grouping cases.
1627 : : *
1628 : : * Returns a Plan node.
1629 : : */
1630 : : static Result *
1631 : 17117 : create_group_result_plan(PlannerInfo *root, GroupResultPath *best_path)
1632 : : {
1633 : 17117 : Result *plan;
1634 : 17117 : List *tlist;
1635 : 17117 : List *quals;
1636 : :
1637 : 17117 : tlist = build_path_tlist(root, &best_path->path);
1638 : :
1639 : : /* best_path->quals is just bare clauses */
1640 : 17117 : quals = order_qual_clauses(root, best_path->quals);
1641 : :
1642 : 17117 : plan = make_one_row_result(tlist, (Node *) quals, best_path->path.parent);
1643 : :
1644 : 17117 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1645 : :
1646 : 34234 : return plan;
1647 : 17117 : }
1648 : :
1649 : : /*
1650 : : * create_project_set_plan
1651 : : * Create a ProjectSet plan for 'best_path'.
1652 : : *
1653 : : * Returns a Plan node.
1654 : : */
1655 : : static ProjectSet *
1656 : 1646 : create_project_set_plan(PlannerInfo *root, ProjectSetPath *best_path)
1657 : : {
1658 : 1646 : ProjectSet *plan;
1659 : 1646 : Plan *subplan;
1660 : 1646 : List *tlist;
1661 : :
1662 : : /* Since we intend to project, we don't need to constrain child tlist */
1663 : 1646 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1664 : :
1665 : 1646 : tlist = build_path_tlist(root, &best_path->path);
1666 : :
1667 : 1646 : plan = make_project_set(tlist, subplan);
1668 : :
1669 : 1646 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1670 : :
1671 : 3292 : return plan;
1672 : 1646 : }
1673 : :
1674 : : /*
1675 : : * create_material_plan
1676 : : * Create a Material plan for 'best_path' and (recursively) plans
1677 : : * for its subpaths.
1678 : : *
1679 : : * Returns a Plan node.
1680 : : */
1681 : : static Material *
1682 : 497 : create_material_plan(PlannerInfo *root, MaterialPath *best_path, int flags)
1683 : : {
1684 : 497 : Material *plan;
1685 : 497 : Plan *subplan;
1686 : :
1687 : : /*
1688 : : * We don't want any excess columns in the materialized tuples, so request
1689 : : * a smaller tlist. Otherwise, since Material doesn't project, tlist
1690 : : * requirements pass through.
1691 : : */
1692 : 994 : subplan = create_plan_recurse(root, best_path->subpath,
1693 : 497 : flags | CP_SMALL_TLIST);
1694 : :
1695 : 497 : plan = make_material(subplan);
1696 : :
1697 : 497 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1698 : :
1699 : 994 : return plan;
1700 : 497 : }
1701 : :
1702 : : /*
1703 : : * create_memoize_plan
1704 : : * Create a Memoize plan for 'best_path' and (recursively) plans for its
1705 : : * subpaths.
1706 : : *
1707 : : * Returns a Plan node.
1708 : : */
1709 : : static Memoize *
1710 : 215 : create_memoize_plan(PlannerInfo *root, MemoizePath *best_path, int flags)
1711 : : {
1712 : 215 : Memoize *plan;
1713 : 215 : Bitmapset *keyparamids;
1714 : 215 : Plan *subplan;
1715 : 215 : Oid *operators;
1716 : 215 : Oid *collations;
1717 : 215 : List *param_exprs = NIL;
1718 : 215 : ListCell *lc;
1719 : 215 : ListCell *lc2;
1720 : 215 : int nkeys;
1721 : 215 : int i;
1722 : :
1723 : 430 : subplan = create_plan_recurse(root, best_path->subpath,
1724 : 215 : flags | CP_SMALL_TLIST);
1725 : :
1726 : 430 : param_exprs = (List *) replace_nestloop_params(root, (Node *)
1727 : 215 : best_path->param_exprs);
1728 : :
1729 : 215 : nkeys = list_length(param_exprs);
1730 [ + - ]: 215 : Assert(nkeys > 0);
1731 : 215 : operators = palloc(nkeys * sizeof(Oid));
1732 : 215 : collations = palloc(nkeys * sizeof(Oid));
1733 : :
1734 : 215 : i = 0;
1735 [ + - + + : 440 : forboth(lc, param_exprs, lc2, best_path->hash_operators)
+ - + + +
+ + + ]
1736 : : {
1737 : 225 : Expr *param_expr = (Expr *) lfirst(lc);
1738 : 225 : Oid opno = lfirst_oid(lc2);
1739 : :
1740 : 225 : operators[i] = opno;
1741 : 225 : collations[i] = exprCollation((Node *) param_expr);
1742 : 225 : i++;
1743 : 225 : }
1744 : :
1745 : 215 : keyparamids = pull_paramids((Expr *) param_exprs);
1746 : :
1747 : 430 : plan = make_memoize(subplan, operators, collations, param_exprs,
1748 : 215 : best_path->singlerow, best_path->binary_mode,
1749 : 215 : best_path->est_entries, keyparamids, best_path->est_calls,
1750 : 215 : best_path->est_unique_keys, best_path->est_hit_ratio);
1751 : :
1752 : 215 : copy_generic_path_info(&plan->plan, (Path *) best_path);
1753 : :
1754 : 430 : return plan;
1755 : 215 : }
1756 : :
1757 : : /*
1758 : : * create_gather_plan
1759 : : *
1760 : : * Create a Gather plan for 'best_path' and (recursively) plans
1761 : : * for its subpaths.
1762 : : */
1763 : : static Gather *
1764 : 173 : create_gather_plan(PlannerInfo *root, GatherPath *best_path)
1765 : : {
1766 : 173 : Gather *gather_plan;
1767 : 173 : Plan *subplan;
1768 : 173 : List *tlist;
1769 : :
1770 : : /*
1771 : : * Push projection down to the child node. That way, the projection work
1772 : : * is parallelized, and there can be no system columns in the result (they
1773 : : * can't travel through a tuple queue because it uses MinimalTuple
1774 : : * representation).
1775 : : */
1776 : 173 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1777 : :
1778 : 173 : tlist = build_path_tlist(root, &best_path->path);
1779 : :
1780 : 346 : gather_plan = make_gather(tlist,
1781 : : NIL,
1782 : 173 : best_path->num_workers,
1783 : 173 : assign_special_exec_param(root),
1784 : 173 : best_path->single_copy,
1785 : 173 : subplan);
1786 : :
1787 : 173 : copy_generic_path_info(&gather_plan->plan, &best_path->path);
1788 : :
1789 : : /* use parallel mode for parallel plans. */
1790 : 173 : root->glob->parallelModeNeeded = true;
1791 : :
1792 : 346 : return gather_plan;
1793 : 173 : }
1794 : :
1795 : : /*
1796 : : * create_gather_merge_plan
1797 : : *
1798 : : * Create a Gather Merge plan for 'best_path' and (recursively)
1799 : : * plans for its subpaths.
1800 : : */
1801 : : static GatherMerge *
1802 : 67 : create_gather_merge_plan(PlannerInfo *root, GatherMergePath *best_path)
1803 : : {
1804 : 67 : GatherMerge *gm_plan;
1805 : 67 : Plan *subplan;
1806 : 67 : List *pathkeys = best_path->path.pathkeys;
1807 : 67 : List *tlist = build_path_tlist(root, &best_path->path);
1808 : :
1809 : : /* As with Gather, project away columns in the workers. */
1810 : 67 : subplan = create_plan_recurse(root, best_path->subpath, CP_EXACT_TLIST);
1811 : :
1812 : : /* Create a shell for a GatherMerge plan. */
1813 : 67 : gm_plan = makeNode(GatherMerge);
1814 : 67 : gm_plan->plan.targetlist = tlist;
1815 : 67 : gm_plan->num_workers = best_path->num_workers;
1816 : 67 : copy_generic_path_info(&gm_plan->plan, &best_path->path);
1817 : :
1818 : : /* Assign the rescan Param. */
1819 : 67 : gm_plan->rescan_param = assign_special_exec_param(root);
1820 : :
1821 : : /* Gather Merge is pointless with no pathkeys; use Gather instead. */
1822 [ + - ]: 67 : Assert(pathkeys != NIL);
1823 : :
1824 : : /* Compute sort column info, and adjust subplan's tlist as needed */
1825 : 134 : subplan = prepare_sort_from_pathkeys(subplan, pathkeys,
1826 : 67 : best_path->subpath->parent->relids,
1827 : 67 : gm_plan->sortColIdx,
1828 : : false,
1829 : 67 : &gm_plan->numCols,
1830 : 67 : &gm_plan->sortColIdx,
1831 : 67 : &gm_plan->sortOperators,
1832 : 67 : &gm_plan->collations,
1833 : 67 : &gm_plan->nullsFirst);
1834 : :
1835 : : /*
1836 : : * All gather merge paths should have already guaranteed the necessary
1837 : : * sort order. See create_gather_merge_path.
1838 : : */
1839 [ + - ]: 67 : Assert(pathkeys_contained_in(pathkeys, best_path->subpath->pathkeys));
1840 : :
1841 : : /* Now insert the subplan under GatherMerge. */
1842 : 67 : gm_plan->plan.lefttree = subplan;
1843 : :
1844 : : /* use parallel mode for parallel plans. */
1845 : 67 : root->glob->parallelModeNeeded = true;
1846 : :
1847 : 134 : return gm_plan;
1848 : 67 : }
1849 : :
1850 : : /*
1851 : : * create_projection_plan
1852 : : *
1853 : : * Create a plan tree to do a projection step and (recursively) plans
1854 : : * for its subpaths. We may need a Result node for the projection,
1855 : : * but sometimes we can just let the subplan do the work.
1856 : : */
1857 : : static Plan *
1858 : 33338 : create_projection_plan(PlannerInfo *root, ProjectionPath *best_path, int flags)
1859 : : {
1860 : 33338 : Plan *plan;
1861 : 33338 : Plan *subplan;
1862 : 33338 : List *tlist;
1863 : 33338 : bool needs_result_node = false;
1864 : :
1865 : : /*
1866 : : * Convert our subpath to a Plan and determine whether we need a Result
1867 : : * node.
1868 : : *
1869 : : * In most cases where we don't need to project, create_projection_path
1870 : : * will have set dummypp, but not always. First, some createplan.c
1871 : : * routines change the tlists of their nodes. (An example is that
1872 : : * create_merge_append_plan might add resjunk sort columns to a
1873 : : * MergeAppend.) Second, create_projection_path has no way of knowing
1874 : : * what path node will be placed on top of the projection path and
1875 : : * therefore can't predict whether it will require an exact tlist. For
1876 : : * both of these reasons, we have to recheck here.
1877 : : */
1878 [ + + ]: 33338 : if (use_physical_tlist(root, &best_path->path, flags))
1879 : : {
1880 : : /*
1881 : : * Our caller doesn't really care what tlist we return, so we don't
1882 : : * actually need to project. However, we may still need to ensure
1883 : : * proper sortgroupref labels, if the caller cares about those.
1884 : : */
1885 : 124 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1886 : 124 : tlist = subplan->targetlist;
1887 [ + + ]: 124 : if (flags & CP_LABEL_TLIST)
1888 : 146 : apply_pathtarget_labeling_to_tlist(tlist,
1889 : 73 : best_path->path.pathtarget);
1890 : 124 : }
1891 [ + + ]: 33214 : else if (is_projection_capable_path(best_path->subpath))
1892 : : {
1893 : : /*
1894 : : * Our caller requires that we return the exact tlist, but no separate
1895 : : * result node is needed because the subpath is projection-capable.
1896 : : * Tell create_plan_recurse that we're going to ignore the tlist it
1897 : : * produces.
1898 : : */
1899 : 33029 : subplan = create_plan_recurse(root, best_path->subpath,
1900 : : CP_IGNORE_TLIST);
1901 [ + - ]: 33029 : Assert(is_projection_capable_plan(subplan));
1902 : 33029 : tlist = build_path_tlist(root, &best_path->path);
1903 : 33029 : }
1904 : : else
1905 : : {
1906 : : /*
1907 : : * It looks like we need a result node, unless by good fortune the
1908 : : * requested tlist is exactly the one the child wants to produce.
1909 : : */
1910 : 185 : subplan = create_plan_recurse(root, best_path->subpath, 0);
1911 : 185 : tlist = build_path_tlist(root, &best_path->path);
1912 : 185 : needs_result_node = !tlist_same_exprs(tlist, subplan->targetlist);
1913 : : }
1914 : :
1915 : : /*
1916 : : * If we make a different decision about whether to include a Result node
1917 : : * than create_projection_path did, we'll have made slightly wrong cost
1918 : : * estimates; but label the plan with the cost estimates we actually used,
1919 : : * not "corrected" ones. (XXX this could be cleaned up if we moved more
1920 : : * of the sortcolumn setup logic into Path creation, but that would add
1921 : : * expense to creating Paths we might end up not using.)
1922 : : */
1923 [ + + ]: 33338 : if (!needs_result_node)
1924 : : {
1925 : : /* Don't need a separate Result, just assign tlist to subplan */
1926 : 33177 : plan = subplan;
1927 : 33177 : plan->targetlist = tlist;
1928 : :
1929 : : /* Label plan with the estimated costs we actually used */
1930 : 33177 : plan->startup_cost = best_path->path.startup_cost;
1931 : 33177 : plan->total_cost = best_path->path.total_cost;
1932 : 33177 : plan->plan_rows = best_path->path.rows;
1933 : 33177 : plan->plan_width = best_path->path.pathtarget->width;
1934 : 33177 : plan->parallel_safe = best_path->path.parallel_safe;
1935 : : /* ... but don't change subplan's parallel_aware flag */
1936 : 33177 : }
1937 : : else
1938 : : {
1939 : 161 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1940 : :
1941 : 161 : copy_generic_path_info(plan, (Path *) best_path);
1942 : : }
1943 : :
1944 : 66676 : return plan;
1945 : 33338 : }
1946 : :
1947 : : /*
1948 : : * inject_projection_plan
1949 : : * Insert a Result node to do a projection step.
1950 : : *
1951 : : * This is used in a few places where we decide on-the-fly that we need a
1952 : : * projection step as part of the tree generated for some Path node.
1953 : : * We should try to get rid of this in favor of doing it more honestly.
1954 : : *
1955 : : * One reason it's ugly is we have to be told the right parallel_safe marking
1956 : : * to apply (since the tlist might be unsafe even if the child plan is safe).
1957 : : */
1958 : : static Plan *
1959 : 5 : inject_projection_plan(Plan *subplan, List *tlist, bool parallel_safe)
1960 : : {
1961 : 5 : Plan *plan;
1962 : :
1963 : 5 : plan = (Plan *) make_gating_result(tlist, NULL, subplan);
1964 : :
1965 : : /*
1966 : : * In principle, we should charge tlist eval cost plus cpu_per_tuple per
1967 : : * row for the Result node. But the former has probably been factored in
1968 : : * already and the latter was not accounted for during Path construction,
1969 : : * so being formally correct might just make the EXPLAIN output look less
1970 : : * consistent not more so. Hence, just copy the subplan's cost.
1971 : : */
1972 : 5 : copy_plan_costsize(plan, subplan);
1973 : 5 : plan->parallel_safe = parallel_safe;
1974 : :
1975 : 10 : return plan;
1976 : 5 : }
1977 : :
1978 : : /*
1979 : : * change_plan_targetlist
1980 : : * Externally available wrapper for inject_projection_plan.
1981 : : *
1982 : : * This is meant for use by FDW plan-generation functions, which might
1983 : : * want to adjust the tlist computed by some subplan tree. In general,
1984 : : * a Result node is needed to compute the new tlist, but we can optimize
1985 : : * some cases.
1986 : : *
1987 : : * In most cases, tlist_parallel_safe can just be passed as the parallel_safe
1988 : : * flag of the FDW's own Path node.
1989 : : */
1990 : : Plan *
1991 : 5 : change_plan_targetlist(Plan *subplan, List *tlist, bool tlist_parallel_safe)
1992 : : {
1993 : : /*
1994 : : * If the top plan node can't do projections and its existing target list
1995 : : * isn't already what we need, we need to add a Result node to help it
1996 : : * along.
1997 : : */
1998 [ + + - + ]: 5 : if (!is_projection_capable_plan(subplan) &&
1999 : 1 : !tlist_same_exprs(tlist, subplan->targetlist))
2000 : 1 : subplan = inject_projection_plan(subplan, tlist,
2001 [ + - ]: 1 : subplan->parallel_safe &&
2002 : 0 : tlist_parallel_safe);
2003 : : else
2004 : : {
2005 : : /* Else we can just replace the plan node's tlist */
2006 : 4 : subplan->targetlist = tlist;
2007 : 4 : subplan->parallel_safe &= tlist_parallel_safe;
2008 : : }
2009 : 5 : return subplan;
2010 : : }
2011 : :
2012 : : /*
2013 : : * create_sort_plan
2014 : : *
2015 : : * Create a Sort plan for 'best_path' and (recursively) plans
2016 : : * for its subpaths.
2017 : : */
2018 : : static Sort *
2019 : 8567 : create_sort_plan(PlannerInfo *root, SortPath *best_path, int flags)
2020 : : {
2021 : 8567 : Sort *plan;
2022 : 8567 : Plan *subplan;
2023 : :
2024 : : /*
2025 : : * We don't want any excess columns in the sorted tuples, so request a
2026 : : * smaller tlist. Otherwise, since Sort doesn't project, tlist
2027 : : * requirements pass through.
2028 : : */
2029 : 17134 : subplan = create_plan_recurse(root, best_path->subpath,
2030 : 8567 : flags | CP_SMALL_TLIST);
2031 : :
2032 : : /*
2033 : : * make_sort_from_pathkeys indirectly calls find_ec_member_matching_expr,
2034 : : * which will ignore any child EC members that don't belong to the given
2035 : : * relids. Thus, if this sort path is based on a child relation, we must
2036 : : * pass its relids.
2037 : : */
2038 : 17134 : plan = make_sort_from_pathkeys(subplan, best_path->path.pathkeys,
2039 [ + + + + : 8567 : IS_OTHER_REL(best_path->subpath->parent) ?
+ + ]
2040 : 77 : best_path->path.parent->relids : NULL);
2041 : :
2042 : 8567 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2043 : :
2044 : 17134 : return plan;
2045 : 8567 : }
2046 : :
2047 : : /*
2048 : : * create_incrementalsort_plan
2049 : : *
2050 : : * Do the same as create_sort_plan, but create IncrementalSort plan.
2051 : : */
2052 : : static IncrementalSort *
2053 : 113 : create_incrementalsort_plan(PlannerInfo *root, IncrementalSortPath *best_path,
2054 : : int flags)
2055 : : {
2056 : 113 : IncrementalSort *plan;
2057 : 113 : Plan *subplan;
2058 : :
2059 : : /* See comments in create_sort_plan() above */
2060 : 226 : subplan = create_plan_recurse(root, best_path->spath.subpath,
2061 : 113 : flags | CP_SMALL_TLIST);
2062 : 226 : plan = make_incrementalsort_from_pathkeys(subplan,
2063 : 113 : best_path->spath.path.pathkeys,
2064 [ + - + + : 113 : IS_OTHER_REL(best_path->spath.subpath->parent) ?
- + ]
2065 : 6 : best_path->spath.path.parent->relids : NULL,
2066 : 113 : best_path->nPresortedCols);
2067 : :
2068 : 113 : copy_generic_path_info(&plan->sort.plan, (Path *) best_path);
2069 : :
2070 : 226 : return plan;
2071 : 113 : }
2072 : :
2073 : : /*
2074 : : * create_group_plan
2075 : : *
2076 : : * Create a Group plan for 'best_path' and (recursively) plans
2077 : : * for its subpaths.
2078 : : */
2079 : : static Group *
2080 : 39 : create_group_plan(PlannerInfo *root, GroupPath *best_path)
2081 : : {
2082 : 39 : Group *plan;
2083 : 39 : Plan *subplan;
2084 : 39 : List *tlist;
2085 : 39 : List *quals;
2086 : :
2087 : : /*
2088 : : * Group can project, so no need to be terribly picky about child tlist,
2089 : : * but we do need grouping columns to be available
2090 : : */
2091 : 39 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2092 : :
2093 : 39 : tlist = build_path_tlist(root, &best_path->path);
2094 : :
2095 : 39 : quals = order_qual_clauses(root, best_path->qual);
2096 : :
2097 : 78 : plan = make_group(tlist,
2098 : 39 : quals,
2099 : 39 : list_length(best_path->groupClause),
2100 : 78 : extract_grouping_cols(best_path->groupClause,
2101 : 39 : subplan->targetlist),
2102 : 39 : extract_grouping_ops(best_path->groupClause),
2103 : 78 : extract_grouping_collations(best_path->groupClause,
2104 : 39 : subplan->targetlist),
2105 : 39 : subplan);
2106 : :
2107 : 39 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2108 : :
2109 : 78 : return plan;
2110 : 39 : }
2111 : :
2112 : : /*
2113 : : * create_unique_plan
2114 : : *
2115 : : * Create a Unique plan for 'best_path' and (recursively) plans
2116 : : * for its subpaths.
2117 : : */
2118 : : static Unique *
2119 : 711 : create_unique_plan(PlannerInfo *root, UniquePath *best_path, int flags)
2120 : : {
2121 : 711 : Unique *plan;
2122 : 711 : Plan *subplan;
2123 : :
2124 : : /*
2125 : : * Unique doesn't project, so tlist requirements pass through; moreover we
2126 : : * need grouping columns to be labeled.
2127 : : */
2128 : 1422 : subplan = create_plan_recurse(root, best_path->subpath,
2129 : 711 : flags | CP_LABEL_TLIST);
2130 : :
2131 : : /*
2132 : : * make_unique_from_pathkeys calls find_ec_member_matching_expr, which
2133 : : * will ignore any child EC members that don't belong to the given relids.
2134 : : * Thus, if this unique path is based on a child relation, we must pass
2135 : : * its relids.
2136 : : */
2137 : 1422 : plan = make_unique_from_pathkeys(subplan,
2138 : 711 : best_path->path.pathkeys,
2139 : 711 : best_path->numkeys,
2140 [ + + + + : 711 : IS_OTHER_REL(best_path->path.parent) ?
- + ]
2141 : 15 : best_path->path.parent->relids : NULL);
2142 : :
2143 : 711 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2144 : :
2145 : 1422 : return plan;
2146 : 711 : }
2147 : :
2148 : : /*
2149 : : * create_agg_plan
2150 : : *
2151 : : * Create an Agg plan for 'best_path' and (recursively) plans
2152 : : * for its subpaths.
2153 : : */
2154 : : static Agg *
2155 : 5352 : create_agg_plan(PlannerInfo *root, AggPath *best_path)
2156 : : {
2157 : 5352 : Agg *plan;
2158 : 5352 : Plan *subplan;
2159 : 5352 : List *tlist;
2160 : 5352 : List *quals;
2161 : :
2162 : : /*
2163 : : * Agg can project, so no need to be terribly picky about child tlist, but
2164 : : * we do need grouping columns to be available
2165 : : */
2166 : 5352 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2167 : :
2168 : 5352 : tlist = build_path_tlist(root, &best_path->path);
2169 : :
2170 : 5352 : quals = order_qual_clauses(root, best_path->qual);
2171 : :
2172 : 10704 : plan = make_agg(tlist, quals,
2173 : 5352 : best_path->aggstrategy,
2174 : 5352 : best_path->aggsplit,
2175 : 5352 : list_length(best_path->groupClause),
2176 : 10704 : extract_grouping_cols(best_path->groupClause,
2177 : 5352 : subplan->targetlist),
2178 : 5352 : extract_grouping_ops(best_path->groupClause),
2179 : 10704 : extract_grouping_collations(best_path->groupClause,
2180 : 5352 : subplan->targetlist),
2181 : : NIL,
2182 : : NIL,
2183 : 5352 : best_path->numGroups,
2184 : 5352 : best_path->transitionSpace,
2185 : 5352 : subplan);
2186 : :
2187 : 5352 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2188 : :
2189 : 10704 : return plan;
2190 : 5352 : }
2191 : :
2192 : : /*
2193 : : * Given a groupclause for a collection of grouping sets, produce the
2194 : : * corresponding groupColIdx.
2195 : : *
2196 : : * root->grouping_map maps the tleSortGroupRef to the actual column position in
2197 : : * the input tuple. So we get the ref from the entries in the groupclause and
2198 : : * look them up there.
2199 : : */
2200 : : static AttrNumber *
2201 : 336 : remap_groupColIdx(PlannerInfo *root, List *groupClause)
2202 : : {
2203 : 336 : AttrNumber *grouping_map = root->grouping_map;
2204 : 336 : AttrNumber *new_grpColIdx;
2205 : 336 : ListCell *lc;
2206 : 336 : int i;
2207 : :
2208 [ + - ]: 336 : Assert(grouping_map);
2209 : :
2210 : 336 : new_grpColIdx = palloc0_array(AttrNumber, list_length(groupClause));
2211 : :
2212 : 336 : i = 0;
2213 [ + + + + : 769 : foreach(lc, groupClause)
+ + ]
2214 : : {
2215 : 433 : SortGroupClause *clause = lfirst(lc);
2216 : :
2217 : 433 : new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
2218 : 433 : }
2219 : :
2220 : 672 : return new_grpColIdx;
2221 : 336 : }
2222 : :
2223 : : /*
2224 : : * create_groupingsets_plan
2225 : : * Create a plan for 'best_path' and (recursively) plans
2226 : : * for its subpaths.
2227 : : *
2228 : : * What we emit is an Agg plan with some vestigial Agg and Sort nodes
2229 : : * hanging off the side. The top Agg implements the last grouping set
2230 : : * specified in the GroupingSetsPath, and any additional grouping sets
2231 : : * each give rise to a subsidiary Agg and Sort node in the top Agg's
2232 : : * "chain" list. These nodes don't participate in the plan directly,
2233 : : * but they are a convenient way to represent the required data for
2234 : : * the extra steps.
2235 : : *
2236 : : * Returns a Plan node.
2237 : : */
2238 : : static Plan *
2239 : 160 : create_groupingsets_plan(PlannerInfo *root, GroupingSetsPath *best_path)
2240 : : {
2241 : 160 : Agg *plan;
2242 : 160 : Plan *subplan;
2243 : 160 : List *rollups = best_path->rollups;
2244 : 160 : AttrNumber *grouping_map;
2245 : 160 : int maxref;
2246 : 160 : List *chain;
2247 : 160 : ListCell *lc;
2248 : :
2249 : : /* Shouldn't get here without grouping sets */
2250 [ + - ]: 160 : Assert(root->parse->groupingSets);
2251 [ + - ]: 160 : Assert(rollups != NIL);
2252 : :
2253 : : /*
2254 : : * Agg can project, so no need to be terribly picky about child tlist, but
2255 : : * we do need grouping columns to be available
2256 : : */
2257 : 160 : subplan = create_plan_recurse(root, best_path->subpath, CP_LABEL_TLIST);
2258 : :
2259 : : /*
2260 : : * Compute the mapping from tleSortGroupRef to column index in the child's
2261 : : * tlist. First, identify max SortGroupRef in groupClause, for array
2262 : : * sizing.
2263 : : */
2264 : 160 : maxref = 0;
2265 [ + + + + : 489 : foreach(lc, root->processed_groupClause)
+ + ]
2266 : : {
2267 : 329 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2268 : :
2269 [ + + ]: 329 : if (gc->tleSortGroupRef > maxref)
2270 : 321 : maxref = gc->tleSortGroupRef;
2271 : 329 : }
2272 : :
2273 : 160 : grouping_map = (AttrNumber *) palloc0((maxref + 1) * sizeof(AttrNumber));
2274 : :
2275 : : /* Now look up the column numbers in the child's tlist */
2276 [ + + + + : 489 : foreach(lc, root->processed_groupClause)
+ + ]
2277 : : {
2278 : 329 : SortGroupClause *gc = (SortGroupClause *) lfirst(lc);
2279 : 329 : TargetEntry *tle = get_sortgroupclause_tle(gc, subplan->targetlist);
2280 : :
2281 : 329 : grouping_map[gc->tleSortGroupRef] = tle->resno;
2282 : 329 : }
2283 : :
2284 : : /*
2285 : : * During setrefs.c, we'll need the grouping_map to fix up the cols lists
2286 : : * in GroupingFunc nodes. Save it for setrefs.c to use.
2287 : : */
2288 [ + - ]: 160 : Assert(root->grouping_map == NULL);
2289 : 160 : root->grouping_map = grouping_map;
2290 : :
2291 : : /*
2292 : : * Generate the side nodes that describe the other sort and group
2293 : : * operations besides the top one. Note that we don't worry about putting
2294 : : * accurate cost estimates in the side nodes; only the topmost Agg node's
2295 : : * costs will be shown by EXPLAIN.
2296 : : */
2297 : 160 : chain = NIL;
2298 [ + + ]: 160 : if (list_length(rollups) > 1)
2299 : : {
2300 : 107 : bool is_first_sort = ((RollupData *) linitial(rollups))->is_hashed;
2301 : :
2302 [ + - + + : 283 : for_each_from(lc, rollups, 1)
+ + ]
2303 : : {
2304 : 176 : RollupData *rollup = lfirst(lc);
2305 : 176 : AttrNumber *new_grpColIdx;
2306 : 176 : Plan *sort_plan = NULL;
2307 : 176 : Plan *agg_plan;
2308 : 176 : AggStrategy strat;
2309 : :
2310 : 176 : new_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2311 : :
2312 [ + + + + ]: 176 : if (!rollup->is_hashed && !is_first_sort)
2313 : : {
2314 : 48 : sort_plan = (Plan *)
2315 : 96 : make_sort_from_groupcols(rollup->groupClause,
2316 : 48 : new_grpColIdx,
2317 : 48 : subplan);
2318 : 48 : }
2319 : :
2320 [ + + ]: 176 : if (!rollup->is_hashed)
2321 : 89 : is_first_sort = false;
2322 : :
2323 [ + + ]: 176 : if (rollup->is_hashed)
2324 : 87 : strat = AGG_HASHED;
2325 [ + + ]: 89 : else if (linitial(rollup->gsets) == NIL)
2326 : 31 : strat = AGG_PLAIN;
2327 : : else
2328 : 58 : strat = AGG_SORTED;
2329 : :
2330 : 176 : agg_plan = (Plan *) make_agg(NIL,
2331 : : NIL,
2332 : 176 : strat,
2333 : : AGGSPLIT_SIMPLE,
2334 : 176 : list_length((List *) linitial(rollup->gsets)),
2335 : 176 : new_grpColIdx,
2336 : 176 : extract_grouping_ops(rollup->groupClause),
2337 : 176 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2338 : 176 : rollup->gsets,
2339 : : NIL,
2340 : 176 : rollup->numGroups,
2341 : 176 : best_path->transitionSpace,
2342 : 176 : sort_plan);
2343 : :
2344 : : /*
2345 : : * Remove stuff we don't need to avoid bloating debug output.
2346 : : */
2347 [ + + ]: 176 : if (sort_plan)
2348 : : {
2349 : 48 : sort_plan->targetlist = NIL;
2350 : 48 : sort_plan->lefttree = NULL;
2351 : 48 : }
2352 : :
2353 : 176 : chain = lappend(chain, agg_plan);
2354 : 176 : }
2355 : 107 : }
2356 : :
2357 : : /*
2358 : : * Now make the real Agg node
2359 : : */
2360 : : {
2361 : 160 : RollupData *rollup = linitial(rollups);
2362 : 160 : AttrNumber *top_grpColIdx;
2363 : 160 : int numGroupCols;
2364 : :
2365 : 160 : top_grpColIdx = remap_groupColIdx(root, rollup->groupClause);
2366 : :
2367 : 160 : numGroupCols = list_length((List *) linitial(rollup->gsets));
2368 : :
2369 : 320 : plan = make_agg(build_path_tlist(root, &best_path->path),
2370 : 160 : best_path->qual,
2371 : 160 : best_path->aggstrategy,
2372 : : AGGSPLIT_SIMPLE,
2373 : 160 : numGroupCols,
2374 : 160 : top_grpColIdx,
2375 : 160 : extract_grouping_ops(rollup->groupClause),
2376 : 160 : extract_grouping_collations(rollup->groupClause, subplan->targetlist),
2377 : 160 : rollup->gsets,
2378 : 160 : chain,
2379 : 160 : rollup->numGroups,
2380 : 160 : best_path->transitionSpace,
2381 : 160 : subplan);
2382 : :
2383 : : /* Copy cost data from Path to Plan */
2384 : 160 : copy_generic_path_info(&plan->plan, &best_path->path);
2385 : 160 : }
2386 : :
2387 : 320 : return (Plan *) plan;
2388 : 160 : }
2389 : :
2390 : : /*
2391 : : * create_minmaxagg_plan
2392 : : *
2393 : : * Create a Result plan for 'best_path' and (recursively) plans
2394 : : * for its subpaths.
2395 : : */
2396 : : static Result *
2397 : 54 : create_minmaxagg_plan(PlannerInfo *root, MinMaxAggPath *best_path)
2398 : : {
2399 : 54 : Result *plan;
2400 : 54 : List *tlist;
2401 : 54 : ListCell *lc;
2402 : :
2403 : : /* Prepare an InitPlan for each aggregate's subquery. */
2404 [ + - + + : 114 : foreach(lc, best_path->mmaggregates)
+ + ]
2405 : : {
2406 : 60 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
2407 : 60 : PlannerInfo *subroot = mminfo->subroot;
2408 : 60 : Query *subparse = subroot->parse;
2409 : 60 : Plan *plan;
2410 : :
2411 : : /*
2412 : : * Generate the plan for the subquery. We already have a Path, but we
2413 : : * have to convert it to a Plan and attach a LIMIT node above it.
2414 : : * Since we are entering a different planner context (subroot),
2415 : : * recurse to create_plan not create_plan_recurse.
2416 : : */
2417 : 60 : plan = create_plan(subroot, mminfo->path);
2418 : :
2419 : 120 : plan = (Plan *) make_limit(plan,
2420 : 60 : subparse->limitOffset,
2421 : 60 : subparse->limitCount,
2422 : 60 : subparse->limitOption,
2423 : : 0, NULL, NULL, NULL);
2424 : :
2425 : : /* Must apply correct cost/width data to Limit node */
2426 : 60 : plan->disabled_nodes = mminfo->path->disabled_nodes;
2427 : 60 : plan->startup_cost = mminfo->path->startup_cost;
2428 : 60 : plan->total_cost = mminfo->pathcost;
2429 : 60 : plan->plan_rows = 1;
2430 : 60 : plan->plan_width = mminfo->path->pathtarget->width;
2431 : 60 : plan->parallel_aware = false;
2432 : 60 : plan->parallel_safe = mminfo->path->parallel_safe;
2433 : :
2434 : : /* Convert the plan into an InitPlan in the outer query. */
2435 : 60 : SS_make_initplan_from_plan(root, subroot, plan, mminfo->param);
2436 : 60 : }
2437 : :
2438 : : /* Generate the output plan --- basically just a Result */
2439 : 54 : tlist = build_path_tlist(root, &best_path->path);
2440 : :
2441 : 108 : plan = make_one_row_result(tlist, (Node *) best_path->quals,
2442 : 54 : best_path->path.parent);
2443 : 54 : plan->result_type = RESULT_TYPE_MINMAX;
2444 : :
2445 : 54 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2446 : :
2447 : : /*
2448 : : * During setrefs.c, we'll need to replace references to the Agg nodes
2449 : : * with InitPlan output params. (We can't just do that locally in the
2450 : : * MinMaxAgg node, because path nodes above here may have Agg references
2451 : : * as well.) Save the mmaggregates list to tell setrefs.c to do that.
2452 : : */
2453 [ + - ]: 54 : Assert(root->minmax_aggs == NIL);
2454 : 54 : root->minmax_aggs = best_path->mmaggregates;
2455 : :
2456 : 108 : return plan;
2457 : 54 : }
2458 : :
2459 : : /*
2460 : : * create_windowagg_plan
2461 : : *
2462 : : * Create a WindowAgg plan for 'best_path' and (recursively) plans
2463 : : * for its subpaths.
2464 : : */
2465 : : static WindowAgg *
2466 : 457 : create_windowagg_plan(PlannerInfo *root, WindowAggPath *best_path)
2467 : : {
2468 : 457 : WindowAgg *plan;
2469 : 457 : WindowClause *wc = best_path->winclause;
2470 : 457 : int numPart = list_length(wc->partitionClause);
2471 : 457 : int numOrder = list_length(wc->orderClause);
2472 : 457 : Plan *subplan;
2473 : 457 : List *tlist;
2474 : 457 : int partNumCols;
2475 : 457 : AttrNumber *partColIdx;
2476 : 457 : Oid *partOperators;
2477 : 457 : Oid *partCollations;
2478 : 457 : int ordNumCols;
2479 : 457 : AttrNumber *ordColIdx;
2480 : 457 : Oid *ordOperators;
2481 : 457 : Oid *ordCollations;
2482 : 457 : ListCell *lc;
2483 : :
2484 : : /*
2485 : : * Choice of tlist here is motivated by the fact that WindowAgg will be
2486 : : * storing the input rows of window frames in a tuplestore; it therefore
2487 : : * behooves us to request a small tlist to avoid wasting space. We do of
2488 : : * course need grouping columns to be available.
2489 : : */
2490 : 457 : subplan = create_plan_recurse(root, best_path->subpath,
2491 : : CP_LABEL_TLIST | CP_SMALL_TLIST);
2492 : :
2493 : 457 : tlist = build_path_tlist(root, &best_path->path);
2494 : :
2495 : : /*
2496 : : * Convert SortGroupClause lists into arrays of attr indexes and equality
2497 : : * operators, as wanted by executor.
2498 : : */
2499 : 457 : partColIdx = palloc_array(AttrNumber, numPart);
2500 : 457 : partOperators = palloc_array(Oid, numPart);
2501 : 457 : partCollations = palloc_array(Oid, numPart);
2502 : :
2503 : 457 : partNumCols = 0;
2504 [ + + + + : 577 : foreach(lc, wc->partitionClause)
+ + ]
2505 : : {
2506 : 120 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2507 : 120 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2508 : :
2509 [ + - ]: 120 : Assert(OidIsValid(sgc->eqop));
2510 : 120 : partColIdx[partNumCols] = tle->resno;
2511 : 120 : partOperators[partNumCols] = sgc->eqop;
2512 : 120 : partCollations[partNumCols] = exprCollation((Node *) tle->expr);
2513 : 120 : partNumCols++;
2514 : 120 : }
2515 : :
2516 : 457 : ordColIdx = palloc_array(AttrNumber, numOrder);
2517 : 457 : ordOperators = palloc_array(Oid, numOrder);
2518 : 457 : ordCollations = palloc_array(Oid, numOrder);
2519 : :
2520 : 457 : ordNumCols = 0;
2521 [ + + + + : 834 : foreach(lc, wc->orderClause)
+ + ]
2522 : : {
2523 : 377 : SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
2524 : 377 : TargetEntry *tle = get_sortgroupclause_tle(sgc, subplan->targetlist);
2525 : :
2526 [ + - ]: 377 : Assert(OidIsValid(sgc->eqop));
2527 : 377 : ordColIdx[ordNumCols] = tle->resno;
2528 : 377 : ordOperators[ordNumCols] = sgc->eqop;
2529 : 377 : ordCollations[ordNumCols] = exprCollation((Node *) tle->expr);
2530 : 377 : ordNumCols++;
2531 : 377 : }
2532 : :
2533 : : /* And finally we can make the WindowAgg node */
2534 : 914 : plan = make_windowagg(tlist,
2535 : 457 : wc,
2536 : 457 : partNumCols,
2537 : 457 : partColIdx,
2538 : 457 : partOperators,
2539 : 457 : partCollations,
2540 : 457 : ordNumCols,
2541 : 457 : ordColIdx,
2542 : 457 : ordOperators,
2543 : 457 : ordCollations,
2544 : 457 : best_path->runCondition,
2545 : 457 : best_path->qual,
2546 : 457 : best_path->topwindow,
2547 : 457 : subplan);
2548 : :
2549 : 457 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2550 : :
2551 : 914 : return plan;
2552 : 457 : }
2553 : :
2554 : : /*
2555 : : * create_setop_plan
2556 : : *
2557 : : * Create a SetOp plan for 'best_path' and (recursively) plans
2558 : : * for its subpaths.
2559 : : */
2560 : : static SetOp *
2561 : 110 : create_setop_plan(PlannerInfo *root, SetOpPath *best_path, int flags)
2562 : : {
2563 : 110 : SetOp *plan;
2564 : 110 : List *tlist = build_path_tlist(root, &best_path->path);
2565 : 110 : Plan *leftplan;
2566 : 110 : Plan *rightplan;
2567 : :
2568 : : /*
2569 : : * SetOp doesn't project, so tlist requirements pass through; moreover we
2570 : : * need grouping columns to be labeled.
2571 : : */
2572 : 220 : leftplan = create_plan_recurse(root, best_path->leftpath,
2573 : 110 : flags | CP_LABEL_TLIST);
2574 : 220 : rightplan = create_plan_recurse(root, best_path->rightpath,
2575 : 110 : flags | CP_LABEL_TLIST);
2576 : :
2577 : 220 : plan = make_setop(best_path->cmd,
2578 : 110 : best_path->strategy,
2579 : 110 : tlist,
2580 : 110 : leftplan,
2581 : 110 : rightplan,
2582 : 110 : best_path->groupList,
2583 : 110 : best_path->numGroups);
2584 : :
2585 : 110 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2586 : :
2587 : 220 : return plan;
2588 : 110 : }
2589 : :
2590 : : /*
2591 : : * create_recursiveunion_plan
2592 : : *
2593 : : * Create a RecursiveUnion plan for 'best_path' and (recursively) plans
2594 : : * for its subpaths.
2595 : : */
2596 : : static RecursiveUnion *
2597 : 73 : create_recursiveunion_plan(PlannerInfo *root, RecursiveUnionPath *best_path)
2598 : : {
2599 : 73 : RecursiveUnion *plan;
2600 : 73 : Plan *leftplan;
2601 : 73 : Plan *rightplan;
2602 : 73 : List *tlist;
2603 : :
2604 : : /* Need both children to produce same tlist, so force it */
2605 : 73 : leftplan = create_plan_recurse(root, best_path->leftpath, CP_EXACT_TLIST);
2606 : 73 : rightplan = create_plan_recurse(root, best_path->rightpath, CP_EXACT_TLIST);
2607 : :
2608 : 73 : tlist = build_path_tlist(root, &best_path->path);
2609 : :
2610 : 146 : plan = make_recursive_union(tlist,
2611 : 73 : leftplan,
2612 : 73 : rightplan,
2613 : 73 : best_path->wtParam,
2614 : 73 : best_path->distinctList,
2615 : 73 : best_path->numGroups);
2616 : :
2617 : 73 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2618 : :
2619 : 146 : return plan;
2620 : 73 : }
2621 : :
2622 : : /*
2623 : : * create_lockrows_plan
2624 : : *
2625 : : * Create a LockRows plan for 'best_path' and (recursively) plans
2626 : : * for its subpaths.
2627 : : */
2628 : : static LockRows *
2629 : 801 : create_lockrows_plan(PlannerInfo *root, LockRowsPath *best_path,
2630 : : int flags)
2631 : : {
2632 : 801 : LockRows *plan;
2633 : 801 : Plan *subplan;
2634 : :
2635 : : /* LockRows doesn't project, so tlist requirements pass through */
2636 : 801 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2637 : :
2638 : 801 : plan = make_lockrows(subplan, best_path->rowMarks, best_path->epqParam);
2639 : :
2640 : 801 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2641 : :
2642 : 1602 : return plan;
2643 : 801 : }
2644 : :
2645 : : /*
2646 : : * create_modifytable_plan
2647 : : * Create a ModifyTable plan for 'best_path'.
2648 : : *
2649 : : * Returns a Plan node.
2650 : : */
2651 : : static ModifyTable *
2652 : 7234 : create_modifytable_plan(PlannerInfo *root, ModifyTablePath *best_path)
2653 : : {
2654 : 7234 : ModifyTable *plan;
2655 : 7234 : Path *subpath = best_path->subpath;
2656 : 7234 : Plan *subplan;
2657 : :
2658 : : /* Subplan must produce exactly the specified tlist */
2659 : 7234 : subplan = create_plan_recurse(root, subpath, CP_EXACT_TLIST);
2660 : :
2661 : : /* Transfer resname/resjunk labeling, too, to keep executor happy */
2662 : 7234 : apply_tlist_labeling(subplan->targetlist, root->processed_tlist);
2663 : :
2664 : 14468 : plan = make_modifytable(root,
2665 : 7234 : subplan,
2666 : 7234 : best_path->operation,
2667 : 7234 : best_path->canSetTag,
2668 : 7234 : best_path->nominalRelation,
2669 : 7234 : best_path->rootRelation,
2670 : 7234 : best_path->resultRelations,
2671 : 7234 : best_path->updateColnosLists,
2672 : 7234 : best_path->withCheckOptionLists,
2673 : 7234 : best_path->returningLists,
2674 : 7234 : best_path->rowMarks,
2675 : 7234 : best_path->onconflict,
2676 : 7234 : best_path->mergeActionLists,
2677 : 7234 : best_path->mergeJoinConditions,
2678 : 7234 : best_path->epqParam);
2679 : :
2680 : 7234 : copy_generic_path_info(&plan->plan, &best_path->path);
2681 : :
2682 : 14468 : return plan;
2683 : 7234 : }
2684 : :
2685 : : /*
2686 : : * create_limit_plan
2687 : : *
2688 : : * Create a Limit plan for 'best_path' and (recursively) plans
2689 : : * for its subpaths.
2690 : : */
2691 : : static Limit *
2692 : 431 : create_limit_plan(PlannerInfo *root, LimitPath *best_path, int flags)
2693 : : {
2694 : 431 : Limit *plan;
2695 : 431 : Plan *subplan;
2696 : 431 : int numUniqkeys = 0;
2697 : 431 : AttrNumber *uniqColIdx = NULL;
2698 : 431 : Oid *uniqOperators = NULL;
2699 : 431 : Oid *uniqCollations = NULL;
2700 : :
2701 : : /* Limit doesn't project, so tlist requirements pass through */
2702 : 431 : subplan = create_plan_recurse(root, best_path->subpath, flags);
2703 : :
2704 : : /* Extract information necessary for comparing rows for WITH TIES. */
2705 [ + + ]: 431 : if (best_path->limitOption == LIMIT_OPTION_WITH_TIES)
2706 : : {
2707 : 4 : Query *parse = root->parse;
2708 : 4 : ListCell *l;
2709 : :
2710 : 4 : numUniqkeys = list_length(parse->sortClause);
2711 : 4 : uniqColIdx = (AttrNumber *) palloc(numUniqkeys * sizeof(AttrNumber));
2712 : 4 : uniqOperators = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2713 : 4 : uniqCollations = (Oid *) palloc(numUniqkeys * sizeof(Oid));
2714 : :
2715 : 4 : numUniqkeys = 0;
2716 [ + - + + : 8 : foreach(l, parse->sortClause)
+ + ]
2717 : : {
2718 : 4 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
2719 : 4 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, parse->targetList);
2720 : :
2721 : 4 : uniqColIdx[numUniqkeys] = tle->resno;
2722 : 4 : uniqOperators[numUniqkeys] = sortcl->eqop;
2723 : 4 : uniqCollations[numUniqkeys] = exprCollation((Node *) tle->expr);
2724 : 4 : numUniqkeys++;
2725 : 4 : }
2726 : 4 : }
2727 : :
2728 : 862 : plan = make_limit(subplan,
2729 : 431 : best_path->limitOffset,
2730 : 431 : best_path->limitCount,
2731 : 431 : best_path->limitOption,
2732 : 431 : numUniqkeys, uniqColIdx, uniqOperators, uniqCollations);
2733 : :
2734 : 431 : copy_generic_path_info(&plan->plan, (Path *) best_path);
2735 : :
2736 : 862 : return plan;
2737 : 431 : }
2738 : :
2739 : :
2740 : : /*****************************************************************************
2741 : : *
2742 : : * BASE-RELATION SCAN METHODS
2743 : : *
2744 : : *****************************************************************************/
2745 : :
2746 : :
2747 : : /*
2748 : : * create_seqscan_plan
2749 : : * Returns a seqscan plan for the base relation scanned by 'best_path'
2750 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2751 : : */
2752 : : static SeqScan *
2753 : 26168 : create_seqscan_plan(PlannerInfo *root, Path *best_path,
2754 : : List *tlist, List *scan_clauses)
2755 : : {
2756 : 26168 : SeqScan *scan_plan;
2757 : 26168 : Index scan_relid = best_path->parent->relid;
2758 : :
2759 : : /* it should be a base rel... */
2760 [ + - ]: 26168 : Assert(scan_relid > 0);
2761 [ + - ]: 26168 : Assert(best_path->parent->rtekind == RTE_RELATION);
2762 : :
2763 : : /* Sort clauses into best execution order */
2764 : 26168 : scan_clauses = order_qual_clauses(root, scan_clauses);
2765 : :
2766 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2767 : 26168 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2768 : :
2769 : : /* Replace any outer-relation variables with nestloop params */
2770 [ + + ]: 26168 : if (best_path->param_info)
2771 : : {
2772 : 78 : scan_clauses = (List *)
2773 : 78 : replace_nestloop_params(root, (Node *) scan_clauses);
2774 : 78 : }
2775 : :
2776 : 52336 : scan_plan = make_seqscan(tlist,
2777 : 26168 : scan_clauses,
2778 : 26168 : scan_relid);
2779 : :
2780 : 26168 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2781 : :
2782 : 52336 : return scan_plan;
2783 : 26168 : }
2784 : :
2785 : : /*
2786 : : * create_samplescan_plan
2787 : : * Returns a samplescan plan for the base relation scanned by 'best_path'
2788 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2789 : : */
2790 : : static SampleScan *
2791 : 45 : create_samplescan_plan(PlannerInfo *root, Path *best_path,
2792 : : List *tlist, List *scan_clauses)
2793 : : {
2794 : 45 : SampleScan *scan_plan;
2795 : 45 : Index scan_relid = best_path->parent->relid;
2796 : 45 : RangeTblEntry *rte;
2797 : 45 : TableSampleClause *tsc;
2798 : :
2799 : : /* it should be a base rel with a tablesample clause... */
2800 [ + - ]: 45 : Assert(scan_relid > 0);
2801 [ + - ]: 45 : rte = planner_rt_fetch(scan_relid, root);
2802 [ + - ]: 45 : Assert(rte->rtekind == RTE_RELATION);
2803 : 45 : tsc = rte->tablesample;
2804 [ + - ]: 45 : Assert(tsc != NULL);
2805 : :
2806 : : /* Sort clauses into best execution order */
2807 : 45 : scan_clauses = order_qual_clauses(root, scan_clauses);
2808 : :
2809 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2810 : 45 : scan_clauses = extract_actual_clauses(scan_clauses, false);
2811 : :
2812 : : /* Replace any outer-relation variables with nestloop params */
2813 [ + + ]: 45 : if (best_path->param_info)
2814 : : {
2815 : 12 : scan_clauses = (List *)
2816 : 12 : replace_nestloop_params(root, (Node *) scan_clauses);
2817 : 12 : tsc = (TableSampleClause *)
2818 : 12 : replace_nestloop_params(root, (Node *) tsc);
2819 : 12 : }
2820 : :
2821 : 90 : scan_plan = make_samplescan(tlist,
2822 : 45 : scan_clauses,
2823 : 45 : scan_relid,
2824 : 45 : tsc);
2825 : :
2826 : 45 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
2827 : :
2828 : 90 : return scan_plan;
2829 : 45 : }
2830 : :
2831 : : /*
2832 : : * create_indexscan_plan
2833 : : * Returns an indexscan plan for the base relation scanned by 'best_path'
2834 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
2835 : : *
2836 : : * We use this for both plain IndexScans and IndexOnlyScans, because the
2837 : : * qual preprocessing work is the same for both. Note that the caller tells
2838 : : * us which to build --- we don't look at best_path->path.pathtype, because
2839 : : * create_bitmap_subplan needs to be able to override the prior decision.
2840 : : */
2841 : : static Scan *
2842 : 16254 : create_indexscan_plan(PlannerInfo *root,
2843 : : IndexPath *best_path,
2844 : : List *tlist,
2845 : : List *scan_clauses,
2846 : : bool indexonly)
2847 : : {
2848 : 16254 : Scan *scan_plan;
2849 : 16254 : List *indexclauses = best_path->indexclauses;
2850 : 16254 : List *indexorderbys = best_path->indexorderbys;
2851 : 16254 : Index baserelid = best_path->path.parent->relid;
2852 : 16254 : IndexOptInfo *indexinfo = best_path->indexinfo;
2853 : 16254 : Oid indexoid = indexinfo->indexoid;
2854 : 16254 : List *qpqual;
2855 : 16254 : List *stripped_indexquals;
2856 : 16254 : List *fixed_indexquals;
2857 : 16254 : List *fixed_indexorderbys;
2858 : 16254 : List *indexorderbyops = NIL;
2859 : 16254 : ListCell *l;
2860 : :
2861 : : /* it should be a base rel... */
2862 [ + - ]: 16254 : Assert(baserelid > 0);
2863 [ + - ]: 16254 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
2864 : : /* check the scan direction is valid */
2865 [ + + + - ]: 16254 : Assert(best_path->indexscandir == ForwardScanDirection ||
2866 : : best_path->indexscandir == BackwardScanDirection);
2867 : :
2868 : : /*
2869 : : * Extract the index qual expressions (stripped of RestrictInfos) from the
2870 : : * IndexClauses list, and prepare a copy with index Vars substituted for
2871 : : * table Vars. (This step also does replace_nestloop_params on the
2872 : : * fixed_indexquals.)
2873 : : */
2874 : 16254 : fix_indexqual_references(root, best_path,
2875 : : &stripped_indexquals,
2876 : : &fixed_indexquals);
2877 : :
2878 : : /*
2879 : : * Likewise fix up index attr references in the ORDER BY expressions.
2880 : : */
2881 : 16254 : fixed_indexorderbys = fix_indexorderby_references(root, best_path);
2882 : :
2883 : : /*
2884 : : * The qpqual list must contain all restrictions not automatically handled
2885 : : * by the index, other than pseudoconstant clauses which will be handled
2886 : : * by a separate gating plan node. All the predicates in the indexquals
2887 : : * will be checked (either by the index itself, or by nodeIndexscan.c),
2888 : : * but if there are any "special" operators involved then they must be
2889 : : * included in qpqual. The upshot is that qpqual must contain
2890 : : * scan_clauses minus whatever appears in indexquals.
2891 : : *
2892 : : * is_redundant_with_indexclauses() detects cases where a scan clause is
2893 : : * present in the indexclauses list or is generated from the same
2894 : : * EquivalenceClass as some indexclause, and is therefore redundant with
2895 : : * it, though not equal. (The latter happens when indxpath.c prefers a
2896 : : * different derived equality than what generate_join_implied_equalities
2897 : : * picked for a parameterized scan's ppi_clauses.) Note that it will not
2898 : : * match to lossy index clauses, which is critical because we have to
2899 : : * include the original clause in qpqual in that case.
2900 : : *
2901 : : * In some situations (particularly with OR'd index conditions) we may
2902 : : * have scan_clauses that are not equal to, but are logically implied by,
2903 : : * the index quals; so we also try a predicate_implied_by() check to see
2904 : : * if we can discard quals that way. (predicate_implied_by assumes its
2905 : : * first input contains only immutable functions, so we have to check
2906 : : * that.)
2907 : : *
2908 : : * Note: if you change this bit of code you should also look at
2909 : : * extract_nonindex_conditions() in costsize.c.
2910 : : */
2911 : 16254 : qpqual = NIL;
2912 [ + + + + : 36741 : foreach(l, scan_clauses)
+ + ]
2913 : : {
2914 : 20487 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
2915 : :
2916 [ + + ]: 20487 : if (rinfo->pseudoconstant)
2917 : 435 : continue; /* we may drop pseudoconstants here */
2918 [ + + ]: 20052 : if (is_redundant_with_indexclauses(rinfo, indexclauses))
2919 : 15315 : continue; /* dup or derived from same EquivalenceClass */
2920 [ + + + + ]: 4737 : if (!contain_mutable_functions((Node *) rinfo->clause) &&
2921 : 4501 : predicate_implied_by(list_make1(rinfo->clause), stripped_indexquals,
2922 : : false))
2923 : 33 : continue; /* provably implied by indexquals */
2924 : 4704 : qpqual = lappend(qpqual, rinfo);
2925 [ - + + ]: 20487 : }
2926 : :
2927 : : /* Sort clauses into best execution order */
2928 : 16254 : qpqual = order_qual_clauses(root, qpqual);
2929 : :
2930 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
2931 : 16254 : qpqual = extract_actual_clauses(qpqual, false);
2932 : :
2933 : : /*
2934 : : * We have to replace any outer-relation variables with nestloop params in
2935 : : * the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
2936 : : * annoying to have to do this separately from the processing in
2937 : : * fix_indexqual_references --- rethink this when generalizing the inner
2938 : : * indexscan support. But note we can't really do this earlier because
2939 : : * it'd break the comparisons to predicates above ... (or would it? Those
2940 : : * wouldn't have outer refs)
2941 : : */
2942 [ + + ]: 16254 : if (best_path->path.param_info)
2943 : : {
2944 : 3691 : stripped_indexquals = (List *)
2945 : 3691 : replace_nestloop_params(root, (Node *) stripped_indexquals);
2946 : 3691 : qpqual = (List *)
2947 : 3691 : replace_nestloop_params(root, (Node *) qpqual);
2948 : 3691 : indexorderbys = (List *)
2949 : 3691 : replace_nestloop_params(root, (Node *) indexorderbys);
2950 : 3691 : }
2951 : :
2952 : : /*
2953 : : * If there are ORDER BY expressions, look up the sort operators for their
2954 : : * result datatypes.
2955 : : */
2956 [ + + ]: 16254 : if (indexorderbys)
2957 : : {
2958 : 49 : ListCell *pathkeyCell,
2959 : : *exprCell;
2960 : :
2961 : : /*
2962 : : * PathKey contains OID of the btree opfamily we're sorting by, but
2963 : : * that's not quite enough because we need the expression's datatype
2964 : : * to look up the sort operator in the operator family.
2965 : : */
2966 [ + - ]: 49 : Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
2967 [ + - + + : 99 : forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
+ - + + +
+ + + ]
2968 : : {
2969 : 50 : PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
2970 : 50 : Node *expr = (Node *) lfirst(exprCell);
2971 : 50 : Oid exprtype = exprType(expr);
2972 : 50 : Oid sortop;
2973 : :
2974 : : /* Get sort operator from opfamily */
2975 : 100 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
2976 : 50 : exprtype,
2977 : 50 : exprtype,
2978 : 50 : pathkey->pk_cmptype);
2979 [ + - ]: 50 : if (!OidIsValid(sortop))
2980 [ # # # # ]: 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
2981 : : pathkey->pk_cmptype, exprtype, exprtype, pathkey->pk_opfamily);
2982 : 50 : indexorderbyops = lappend_oid(indexorderbyops, sortop);
2983 : 50 : }
2984 : 49 : }
2985 : :
2986 : : /*
2987 : : * For an index-only scan, we must mark indextlist entries as resjunk if
2988 : : * they are columns that the index AM can't return; this cues setrefs.c to
2989 : : * not generate references to those columns.
2990 : : */
2991 [ + + ]: 16254 : if (indexonly)
2992 : : {
2993 : 1845 : int i = 0;
2994 : :
2995 [ + - + + : 4019 : foreach(l, indexinfo->indextlist)
+ + ]
2996 : : {
2997 : 2174 : TargetEntry *indextle = (TargetEntry *) lfirst(l);
2998 : :
2999 : 2174 : indextle->resjunk = !indexinfo->canreturn[i];
3000 : 2174 : i++;
3001 : 2174 : }
3002 : 1845 : }
3003 : :
3004 : : /* Finally ready to build the plan node */
3005 [ + + ]: 16254 : if (indexonly)
3006 : 3690 : scan_plan = (Scan *) make_indexonlyscan(tlist,
3007 : 1845 : qpqual,
3008 : 1845 : baserelid,
3009 : 1845 : indexoid,
3010 : 1845 : fixed_indexquals,
3011 : 1845 : stripped_indexquals,
3012 : 1845 : fixed_indexorderbys,
3013 : 1845 : indexinfo->indextlist,
3014 : 1845 : best_path->indexscandir);
3015 : : else
3016 : 28818 : scan_plan = (Scan *) make_indexscan(tlist,
3017 : 14409 : qpqual,
3018 : 14409 : baserelid,
3019 : 14409 : indexoid,
3020 : 14409 : fixed_indexquals,
3021 : 14409 : stripped_indexquals,
3022 : 14409 : fixed_indexorderbys,
3023 : 14409 : indexorderbys,
3024 : 14409 : indexorderbyops,
3025 : 14409 : best_path->indexscandir);
3026 : :
3027 : 16254 : copy_generic_path_info(&scan_plan->plan, &best_path->path);
3028 : :
3029 : 32508 : return scan_plan;
3030 : 16254 : }
3031 : :
3032 : : /*
3033 : : * create_bitmap_scan_plan
3034 : : * Returns a bitmap scan plan for the base relation scanned by 'best_path'
3035 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3036 : : */
3037 : : static BitmapHeapScan *
3038 : 2666 : create_bitmap_scan_plan(PlannerInfo *root,
3039 : : BitmapHeapPath *best_path,
3040 : : List *tlist,
3041 : : List *scan_clauses)
3042 : : {
3043 : 2666 : Index baserelid = best_path->path.parent->relid;
3044 : 2666 : Plan *bitmapqualplan;
3045 : 2666 : List *bitmapqualorig;
3046 : 2666 : List *indexquals;
3047 : 2666 : List *indexECs;
3048 : 2666 : List *qpqual;
3049 : 2666 : ListCell *l;
3050 : 2666 : BitmapHeapScan *scan_plan;
3051 : :
3052 : : /* it should be a base rel... */
3053 [ + - ]: 2666 : Assert(baserelid > 0);
3054 [ + - ]: 2666 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3055 : :
3056 : : /* Process the bitmapqual tree into a Plan tree and qual lists */
3057 : 2666 : bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
3058 : : &bitmapqualorig, &indexquals,
3059 : : &indexECs);
3060 : :
3061 [ + + ]: 2666 : if (best_path->path.parallel_aware)
3062 : 5 : bitmap_subplan_mark_shared(bitmapqualplan);
3063 : :
3064 : : /*
3065 : : * The qpqual list must contain all restrictions not automatically handled
3066 : : * by the index, other than pseudoconstant clauses which will be handled
3067 : : * by a separate gating plan node. All the predicates in the indexquals
3068 : : * will be checked (either by the index itself, or by
3069 : : * nodeBitmapHeapscan.c), but if there are any "special" operators
3070 : : * involved then they must be added to qpqual. The upshot is that qpqual
3071 : : * must contain scan_clauses minus whatever appears in indexquals.
3072 : : *
3073 : : * This loop is similar to the comparable code in create_indexscan_plan(),
3074 : : * but with some differences because it has to compare the scan clauses to
3075 : : * stripped (no RestrictInfos) indexquals. See comments there for more
3076 : : * info.
3077 : : *
3078 : : * In normal cases simple equal() checks will be enough to spot duplicate
3079 : : * clauses, so we try that first. We next see if the scan clause is
3080 : : * redundant with any top-level indexqual by virtue of being generated
3081 : : * from the same EC. After that, try predicate_implied_by().
3082 : : *
3083 : : * Unlike create_indexscan_plan(), the predicate_implied_by() test here is
3084 : : * useful for getting rid of qpquals that are implied by index predicates,
3085 : : * because the predicate conditions are included in the "indexquals"
3086 : : * returned by create_bitmap_subplan(). Bitmap scans have to do it that
3087 : : * way because predicate conditions need to be rechecked if the scan
3088 : : * becomes lossy, so they have to be included in bitmapqualorig.
3089 : : */
3090 : 2666 : qpqual = NIL;
3091 [ + + + + : 6097 : foreach(l, scan_clauses)
+ + ]
3092 : : {
3093 : 3431 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3094 : 3431 : Node *clause = (Node *) rinfo->clause;
3095 : :
3096 [ + + ]: 3431 : if (rinfo->pseudoconstant)
3097 : 4 : continue; /* we may drop pseudoconstants here */
3098 [ + + ]: 3427 : if (list_member(indexquals, clause))
3099 : 2645 : continue; /* simple duplicate */
3100 [ + + + + ]: 782 : if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
3101 : 3 : continue; /* derived from same EquivalenceClass */
3102 [ + + + + ]: 779 : if (!contain_mutable_functions(clause) &&
3103 : 762 : predicate_implied_by(list_make1(clause), indexquals, false))
3104 : 139 : continue; /* provably implied by indexquals */
3105 : 640 : qpqual = lappend(qpqual, rinfo);
3106 [ - + + ]: 3431 : }
3107 : :
3108 : : /* Sort clauses into best execution order */
3109 : 2666 : qpqual = order_qual_clauses(root, qpqual);
3110 : :
3111 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3112 : 2666 : qpqual = extract_actual_clauses(qpqual, false);
3113 : :
3114 : : /*
3115 : : * When dealing with special operators, we will at this point have
3116 : : * duplicate clauses in qpqual and bitmapqualorig. We may as well drop
3117 : : * 'em from bitmapqualorig, since there's no point in making the tests
3118 : : * twice.
3119 : : */
3120 : 2666 : bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
3121 : :
3122 : : /*
3123 : : * We have to replace any outer-relation variables with nestloop params in
3124 : : * the qpqual and bitmapqualorig expressions. (This was already done for
3125 : : * expressions attached to plan nodes in the bitmapqualplan tree.)
3126 : : */
3127 [ + + ]: 2666 : if (best_path->path.param_info)
3128 : : {
3129 : 129 : qpqual = (List *)
3130 : 129 : replace_nestloop_params(root, (Node *) qpqual);
3131 : 129 : bitmapqualorig = (List *)
3132 : 129 : replace_nestloop_params(root, (Node *) bitmapqualorig);
3133 : 129 : }
3134 : :
3135 : : /* Finally ready to build the plan node */
3136 : 5332 : scan_plan = make_bitmap_heapscan(tlist,
3137 : 2666 : qpqual,
3138 : 2666 : bitmapqualplan,
3139 : 2666 : bitmapqualorig,
3140 : 2666 : baserelid);
3141 : :
3142 : 2666 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3143 : :
3144 : 5332 : return scan_plan;
3145 : 2666 : }
3146 : :
3147 : : /*
3148 : : * Given a bitmapqual tree, generate the Plan tree that implements it
3149 : : *
3150 : : * As byproducts, we also return in *qual and *indexqual the qual lists
3151 : : * (in implicit-AND form, without RestrictInfos) describing the original index
3152 : : * conditions and the generated indexqual conditions. (These are the same in
3153 : : * simple cases, but when special index operators are involved, the former
3154 : : * list includes the special conditions while the latter includes the actual
3155 : : * indexable conditions derived from them.) Both lists include partial-index
3156 : : * predicates, because we have to recheck predicates as well as index
3157 : : * conditions if the bitmap scan becomes lossy.
3158 : : *
3159 : : * In addition, we return a list of EquivalenceClass pointers for all the
3160 : : * top-level indexquals that were possibly-redundantly derived from ECs.
3161 : : * This allows removal of scan_clauses that are redundant with such quals.
3162 : : * (We do not attempt to detect such redundancies for quals that are within
3163 : : * OR subtrees. This could be done in a less hacky way if we returned the
3164 : : * indexquals in RestrictInfo form, but that would be slower and still pretty
3165 : : * messy, since we'd have to build new RestrictInfos in many cases.)
3166 : : */
3167 : : static Plan *
3168 : 2767 : create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
3169 : : List **qual, List **indexqual, List **indexECs)
3170 : : {
3171 : 2767 : Plan *plan;
3172 : :
3173 [ + + ]: 2767 : if (IsA(bitmapqual, BitmapAndPath))
3174 : : {
3175 : 17 : BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
3176 : 17 : List *subplans = NIL;
3177 : 17 : List *subquals = NIL;
3178 : 17 : List *subindexquals = NIL;
3179 : 17 : List *subindexECs = NIL;
3180 : 17 : ListCell *l;
3181 : :
3182 : : /*
3183 : : * There may well be redundant quals among the subplans, since a
3184 : : * top-level WHERE qual might have gotten used to form several
3185 : : * different index quals. We don't try exceedingly hard to eliminate
3186 : : * redundancies, but we do eliminate obvious duplicates by using
3187 : : * list_concat_unique.
3188 : : */
3189 [ + - + + : 51 : foreach(l, apath->bitmapquals)
+ + ]
3190 : : {
3191 : 34 : Plan *subplan;
3192 : 34 : List *subqual;
3193 : 34 : List *subindexqual;
3194 : 34 : List *subindexEC;
3195 : :
3196 : 34 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3197 : : &subqual, &subindexqual,
3198 : : &subindexEC);
3199 : 34 : subplans = lappend(subplans, subplan);
3200 : 34 : subquals = list_concat_unique(subquals, subqual);
3201 : 34 : subindexquals = list_concat_unique(subindexquals, subindexqual);
3202 : : /* Duplicates in indexECs aren't worth getting rid of */
3203 : 34 : subindexECs = list_concat(subindexECs, subindexEC);
3204 : 34 : }
3205 : 17 : plan = (Plan *) make_bitmap_and(subplans);
3206 : 17 : plan->startup_cost = apath->path.startup_cost;
3207 : 17 : plan->total_cost = apath->path.total_cost;
3208 : 17 : plan->plan_rows =
3209 : 17 : clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
3210 : 17 : plan->plan_width = 0; /* meaningless */
3211 : 17 : plan->parallel_aware = false;
3212 : 17 : plan->parallel_safe = apath->path.parallel_safe;
3213 : 17 : *qual = subquals;
3214 : 17 : *indexqual = subindexquals;
3215 : 17 : *indexECs = subindexECs;
3216 : 17 : }
3217 [ + + ]: 2750 : else if (IsA(bitmapqual, BitmapOrPath))
3218 : : {
3219 : 33 : BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
3220 : 33 : List *subplans = NIL;
3221 : 33 : List *subquals = NIL;
3222 : 33 : List *subindexquals = NIL;
3223 : 33 : bool const_true_subqual = false;
3224 : 33 : bool const_true_subindexqual = false;
3225 : 33 : ListCell *l;
3226 : :
3227 : : /*
3228 : : * Here, we only detect qual-free subplans. A qual-free subplan would
3229 : : * cause us to generate "... OR true ..." which we may as well reduce
3230 : : * to just "true". We do not try to eliminate redundant subclauses
3231 : : * because (a) it's not as likely as in the AND case, and (b) we might
3232 : : * well be working with hundreds or even thousands of OR conditions,
3233 : : * perhaps from a long IN list. The performance of list_append_unique
3234 : : * would be unacceptable.
3235 : : */
3236 [ + - + + : 100 : foreach(l, opath->bitmapquals)
+ + ]
3237 : : {
3238 : 67 : Plan *subplan;
3239 : 67 : List *subqual;
3240 : 67 : List *subindexqual;
3241 : 67 : List *subindexEC;
3242 : :
3243 : 67 : subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
3244 : : &subqual, &subindexqual,
3245 : : &subindexEC);
3246 : 67 : subplans = lappend(subplans, subplan);
3247 [ + - ]: 67 : if (subqual == NIL)
3248 : 0 : const_true_subqual = true;
3249 [ - + ]: 67 : else if (!const_true_subqual)
3250 : 134 : subquals = lappend(subquals,
3251 : 67 : make_ands_explicit(subqual));
3252 [ + - ]: 67 : if (subindexqual == NIL)
3253 : 0 : const_true_subindexqual = true;
3254 [ - + ]: 67 : else if (!const_true_subindexqual)
3255 : 134 : subindexquals = lappend(subindexquals,
3256 : 67 : make_ands_explicit(subindexqual));
3257 : 67 : }
3258 : :
3259 : : /*
3260 : : * In the presence of ScalarArrayOpExpr quals, we might have built
3261 : : * BitmapOrPaths with just one subpath; don't add an OR step.
3262 : : */
3263 [ - + ]: 33 : if (list_length(subplans) == 1)
3264 : : {
3265 : 0 : plan = (Plan *) linitial(subplans);
3266 : 0 : }
3267 : : else
3268 : : {
3269 : 33 : plan = (Plan *) make_bitmap_or(subplans);
3270 : 33 : plan->startup_cost = opath->path.startup_cost;
3271 : 33 : plan->total_cost = opath->path.total_cost;
3272 : 33 : plan->plan_rows =
3273 : 33 : clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
3274 : 33 : plan->plan_width = 0; /* meaningless */
3275 : 33 : plan->parallel_aware = false;
3276 : 33 : plan->parallel_safe = opath->path.parallel_safe;
3277 : : }
3278 : :
3279 : : /*
3280 : : * If there were constant-TRUE subquals, the OR reduces to constant
3281 : : * TRUE. Also, avoid generating one-element ORs, which could happen
3282 : : * due to redundancy elimination or ScalarArrayOpExpr quals.
3283 : : */
3284 [ - + ]: 33 : if (const_true_subqual)
3285 : 0 : *qual = NIL;
3286 [ - + ]: 33 : else if (list_length(subquals) <= 1)
3287 : 0 : *qual = subquals;
3288 : : else
3289 : 33 : *qual = list_make1(make_orclause(subquals));
3290 [ - + ]: 33 : if (const_true_subindexqual)
3291 : 0 : *indexqual = NIL;
3292 [ - + ]: 33 : else if (list_length(subindexquals) <= 1)
3293 : 0 : *indexqual = subindexquals;
3294 : : else
3295 : 33 : *indexqual = list_make1(make_orclause(subindexquals));
3296 : 33 : *indexECs = NIL;
3297 : 33 : }
3298 [ + - ]: 2717 : else if (IsA(bitmapqual, IndexPath))
3299 : : {
3300 : 2717 : IndexPath *ipath = (IndexPath *) bitmapqual;
3301 : 2717 : IndexScan *iscan;
3302 : 2717 : List *subquals;
3303 : 2717 : List *subindexquals;
3304 : 2717 : List *subindexECs;
3305 : 2717 : ListCell *l;
3306 : :
3307 : : /* Use the regular indexscan plan build machinery... */
3308 : 2717 : iscan = castNode(IndexScan,
3309 : : create_indexscan_plan(root, ipath,
3310 : : NIL, NIL, false));
3311 : : /* then convert to a bitmap indexscan */
3312 : 5434 : plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
3313 : 2717 : iscan->indexid,
3314 : 2717 : iscan->indexqual,
3315 : 2717 : iscan->indexqualorig);
3316 : : /* and set its cost/width fields appropriately */
3317 : 2717 : plan->startup_cost = 0.0;
3318 : 2717 : plan->total_cost = ipath->indextotalcost;
3319 : 2717 : plan->plan_rows =
3320 : 2717 : clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
3321 : 2717 : plan->plan_width = 0; /* meaningless */
3322 : 2717 : plan->parallel_aware = false;
3323 : 2717 : plan->parallel_safe = ipath->path.parallel_safe;
3324 : : /* Extract original index clauses, actual index quals, relevant ECs */
3325 : 2717 : subquals = NIL;
3326 : 2717 : subindexquals = NIL;
3327 : 2717 : subindexECs = NIL;
3328 [ + + + + : 5578 : foreach(l, ipath->indexclauses)
+ + ]
3329 : : {
3330 : 2861 : IndexClause *iclause = (IndexClause *) lfirst(l);
3331 : 2861 : RestrictInfo *rinfo = iclause->rinfo;
3332 : :
3333 [ + - ]: 2861 : Assert(!rinfo->pseudoconstant);
3334 : 2861 : subquals = lappend(subquals, rinfo->clause);
3335 : 5722 : subindexquals = list_concat(subindexquals,
3336 : 2861 : get_actual_clauses(iclause->indexquals));
3337 [ + + ]: 2861 : if (rinfo->parent_ec)
3338 : 90 : subindexECs = lappend(subindexECs, rinfo->parent_ec);
3339 : 2861 : }
3340 : : /* We can add any index predicate conditions, too */
3341 [ + + + + : 2732 : foreach(l, ipath->indexinfo->indpred)
+ + ]
3342 : : {
3343 : 15 : Expr *pred = (Expr *) lfirst(l);
3344 : :
3345 : : /*
3346 : : * We know that the index predicate must have been implied by the
3347 : : * query condition as a whole, but it may or may not be implied by
3348 : : * the conditions that got pushed into the bitmapqual. Avoid
3349 : : * generating redundant conditions.
3350 : : */
3351 [ + + ]: 15 : if (!predicate_implied_by(list_make1(pred), subquals, false))
3352 : : {
3353 : 10 : subquals = lappend(subquals, pred);
3354 : 10 : subindexquals = lappend(subindexquals, pred);
3355 : 10 : }
3356 : 15 : }
3357 : 2717 : *qual = subquals;
3358 : 2717 : *indexqual = subindexquals;
3359 : 2717 : *indexECs = subindexECs;
3360 : 2717 : }
3361 : : else
3362 : : {
3363 [ # # # # ]: 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
3364 : 0 : plan = NULL; /* keep compiler quiet */
3365 : : }
3366 : :
3367 : 5534 : return plan;
3368 : 2767 : }
3369 : :
3370 : : /*
3371 : : * create_tidscan_plan
3372 : : * Returns a tidscan plan for the base relation scanned by 'best_path'
3373 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3374 : : */
3375 : : static TidScan *
3376 : 87 : create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
3377 : : List *tlist, List *scan_clauses)
3378 : : {
3379 : 87 : TidScan *scan_plan;
3380 : 87 : Index scan_relid = best_path->path.parent->relid;
3381 : 87 : List *tidquals = best_path->tidquals;
3382 : :
3383 : : /* it should be a base rel... */
3384 [ + - ]: 87 : Assert(scan_relid > 0);
3385 [ + - ]: 87 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3386 : :
3387 : : /*
3388 : : * The qpqual list must contain all restrictions not enforced by the
3389 : : * tidquals list. Since tidquals has OR semantics, we have to be careful
3390 : : * about matching it up to scan_clauses. It's convenient to handle the
3391 : : * single-tidqual case separately from the multiple-tidqual case. In the
3392 : : * single-tidqual case, we look through the scan_clauses while they are
3393 : : * still in RestrictInfo form, and drop any that are redundant with the
3394 : : * tidqual.
3395 : : *
3396 : : * In normal cases simple pointer equality checks will be enough to spot
3397 : : * duplicate RestrictInfos, so we try that first.
3398 : : *
3399 : : * Another common case is that a scan_clauses entry is generated from the
3400 : : * same EquivalenceClass as some tidqual, and is therefore redundant with
3401 : : * it, though not equal.
3402 : : *
3403 : : * Unlike indexpaths, we don't bother with predicate_implied_by(); the
3404 : : * number of cases where it could win are pretty small.
3405 : : */
3406 [ + + ]: 87 : if (list_length(tidquals) == 1)
3407 : : {
3408 : 83 : List *qpqual = NIL;
3409 : 83 : ListCell *l;
3410 : :
3411 [ + - + + : 180 : foreach(l, scan_clauses)
+ + ]
3412 : : {
3413 : 97 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3414 : :
3415 [ - + ]: 97 : if (rinfo->pseudoconstant)
3416 : 0 : continue; /* we may drop pseudoconstants here */
3417 [ + + ]: 97 : if (list_member_ptr(tidquals, rinfo))
3418 : 83 : continue; /* simple duplicate */
3419 [ - + ]: 14 : if (is_redundant_derived_clause(rinfo, tidquals))
3420 : 0 : continue; /* derived from same EquivalenceClass */
3421 : 14 : qpqual = lappend(qpqual, rinfo);
3422 [ - + + ]: 97 : }
3423 : 83 : scan_clauses = qpqual;
3424 : 83 : }
3425 : :
3426 : : /* Sort clauses into best execution order */
3427 : 87 : scan_clauses = order_qual_clauses(root, scan_clauses);
3428 : :
3429 : : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3430 : 87 : tidquals = extract_actual_clauses(tidquals, false);
3431 : 87 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3432 : :
3433 : : /*
3434 : : * If we have multiple tidquals, it's more convenient to remove duplicate
3435 : : * scan_clauses after stripping the RestrictInfos. In this situation,
3436 : : * because the tidquals represent OR sub-clauses, they could not have come
3437 : : * from EquivalenceClasses so we don't have to worry about matching up
3438 : : * non-identical clauses. On the other hand, because tidpath.c will have
3439 : : * extracted those sub-clauses from some OR clause and built its own list,
3440 : : * we will certainly not have pointer equality to any scan clause. So
3441 : : * convert the tidquals list to an explicit OR clause and see if we can
3442 : : * match it via equal() to any scan clause.
3443 : : */
3444 [ + + ]: 87 : if (list_length(tidquals) > 1)
3445 : 8 : scan_clauses = list_difference(scan_clauses,
3446 : 4 : list_make1(make_orclause(tidquals)));
3447 : :
3448 : : /* Replace any outer-relation variables with nestloop params */
3449 [ + + ]: 87 : if (best_path->path.param_info)
3450 : : {
3451 : 4 : tidquals = (List *)
3452 : 4 : replace_nestloop_params(root, (Node *) tidquals);
3453 : 4 : scan_clauses = (List *)
3454 : 4 : replace_nestloop_params(root, (Node *) scan_clauses);
3455 : 4 : }
3456 : :
3457 : 174 : scan_plan = make_tidscan(tlist,
3458 : 87 : scan_clauses,
3459 : 87 : scan_relid,
3460 : 87 : tidquals);
3461 : :
3462 : 87 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3463 : :
3464 : 174 : return scan_plan;
3465 : 87 : }
3466 : :
3467 : : /*
3468 : : * create_tidrangescan_plan
3469 : : * Returns a tidrangescan plan for the base relation scanned by 'best_path'
3470 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3471 : : */
3472 : : static TidRangeScan *
3473 : 334 : create_tidrangescan_plan(PlannerInfo *root, TidRangePath *best_path,
3474 : : List *tlist, List *scan_clauses)
3475 : : {
3476 : 334 : TidRangeScan *scan_plan;
3477 : 334 : Index scan_relid = best_path->path.parent->relid;
3478 : 334 : List *tidrangequals = best_path->tidrangequals;
3479 : :
3480 : : /* it should be a base rel... */
3481 [ + - ]: 334 : Assert(scan_relid > 0);
3482 [ + - ]: 334 : Assert(best_path->path.parent->rtekind == RTE_RELATION);
3483 : :
3484 : : /*
3485 : : * The qpqual list must contain all restrictions not enforced by the
3486 : : * tidrangequals list. tidrangequals has AND semantics, so we can simply
3487 : : * remove any qual that appears in it.
3488 : : */
3489 : : {
3490 : 334 : List *qpqual = NIL;
3491 : 334 : ListCell *l;
3492 : :
3493 [ + - + + : 677 : foreach(l, scan_clauses)
+ + ]
3494 : : {
3495 : 343 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, l);
3496 : :
3497 [ - + ]: 343 : if (rinfo->pseudoconstant)
3498 : 0 : continue; /* we may drop pseudoconstants here */
3499 [ + - ]: 343 : if (list_member_ptr(tidrangequals, rinfo))
3500 : 343 : continue; /* simple duplicate */
3501 : 0 : qpqual = lappend(qpqual, rinfo);
3502 [ - + - ]: 343 : }
3503 : 334 : scan_clauses = qpqual;
3504 : 334 : }
3505 : :
3506 : : /* Sort clauses into best execution order */
3507 : 334 : scan_clauses = order_qual_clauses(root, scan_clauses);
3508 : :
3509 : : /* Reduce RestrictInfo lists to bare expressions; ignore pseudoconstants */
3510 : 334 : tidrangequals = extract_actual_clauses(tidrangequals, false);
3511 : 334 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3512 : :
3513 : : /* Replace any outer-relation variables with nestloop params */
3514 [ + - ]: 334 : if (best_path->path.param_info)
3515 : : {
3516 : 0 : tidrangequals = (List *)
3517 : 0 : replace_nestloop_params(root, (Node *) tidrangequals);
3518 : 0 : scan_clauses = (List *)
3519 : 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3520 : 0 : }
3521 : :
3522 : 668 : scan_plan = make_tidrangescan(tlist,
3523 : 334 : scan_clauses,
3524 : 334 : scan_relid,
3525 : 334 : tidrangequals);
3526 : :
3527 : 334 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3528 : :
3529 : 668 : return scan_plan;
3530 : 334 : }
3531 : :
3532 : : /*
3533 : : * create_subqueryscan_plan
3534 : : * Returns a subqueryscan plan for the base relation scanned by 'best_path'
3535 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3536 : : */
3537 : : static SubqueryScan *
3538 : 3572 : create_subqueryscan_plan(PlannerInfo *root, SubqueryScanPath *best_path,
3539 : : List *tlist, List *scan_clauses)
3540 : : {
3541 : 3572 : SubqueryScan *scan_plan;
3542 : 3572 : RelOptInfo *rel = best_path->path.parent;
3543 : 3572 : Index scan_relid = rel->relid;
3544 : 3572 : Plan *subplan;
3545 : :
3546 : : /* it should be a subquery base rel... */
3547 [ + - ]: 3572 : Assert(scan_relid > 0);
3548 [ + - ]: 3572 : Assert(rel->rtekind == RTE_SUBQUERY);
3549 : :
3550 : : /*
3551 : : * Recursively create Plan from Path for subquery. Since we are entering
3552 : : * a different planner context (subroot), recurse to create_plan not
3553 : : * create_plan_recurse.
3554 : : */
3555 : 3572 : subplan = create_plan(rel->subroot, best_path->subpath);
3556 : :
3557 : : /* Sort clauses into best execution order */
3558 : 3572 : scan_clauses = order_qual_clauses(root, scan_clauses);
3559 : :
3560 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3561 : 3572 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3562 : :
3563 : : /*
3564 : : * Replace any outer-relation variables with nestloop params.
3565 : : *
3566 : : * We must provide nestloop params for both lateral references of the
3567 : : * subquery and outer vars in the scan_clauses. It's better to assign the
3568 : : * former first, because that code path requires specific param IDs, while
3569 : : * replace_nestloop_params can adapt to the IDs assigned by
3570 : : * process_subquery_nestloop_params. This avoids possibly duplicating
3571 : : * nestloop params when the same Var is needed for both reasons.
3572 : : */
3573 [ + + ]: 3572 : if (best_path->path.param_info)
3574 : : {
3575 : 186 : process_subquery_nestloop_params(root,
3576 : 93 : rel->subplan_params);
3577 : 93 : scan_clauses = (List *)
3578 : 93 : replace_nestloop_params(root, (Node *) scan_clauses);
3579 : 93 : }
3580 : :
3581 : 7144 : scan_plan = make_subqueryscan(tlist,
3582 : 3572 : scan_clauses,
3583 : 3572 : scan_relid,
3584 : 3572 : subplan);
3585 : :
3586 : 3572 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
3587 : :
3588 : 7144 : return scan_plan;
3589 : 3572 : }
3590 : :
3591 : : /*
3592 : : * create_functionscan_plan
3593 : : * Returns a functionscan plan for the base relation scanned by 'best_path'
3594 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3595 : : */
3596 : : static FunctionScan *
3597 : 3642 : create_functionscan_plan(PlannerInfo *root, Path *best_path,
3598 : : List *tlist, List *scan_clauses)
3599 : : {
3600 : 3642 : FunctionScan *scan_plan;
3601 : 3642 : Index scan_relid = best_path->parent->relid;
3602 : 3642 : RangeTblEntry *rte;
3603 : 3642 : List *functions;
3604 : :
3605 : : /* it should be a function base rel... */
3606 [ + - ]: 3642 : Assert(scan_relid > 0);
3607 [ + - ]: 3642 : rte = planner_rt_fetch(scan_relid, root);
3608 [ + - ]: 3642 : Assert(rte->rtekind == RTE_FUNCTION);
3609 : 3642 : functions = rte->functions;
3610 : :
3611 : : /* Sort clauses into best execution order */
3612 : 3642 : scan_clauses = order_qual_clauses(root, scan_clauses);
3613 : :
3614 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3615 : 3642 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3616 : :
3617 : : /* Replace any outer-relation variables with nestloop params */
3618 [ + + ]: 3642 : if (best_path->param_info)
3619 : : {
3620 : 98 : scan_clauses = (List *)
3621 : 98 : replace_nestloop_params(root, (Node *) scan_clauses);
3622 : : /* The function expressions could contain nestloop params, too */
3623 : 98 : functions = (List *) replace_nestloop_params(root, (Node *) functions);
3624 : 98 : }
3625 : :
3626 : 7284 : scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
3627 : 3642 : functions, rte->funcordinality);
3628 : :
3629 : 3642 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3630 : :
3631 : 7284 : return scan_plan;
3632 : 3642 : }
3633 : :
3634 : : /*
3635 : : * create_tablefuncscan_plan
3636 : : * Returns a tablefuncscan plan for the base relation scanned by 'best_path'
3637 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3638 : : */
3639 : : static TableFuncScan *
3640 : 103 : create_tablefuncscan_plan(PlannerInfo *root, Path *best_path,
3641 : : List *tlist, List *scan_clauses)
3642 : : {
3643 : 103 : TableFuncScan *scan_plan;
3644 : 103 : Index scan_relid = best_path->parent->relid;
3645 : 103 : RangeTblEntry *rte;
3646 : 103 : TableFunc *tablefunc;
3647 : :
3648 : : /* it should be a function base rel... */
3649 [ + - ]: 103 : Assert(scan_relid > 0);
3650 [ + - ]: 103 : rte = planner_rt_fetch(scan_relid, root);
3651 [ + - ]: 103 : Assert(rte->rtekind == RTE_TABLEFUNC);
3652 : 103 : tablefunc = rte->tablefunc;
3653 : :
3654 : : /* Sort clauses into best execution order */
3655 : 103 : scan_clauses = order_qual_clauses(root, scan_clauses);
3656 : :
3657 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3658 : 103 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3659 : :
3660 : : /* Replace any outer-relation variables with nestloop params */
3661 [ + + ]: 103 : if (best_path->param_info)
3662 : : {
3663 : 39 : scan_clauses = (List *)
3664 : 39 : replace_nestloop_params(root, (Node *) scan_clauses);
3665 : : /* The function expressions could contain nestloop params, too */
3666 : 39 : tablefunc = (TableFunc *) replace_nestloop_params(root, (Node *) tablefunc);
3667 : 39 : }
3668 : :
3669 : 206 : scan_plan = make_tablefuncscan(tlist, scan_clauses, scan_relid,
3670 : 103 : tablefunc);
3671 : :
3672 : 103 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3673 : :
3674 : 206 : return scan_plan;
3675 : 103 : }
3676 : :
3677 : : /*
3678 : : * create_valuesscan_plan
3679 : : * Returns a valuesscan plan for the base relation scanned by 'best_path'
3680 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3681 : : */
3682 : : static ValuesScan *
3683 : 1114 : create_valuesscan_plan(PlannerInfo *root, Path *best_path,
3684 : : List *tlist, List *scan_clauses)
3685 : : {
3686 : 1114 : ValuesScan *scan_plan;
3687 : 1114 : Index scan_relid = best_path->parent->relid;
3688 : 1114 : RangeTblEntry *rte;
3689 : 1114 : List *values_lists;
3690 : :
3691 : : /* it should be a values base rel... */
3692 [ + - ]: 1114 : Assert(scan_relid > 0);
3693 [ + - ]: 1114 : rte = planner_rt_fetch(scan_relid, root);
3694 [ + - ]: 1114 : Assert(rte->rtekind == RTE_VALUES);
3695 : 1114 : values_lists = rte->values_lists;
3696 : :
3697 : : /* Sort clauses into best execution order */
3698 : 1114 : scan_clauses = order_qual_clauses(root, scan_clauses);
3699 : :
3700 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3701 : 1114 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3702 : :
3703 : : /* Replace any outer-relation variables with nestloop params */
3704 [ + + ]: 1114 : if (best_path->param_info)
3705 : : {
3706 : 11 : scan_clauses = (List *)
3707 : 11 : replace_nestloop_params(root, (Node *) scan_clauses);
3708 : : /* The values lists could contain nestloop params, too */
3709 : 11 : values_lists = (List *)
3710 : 11 : replace_nestloop_params(root, (Node *) values_lists);
3711 : 11 : }
3712 : :
3713 : 2228 : scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
3714 : 1114 : values_lists);
3715 : :
3716 : 1114 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3717 : :
3718 : 2228 : return scan_plan;
3719 : 1114 : }
3720 : :
3721 : : /*
3722 : : * create_ctescan_plan
3723 : : * Returns a ctescan plan for the base relation scanned by 'best_path'
3724 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3725 : : */
3726 : : static CteScan *
3727 : 212 : create_ctescan_plan(PlannerInfo *root, Path *best_path,
3728 : : List *tlist, List *scan_clauses)
3729 : : {
3730 : 212 : CteScan *scan_plan;
3731 : 212 : Index scan_relid = best_path->parent->relid;
3732 : 212 : RangeTblEntry *rte;
3733 : 212 : SubPlan *ctesplan = NULL;
3734 : 212 : int plan_id;
3735 : 212 : int cte_param_id;
3736 : 212 : PlannerInfo *cteroot;
3737 : 212 : Index levelsup;
3738 : 212 : int ndx;
3739 : 212 : ListCell *lc;
3740 : :
3741 [ + - ]: 212 : Assert(scan_relid > 0);
3742 [ + - ]: 212 : rte = planner_rt_fetch(scan_relid, root);
3743 [ + - ]: 212 : Assert(rte->rtekind == RTE_CTE);
3744 [ + - ]: 212 : Assert(!rte->self_reference);
3745 : :
3746 : : /*
3747 : : * Find the referenced CTE, and locate the SubPlan previously made for it.
3748 : : */
3749 : 212 : levelsup = rte->ctelevelsup;
3750 : 212 : cteroot = root;
3751 [ + + ]: 280 : while (levelsup-- > 0)
3752 : : {
3753 : 68 : cteroot = cteroot->parent_root;
3754 [ + - ]: 68 : if (!cteroot) /* shouldn't happen */
3755 [ # # # # ]: 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3756 : : }
3757 : :
3758 : : /*
3759 : : * Note: cte_plan_ids can be shorter than cteList, if we are still working
3760 : : * on planning the CTEs (ie, this is a side-reference from another CTE).
3761 : : * So we mustn't use forboth here.
3762 : : */
3763 : 212 : ndx = 0;
3764 [ + - - + : 446 : foreach(lc, cteroot->parse->cteList)
+ - ]
3765 : : {
3766 : 234 : CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
3767 : :
3768 [ + + ]: 234 : if (strcmp(cte->ctename, rte->ctename) == 0)
3769 : 212 : break;
3770 : 22 : ndx++;
3771 [ + + ]: 234 : }
3772 [ + - ]: 212 : if (lc == NULL) /* shouldn't happen */
3773 [ # # # # ]: 0 : elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
3774 [ + - ]: 212 : if (ndx >= list_length(cteroot->cte_plan_ids))
3775 [ # # # # ]: 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3776 : 212 : plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
3777 [ + - ]: 212 : if (plan_id <= 0)
3778 [ # # # # ]: 0 : elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
3779 [ + - - + : 437 : foreach(lc, cteroot->init_plans)
+ - ]
3780 : : {
3781 : 225 : ctesplan = (SubPlan *) lfirst(lc);
3782 [ + + ]: 225 : if (ctesplan->plan_id == plan_id)
3783 : 212 : break;
3784 : 13 : }
3785 [ + - ]: 212 : if (lc == NULL) /* shouldn't happen */
3786 [ # # # # ]: 0 : elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
3787 : :
3788 : : /*
3789 : : * We need the CTE param ID, which is the sole member of the SubPlan's
3790 : : * setParam list.
3791 : : */
3792 : 212 : cte_param_id = linitial_int(ctesplan->setParam);
3793 : :
3794 : : /* Sort clauses into best execution order */
3795 : 212 : scan_clauses = order_qual_clauses(root, scan_clauses);
3796 : :
3797 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3798 : 212 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3799 : :
3800 : : /* Replace any outer-relation variables with nestloop params */
3801 [ + - ]: 212 : if (best_path->param_info)
3802 : : {
3803 : 0 : scan_clauses = (List *)
3804 : 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3805 : 0 : }
3806 : :
3807 : 424 : scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
3808 : 212 : plan_id, cte_param_id);
3809 : :
3810 : 212 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3811 : :
3812 : 424 : return scan_plan;
3813 : 212 : }
3814 : :
3815 : : /*
3816 : : * create_namedtuplestorescan_plan
3817 : : * Returns a tuplestorescan plan for the base relation scanned by
3818 : : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3819 : : * 'tlist'.
3820 : : */
3821 : : static NamedTuplestoreScan *
3822 : 77 : create_namedtuplestorescan_plan(PlannerInfo *root, Path *best_path,
3823 : : List *tlist, List *scan_clauses)
3824 : : {
3825 : 77 : NamedTuplestoreScan *scan_plan;
3826 : 77 : Index scan_relid = best_path->parent->relid;
3827 : 77 : RangeTblEntry *rte;
3828 : :
3829 [ + - ]: 77 : Assert(scan_relid > 0);
3830 [ + - ]: 77 : rte = planner_rt_fetch(scan_relid, root);
3831 [ + - ]: 77 : Assert(rte->rtekind == RTE_NAMEDTUPLESTORE);
3832 : :
3833 : : /* Sort clauses into best execution order */
3834 : 77 : scan_clauses = order_qual_clauses(root, scan_clauses);
3835 : :
3836 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3837 : 77 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3838 : :
3839 : : /* Replace any outer-relation variables with nestloop params */
3840 [ + - ]: 77 : if (best_path->param_info)
3841 : : {
3842 : 0 : scan_clauses = (List *)
3843 : 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3844 : 0 : }
3845 : :
3846 : 154 : scan_plan = make_namedtuplestorescan(tlist, scan_clauses, scan_relid,
3847 : 77 : rte->enrname);
3848 : :
3849 : 77 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3850 : :
3851 : 154 : return scan_plan;
3852 : 77 : }
3853 : :
3854 : : /*
3855 : : * create_resultscan_plan
3856 : : * Returns a Result plan for the RTE_RESULT base relation scanned by
3857 : : * 'best_path' with restriction clauses 'scan_clauses' and targetlist
3858 : : * 'tlist'.
3859 : : */
3860 : : static Result *
3861 : 661 : create_resultscan_plan(PlannerInfo *root, Path *best_path,
3862 : : List *tlist, List *scan_clauses)
3863 : : {
3864 : 661 : Result *scan_plan;
3865 : 661 : Index scan_relid = best_path->parent->relid;
3866 : 661 : RangeTblEntry *rte PG_USED_FOR_ASSERTS_ONLY;
3867 : :
3868 [ + - ]: 661 : Assert(scan_relid > 0);
3869 [ + - ]: 661 : rte = planner_rt_fetch(scan_relid, root);
3870 [ + - ]: 661 : Assert(rte->rtekind == RTE_RESULT);
3871 : :
3872 : : /* Sort clauses into best execution order */
3873 : 661 : scan_clauses = order_qual_clauses(root, scan_clauses);
3874 : :
3875 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3876 : 661 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3877 : :
3878 : : /* Replace any outer-relation variables with nestloop params */
3879 [ + + ]: 661 : if (best_path->param_info)
3880 : : {
3881 : 24 : scan_clauses = (List *)
3882 : 24 : replace_nestloop_params(root, (Node *) scan_clauses);
3883 : 24 : }
3884 : :
3885 : 1322 : scan_plan = make_one_row_result(tlist, (Node *) scan_clauses,
3886 : 661 : best_path->parent);
3887 : :
3888 : 661 : copy_generic_path_info(&scan_plan->plan, best_path);
3889 : :
3890 : 1322 : return scan_plan;
3891 : 661 : }
3892 : :
3893 : : /*
3894 : : * create_worktablescan_plan
3895 : : * Returns a worktablescan plan for the base relation scanned by 'best_path'
3896 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3897 : : */
3898 : : static WorkTableScan *
3899 : 73 : create_worktablescan_plan(PlannerInfo *root, Path *best_path,
3900 : : List *tlist, List *scan_clauses)
3901 : : {
3902 : 73 : WorkTableScan *scan_plan;
3903 : 73 : Index scan_relid = best_path->parent->relid;
3904 : 73 : RangeTblEntry *rte;
3905 : 73 : Index levelsup;
3906 : 73 : PlannerInfo *cteroot;
3907 : :
3908 [ + - ]: 73 : Assert(scan_relid > 0);
3909 [ + - ]: 73 : rte = planner_rt_fetch(scan_relid, root);
3910 [ + - ]: 73 : Assert(rte->rtekind == RTE_CTE);
3911 [ + - ]: 73 : Assert(rte->self_reference);
3912 : :
3913 : : /*
3914 : : * We need to find the worktable param ID, which is in the plan level
3915 : : * that's processing the recursive UNION, which is one level *below* where
3916 : : * the CTE comes from.
3917 : : */
3918 : 73 : levelsup = rte->ctelevelsup;
3919 [ + - ]: 73 : if (levelsup == 0) /* shouldn't happen */
3920 [ # # # # ]: 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3921 : 73 : levelsup--;
3922 : 73 : cteroot = root;
3923 [ + + ]: 156 : while (levelsup-- > 0)
3924 : : {
3925 : 83 : cteroot = cteroot->parent_root;
3926 [ + - ]: 83 : if (!cteroot) /* shouldn't happen */
3927 [ # # # # ]: 0 : elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
3928 : : }
3929 [ + - ]: 73 : if (cteroot->wt_param_id < 0) /* shouldn't happen */
3930 [ # # # # ]: 0 : elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
3931 : :
3932 : : /* Sort clauses into best execution order */
3933 : 73 : scan_clauses = order_qual_clauses(root, scan_clauses);
3934 : :
3935 : : /* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
3936 : 73 : scan_clauses = extract_actual_clauses(scan_clauses, false);
3937 : :
3938 : : /* Replace any outer-relation variables with nestloop params */
3939 [ + - ]: 73 : if (best_path->param_info)
3940 : : {
3941 : 0 : scan_clauses = (List *)
3942 : 0 : replace_nestloop_params(root, (Node *) scan_clauses);
3943 : 0 : }
3944 : :
3945 : 146 : scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
3946 : 73 : cteroot->wt_param_id);
3947 : :
3948 : 73 : copy_generic_path_info(&scan_plan->scan.plan, best_path);
3949 : :
3950 : 146 : return scan_plan;
3951 : 73 : }
3952 : :
3953 : : /*
3954 : : * create_foreignscan_plan
3955 : : * Returns a foreignscan plan for the relation scanned by 'best_path'
3956 : : * with restriction clauses 'scan_clauses' and targetlist 'tlist'.
3957 : : */
3958 : : static ForeignScan *
3959 : 0 : create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
3960 : : List *tlist, List *scan_clauses)
3961 : : {
3962 : 0 : ForeignScan *scan_plan;
3963 : 0 : RelOptInfo *rel = best_path->path.parent;
3964 : 0 : Index scan_relid = rel->relid;
3965 : 0 : Oid rel_oid = InvalidOid;
3966 : 0 : Plan *outer_plan = NULL;
3967 : :
3968 [ # # ]: 0 : Assert(rel->fdwroutine != NULL);
3969 : :
3970 : : /* transform the child path if any */
3971 [ # # ]: 0 : if (best_path->fdw_outerpath)
3972 : 0 : outer_plan = create_plan_recurse(root, best_path->fdw_outerpath,
3973 : : CP_EXACT_TLIST);
3974 : :
3975 : : /*
3976 : : * If we're scanning a base relation, fetch its OID. (Irrelevant if
3977 : : * scanning a join relation.)
3978 : : */
3979 [ # # ]: 0 : if (scan_relid > 0)
3980 : : {
3981 : 0 : RangeTblEntry *rte;
3982 : :
3983 [ # # ]: 0 : Assert(rel->rtekind == RTE_RELATION);
3984 [ # # ]: 0 : rte = planner_rt_fetch(scan_relid, root);
3985 [ # # ]: 0 : Assert(rte->rtekind == RTE_RELATION);
3986 : 0 : rel_oid = rte->relid;
3987 : 0 : }
3988 : :
3989 : : /*
3990 : : * Sort clauses into best execution order. We do this first since the FDW
3991 : : * might have more info than we do and wish to adjust the ordering.
3992 : : */
3993 : 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
3994 : :
3995 : : /*
3996 : : * Let the FDW perform its processing on the restriction clauses and
3997 : : * generate the plan node. Note that the FDW might remove restriction
3998 : : * clauses that it intends to execute remotely, or even add more (if it
3999 : : * has selected some join clauses for remote use but also wants them
4000 : : * rechecked locally).
4001 : : */
4002 : 0 : scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
4003 : 0 : best_path,
4004 : 0 : tlist, scan_clauses,
4005 : 0 : outer_plan);
4006 : :
4007 : : /* Copy cost data from Path to Plan; no need to make FDW do this */
4008 : 0 : copy_generic_path_info(&scan_plan->scan.plan, &best_path->path);
4009 : :
4010 : : /* Copy user OID to access as; likewise no need to make FDW do this */
4011 : 0 : scan_plan->checkAsUser = rel->userid;
4012 : :
4013 : : /* Copy foreign server OID; likewise, no need to make FDW do this */
4014 : 0 : scan_plan->fs_server = rel->serverid;
4015 : :
4016 : : /*
4017 : : * Likewise, copy the relids that are represented by this foreign scan. An
4018 : : * upper rel doesn't have relids set, but it covers all the relations
4019 : : * participating in the underlying scan/join, so use root->all_query_rels.
4020 : : */
4021 [ # # ]: 0 : if (rel->reloptkind == RELOPT_UPPER_REL)
4022 : 0 : scan_plan->fs_relids = root->all_query_rels;
4023 : : else
4024 : 0 : scan_plan->fs_relids = best_path->path.parent->relids;
4025 : :
4026 : : /*
4027 : : * Join relid sets include relevant outer joins, but FDWs may need to know
4028 : : * which are the included base rels. That's a bit tedious to get without
4029 : : * access to the plan-time data structures, so compute it here.
4030 : : */
4031 : 0 : scan_plan->fs_base_relids = bms_difference(scan_plan->fs_relids,
4032 : 0 : root->outer_join_rels);
4033 : :
4034 : : /*
4035 : : * If this is a foreign join, and to make it valid to push down we had to
4036 : : * assume that the current user is the same as some user explicitly named
4037 : : * in the query, mark the finished plan as depending on the current user.
4038 : : */
4039 [ # # ]: 0 : if (rel->useridiscurrent)
4040 : 0 : root->glob->dependsOnRole = true;
4041 : :
4042 : : /*
4043 : : * Replace any outer-relation variables with nestloop params in the qual,
4044 : : * fdw_exprs and fdw_recheck_quals expressions. We do this last so that
4045 : : * the FDW doesn't have to be involved. (Note that parts of fdw_exprs or
4046 : : * fdw_recheck_quals could have come from join clauses, so doing this
4047 : : * beforehand on the scan_clauses wouldn't work.) We assume
4048 : : * fdw_scan_tlist contains no such variables.
4049 : : */
4050 [ # # ]: 0 : if (best_path->path.param_info)
4051 : : {
4052 : 0 : scan_plan->scan.plan.qual = (List *)
4053 : 0 : replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
4054 : 0 : scan_plan->fdw_exprs = (List *)
4055 : 0 : replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
4056 : 0 : scan_plan->fdw_recheck_quals = (List *)
4057 : 0 : replace_nestloop_params(root,
4058 : 0 : (Node *) scan_plan->fdw_recheck_quals);
4059 : 0 : }
4060 : :
4061 : : /*
4062 : : * If rel is a base relation, detect whether any system columns are
4063 : : * requested from the rel. (If rel is a join relation, rel->relid will be
4064 : : * 0, but there can be no Var with relid 0 in the rel's targetlist or the
4065 : : * restriction clauses, so we skip this in that case. Note that any such
4066 : : * columns in base relations that were joined are assumed to be contained
4067 : : * in fdw_scan_tlist.) This is a bit of a kluge and might go away
4068 : : * someday, so we intentionally leave it out of the API presented to FDWs.
4069 : : */
4070 : 0 : scan_plan->fsSystemCol = false;
4071 [ # # ]: 0 : if (scan_relid > 0)
4072 : : {
4073 : 0 : Bitmapset *attrs_used = NULL;
4074 : 0 : ListCell *lc;
4075 : 0 : int i;
4076 : :
4077 : : /*
4078 : : * First, examine all the attributes needed for joins or final output.
4079 : : * Note: we must look at rel's targetlist, not the attr_needed data,
4080 : : * because attr_needed isn't computed for inheritance child rels.
4081 : : */
4082 : 0 : pull_varattnos((Node *) rel->reltarget->exprs, scan_relid, &attrs_used);
4083 : :
4084 : : /* Add all the attributes used by restriction clauses. */
4085 [ # # # # : 0 : foreach(lc, rel->baserestrictinfo)
# # ]
4086 : : {
4087 : 0 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
4088 : :
4089 : 0 : pull_varattnos((Node *) rinfo->clause, scan_relid, &attrs_used);
4090 : 0 : }
4091 : :
4092 : : /* Now, are any system columns requested from rel? */
4093 [ # # ]: 0 : for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
4094 : : {
4095 [ # # ]: 0 : if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
4096 : : {
4097 : 0 : scan_plan->fsSystemCol = true;
4098 : 0 : break;
4099 : : }
4100 : 0 : }
4101 : :
4102 : 0 : bms_free(attrs_used);
4103 : 0 : }
4104 : :
4105 : 0 : return scan_plan;
4106 : 0 : }
4107 : :
4108 : : /*
4109 : : * create_customscan_plan
4110 : : *
4111 : : * Transform a CustomPath into a Plan.
4112 : : */
4113 : : static CustomScan *
4114 : 0 : create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
4115 : : List *tlist, List *scan_clauses)
4116 : : {
4117 : 0 : CustomScan *cplan;
4118 : 0 : RelOptInfo *rel = best_path->path.parent;
4119 : 0 : List *custom_plans = NIL;
4120 : 0 : ListCell *lc;
4121 : :
4122 : : /* Recursively transform child paths. */
4123 [ # # # # : 0 : foreach(lc, best_path->custom_paths)
# # ]
4124 : : {
4125 : 0 : Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc),
4126 : : CP_EXACT_TLIST);
4127 : :
4128 : 0 : custom_plans = lappend(custom_plans, plan);
4129 : 0 : }
4130 : :
4131 : : /*
4132 : : * Sort clauses into the best execution order, although custom-scan
4133 : : * provider can reorder them again.
4134 : : */
4135 : 0 : scan_clauses = order_qual_clauses(root, scan_clauses);
4136 : :
4137 : : /*
4138 : : * Invoke custom plan provider to create the Plan node represented by the
4139 : : * CustomPath.
4140 : : */
4141 : 0 : cplan = castNode(CustomScan,
4142 : : best_path->methods->PlanCustomPath(root,
4143 : : rel,
4144 : : best_path,
4145 : : tlist,
4146 : : scan_clauses,
4147 : : custom_plans));
4148 : :
4149 : : /*
4150 : : * Copy cost data from Path to Plan; no need to make custom-plan providers
4151 : : * do this
4152 : : */
4153 : 0 : copy_generic_path_info(&cplan->scan.plan, &best_path->path);
4154 : :
4155 : : /* Likewise, copy the relids that are represented by this custom scan */
4156 : 0 : cplan->custom_relids = best_path->path.parent->relids;
4157 : :
4158 : : /*
4159 : : * Replace any outer-relation variables with nestloop params in the qual
4160 : : * and custom_exprs expressions. We do this last so that the custom-plan
4161 : : * provider doesn't have to be involved. (Note that parts of custom_exprs
4162 : : * could have come from join clauses, so doing this beforehand on the
4163 : : * scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
4164 : : * such variables.
4165 : : */
4166 [ # # ]: 0 : if (best_path->path.param_info)
4167 : : {
4168 : 0 : cplan->scan.plan.qual = (List *)
4169 : 0 : replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
4170 : 0 : cplan->custom_exprs = (List *)
4171 : 0 : replace_nestloop_params(root, (Node *) cplan->custom_exprs);
4172 : 0 : }
4173 : :
4174 : 0 : return cplan;
4175 : 0 : }
4176 : :
4177 : :
4178 : : /*****************************************************************************
4179 : : *
4180 : : * JOIN METHODS
4181 : : *
4182 : : *****************************************************************************/
4183 : :
4184 : : static NestLoop *
4185 : 9143 : create_nestloop_plan(PlannerInfo *root,
4186 : : NestPath *best_path)
4187 : : {
4188 : 9143 : NestLoop *join_plan;
4189 : 9143 : Plan *outer_plan;
4190 : 9143 : Plan *inner_plan;
4191 : 9143 : Relids outerrelids;
4192 : 9143 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4193 : 9143 : List *joinrestrictclauses = best_path->jpath.joinrestrictinfo;
4194 : 9143 : List *joinclauses;
4195 : 9143 : List *otherclauses;
4196 : 9143 : List *nestParams;
4197 : 9143 : List *outer_tlist;
4198 : 9143 : bool outer_parallel_safe;
4199 : 9143 : Relids saveOuterRels = root->curOuterRels;
4200 : 9143 : ListCell *lc;
4201 : :
4202 : : /*
4203 : : * If the inner path is parameterized by the topmost parent of the outer
4204 : : * rel rather than the outer rel itself, fix that. (Nothing happens here
4205 : : * if it is not so parameterized.)
4206 : : */
4207 : 9143 : best_path->jpath.innerjoinpath =
4208 : 18286 : reparameterize_path_by_child(root,
4209 : 9143 : best_path->jpath.innerjoinpath,
4210 : 9143 : best_path->jpath.outerjoinpath->parent);
4211 : :
4212 : : /*
4213 : : * Failure here probably means that reparameterize_path_by_child() is not
4214 : : * in sync with path_is_reparameterizable_by_child().
4215 : : */
4216 [ + - ]: 9143 : Assert(best_path->jpath.innerjoinpath != NULL);
4217 : :
4218 : : /* NestLoop can project, so no need to be picky about child tlists */
4219 : 9143 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath, 0);
4220 : :
4221 : : /* For a nestloop, include outer relids in curOuterRels for inner side */
4222 : 9143 : outerrelids = best_path->jpath.outerjoinpath->parent->relids;
4223 : 9143 : root->curOuterRels = bms_union(root->curOuterRels, outerrelids);
4224 : :
4225 : 9143 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath, 0);
4226 : :
4227 : : /* Restore curOuterRels */
4228 : 9143 : bms_free(root->curOuterRels);
4229 : 9143 : root->curOuterRels = saveOuterRels;
4230 : :
4231 : : /* Sort join qual clauses into best execution order */
4232 : 9143 : joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
4233 : :
4234 : : /* Get the join qual clauses (in plain expression form) */
4235 : : /* Any pseudoconstant clauses are ignored here */
4236 [ + + ]: 9143 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4237 : : {
4238 : 5068 : extract_actual_join_clauses(joinrestrictclauses,
4239 : 2534 : best_path->jpath.path.parent->relids,
4240 : : &joinclauses, &otherclauses);
4241 : 2534 : }
4242 : : else
4243 : : {
4244 : : /* We can treat all clauses alike for an inner join */
4245 : 6609 : joinclauses = extract_actual_clauses(joinrestrictclauses, false);
4246 : 6609 : otherclauses = NIL;
4247 : : }
4248 : :
4249 : : /* Replace any outer-relation variables with nestloop params */
4250 [ + + ]: 9143 : if (best_path->jpath.path.param_info)
4251 : : {
4252 : 138 : joinclauses = (List *)
4253 : 138 : replace_nestloop_params(root, (Node *) joinclauses);
4254 : 138 : otherclauses = (List *)
4255 : 138 : replace_nestloop_params(root, (Node *) otherclauses);
4256 : 138 : }
4257 : :
4258 : : /*
4259 : : * Identify any nestloop parameters that should be supplied by this join
4260 : : * node, and remove them from root->curOuterParams.
4261 : : */
4262 : 18286 : nestParams = identify_current_nestloop_params(root,
4263 : 9143 : outerrelids,
4264 [ + + ]: 9143 : PATH_REQ_OUTER((Path *) best_path));
4265 : :
4266 : : /*
4267 : : * While nestloop parameters that are Vars had better be available from
4268 : : * the outer_plan already, there are edge cases where nestloop parameters
4269 : : * that are PHVs won't be. In such cases we must add them to the
4270 : : * outer_plan's tlist, since the executor's NestLoopParam machinery
4271 : : * requires the params to be simple outer-Var references to that tlist.
4272 : : * (This is cheating a little bit, because the outer path's required-outer
4273 : : * relids might not be enough to allow evaluating such a PHV. But in
4274 : : * practice, if we could have evaluated the PHV at the nestloop node, we
4275 : : * can do so in the outer plan too.)
4276 : : */
4277 : 9143 : outer_tlist = outer_plan->targetlist;
4278 : 9143 : outer_parallel_safe = outer_plan->parallel_safe;
4279 [ + + + + : 13385 : foreach(lc, nestParams)
+ + ]
4280 : : {
4281 : 4242 : NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
4282 : 4242 : PlaceHolderVar *phv;
4283 : 4242 : TargetEntry *tle;
4284 : :
4285 [ + + ]: 4242 : if (IsA(nlp->paramval, Var))
4286 : 4200 : continue; /* nothing to do for simple Vars */
4287 : : /* Otherwise it must be a PHV */
4288 : 42 : phv = castNode(PlaceHolderVar, nlp->paramval);
4289 : :
4290 [ + + ]: 42 : if (tlist_member((Expr *) phv, outer_tlist))
4291 : 37 : continue; /* already available */
4292 : :
4293 : : /*
4294 : : * It's possible that nestloop parameter PHVs selected to evaluate
4295 : : * here contain references to surviving root->curOuterParams items
4296 : : * (that is, they reference values that will be supplied by some
4297 : : * higher-level nestloop). Those need to be converted to Params now.
4298 : : * Note: it's safe to do this after the tlist_member() check, because
4299 : : * equal() won't pay attention to phv->phexpr.
4300 : : */
4301 : 10 : phv->phexpr = (Expr *) replace_nestloop_params(root,
4302 : 5 : (Node *) phv->phexpr);
4303 : :
4304 : : /* Make a shallow copy of outer_tlist, if we didn't already */
4305 [ - + ]: 5 : if (outer_tlist == outer_plan->targetlist)
4306 : 5 : outer_tlist = list_copy(outer_tlist);
4307 : : /* ... and add the needed expression */
4308 : 10 : tle = makeTargetEntry((Expr *) copyObject(phv),
4309 : 5 : list_length(outer_tlist) + 1,
4310 : : NULL,
4311 : : true);
4312 : 5 : outer_tlist = lappend(outer_tlist, tle);
4313 : : /* ... and track whether tlist is (still) parallel-safe */
4314 [ + + ]: 5 : if (outer_parallel_safe)
4315 : 1 : outer_parallel_safe = is_parallel_safe(root, (Node *) phv);
4316 [ - + + ]: 4242 : }
4317 [ + + ]: 9143 : if (outer_tlist != outer_plan->targetlist)
4318 : 10 : outer_plan = change_plan_targetlist(outer_plan, outer_tlist,
4319 : 5 : outer_parallel_safe);
4320 : :
4321 : : /* And finally, we can build the join plan node */
4322 : 18286 : join_plan = make_nestloop(tlist,
4323 : 9143 : joinclauses,
4324 : 9143 : otherclauses,
4325 : 9143 : nestParams,
4326 : 9143 : outer_plan,
4327 : 9143 : inner_plan,
4328 : 9143 : best_path->jpath.jointype,
4329 : 9143 : best_path->jpath.inner_unique);
4330 : :
4331 : 9143 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4332 : :
4333 : 18286 : return join_plan;
4334 : 9143 : }
4335 : :
4336 : : static MergeJoin *
4337 : 508 : create_mergejoin_plan(PlannerInfo *root,
4338 : : MergePath *best_path)
4339 : : {
4340 : 508 : MergeJoin *join_plan;
4341 : 508 : Plan *outer_plan;
4342 : 508 : Plan *inner_plan;
4343 : 508 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4344 : 508 : List *joinclauses;
4345 : 508 : List *otherclauses;
4346 : 508 : List *mergeclauses;
4347 : 508 : List *outerpathkeys;
4348 : 508 : List *innerpathkeys;
4349 : 508 : int nClauses;
4350 : 508 : Oid *mergefamilies;
4351 : 508 : Oid *mergecollations;
4352 : 508 : bool *mergereversals;
4353 : 508 : bool *mergenullsfirst;
4354 : 508 : PathKey *opathkey;
4355 : 508 : EquivalenceClass *opeclass;
4356 : 508 : int i;
4357 : 508 : ListCell *lc;
4358 : 508 : ListCell *lop;
4359 : 508 : ListCell *lip;
4360 : 508 : Path *outer_path = best_path->jpath.outerjoinpath;
4361 : 508 : Path *inner_path = best_path->jpath.innerjoinpath;
4362 : :
4363 : : /*
4364 : : * MergeJoin can project, so we don't have to demand exact tlists from the
4365 : : * inputs. However, if we're intending to sort an input's result, it's
4366 : : * best to request a small tlist so we aren't sorting more data than
4367 : : * necessary.
4368 : : */
4369 : 1016 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4370 : 508 : (best_path->outersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4371 : :
4372 : 1016 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4373 : 508 : (best_path->innersortkeys != NIL) ? CP_SMALL_TLIST : 0);
4374 : :
4375 : : /* Sort join qual clauses into best execution order */
4376 : : /* NB: do NOT reorder the mergeclauses */
4377 : 508 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4378 : :
4379 : : /* Get the join qual clauses (in plain expression form) */
4380 : : /* Any pseudoconstant clauses are ignored here */
4381 [ + + ]: 508 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4382 : : {
4383 : 504 : extract_actual_join_clauses(joinclauses,
4384 : 252 : best_path->jpath.path.parent->relids,
4385 : : &joinclauses, &otherclauses);
4386 : 252 : }
4387 : : else
4388 : : {
4389 : : /* We can treat all clauses alike for an inner join */
4390 : 256 : joinclauses = extract_actual_clauses(joinclauses, false);
4391 : 256 : otherclauses = NIL;
4392 : : }
4393 : :
4394 : : /*
4395 : : * Remove the mergeclauses from the list of join qual clauses, leaving the
4396 : : * list of quals that must be checked as qpquals.
4397 : : */
4398 : 508 : mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
4399 : 508 : joinclauses = list_difference(joinclauses, mergeclauses);
4400 : :
4401 : : /*
4402 : : * Replace any outer-relation variables with nestloop params. There
4403 : : * should not be any in the mergeclauses.
4404 : : */
4405 [ + + ]: 508 : if (best_path->jpath.path.param_info)
4406 : : {
4407 : 1 : joinclauses = (List *)
4408 : 1 : replace_nestloop_params(root, (Node *) joinclauses);
4409 : 1 : otherclauses = (List *)
4410 : 1 : replace_nestloop_params(root, (Node *) otherclauses);
4411 : 1 : }
4412 : :
4413 : : /*
4414 : : * Rearrange mergeclauses, if needed, so that the outer variable is always
4415 : : * on the left; mark the mergeclause restrictinfos with correct
4416 : : * outer_is_left status.
4417 : : */
4418 : 1016 : mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
4419 : 508 : best_path->jpath.outerjoinpath->parent->relids);
4420 : :
4421 : : /*
4422 : : * Create explicit sort nodes for the outer and inner paths if necessary.
4423 : : */
4424 [ + + ]: 508 : if (best_path->outersortkeys)
4425 : : {
4426 : 335 : Relids outer_relids = outer_path->parent->relids;
4427 : 335 : Plan *sort_plan;
4428 : :
4429 : : /*
4430 : : * We can assert that the outer path is not already ordered
4431 : : * appropriately for the mergejoin; otherwise, outersortkeys would
4432 : : * have been set to NIL.
4433 : : */
4434 [ + - ]: 335 : Assert(!pathkeys_contained_in(best_path->outersortkeys,
4435 : : outer_path->pathkeys));
4436 : :
4437 : : /*
4438 : : * We choose to use incremental sort if it is enabled and there are
4439 : : * presorted keys; otherwise we use full sort.
4440 : : */
4441 [ + - + + ]: 335 : if (enable_incremental_sort && best_path->outer_presorted_keys > 0)
4442 : : {
4443 : 2 : sort_plan = (Plan *)
4444 : 4 : make_incrementalsort_from_pathkeys(outer_plan,
4445 : 2 : best_path->outersortkeys,
4446 : 2 : outer_relids,
4447 : 2 : best_path->outer_presorted_keys);
4448 : :
4449 : 4 : label_incrementalsort_with_costsize(root,
4450 : 2 : (IncrementalSort *) sort_plan,
4451 : 2 : best_path->outersortkeys,
4452 : : -1.0);
4453 : 2 : }
4454 : : else
4455 : : {
4456 : 333 : sort_plan = (Plan *)
4457 : 666 : make_sort_from_pathkeys(outer_plan,
4458 : 333 : best_path->outersortkeys,
4459 : 333 : outer_relids);
4460 : :
4461 : 333 : label_sort_with_costsize(root, (Sort *) sort_plan, -1.0);
4462 : : }
4463 : :
4464 : 335 : outer_plan = sort_plan;
4465 : 335 : outerpathkeys = best_path->outersortkeys;
4466 : 335 : }
4467 : : else
4468 : 173 : outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
4469 : :
4470 [ + + ]: 508 : if (best_path->innersortkeys)
4471 : : {
4472 : : /*
4473 : : * We do not consider incremental sort for inner path, because
4474 : : * incremental sort does not support mark/restore.
4475 : : */
4476 : :
4477 : 442 : Relids inner_relids = inner_path->parent->relids;
4478 : 442 : Sort *sort;
4479 : :
4480 : : /*
4481 : : * We can assert that the inner path is not already ordered
4482 : : * appropriately for the mergejoin; otherwise, innersortkeys would
4483 : : * have been set to NIL.
4484 : : */
4485 [ + - ]: 442 : Assert(!pathkeys_contained_in(best_path->innersortkeys,
4486 : : inner_path->pathkeys));
4487 : :
4488 : 884 : sort = make_sort_from_pathkeys(inner_plan,
4489 : 442 : best_path->innersortkeys,
4490 : 442 : inner_relids);
4491 : :
4492 : 442 : label_sort_with_costsize(root, sort, -1.0);
4493 : 442 : inner_plan = (Plan *) sort;
4494 : 442 : innerpathkeys = best_path->innersortkeys;
4495 : 442 : }
4496 : : else
4497 : 66 : innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
4498 : :
4499 : : /*
4500 : : * If specified, add a materialize node to shield the inner plan from the
4501 : : * need to handle mark/restore.
4502 : : */
4503 [ + + ]: 508 : if (best_path->materialize_inner)
4504 : : {
4505 : 26 : Plan *matplan = (Plan *) make_material(inner_plan);
4506 : :
4507 : : /*
4508 : : * We assume the materialize will not spill to disk, and therefore
4509 : : * charge just cpu_operator_cost per tuple. (Keep this estimate in
4510 : : * sync with final_cost_mergejoin.)
4511 : : */
4512 : 26 : copy_plan_costsize(matplan, inner_plan);
4513 : 26 : matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
4514 : :
4515 : 26 : inner_plan = matplan;
4516 : 26 : }
4517 : :
4518 : : /*
4519 : : * Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
4520 : : * executor. The information is in the pathkeys for the two inputs, but
4521 : : * we need to be careful about the possibility of mergeclauses sharing a
4522 : : * pathkey, as well as the possibility that the inner pathkeys are not in
4523 : : * an order matching the mergeclauses.
4524 : : */
4525 : 508 : nClauses = list_length(mergeclauses);
4526 [ + - ]: 508 : Assert(nClauses == list_length(best_path->path_mergeclauses));
4527 : 508 : mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
4528 : 508 : mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
4529 : 508 : mergereversals = (bool *) palloc(nClauses * sizeof(bool));
4530 : 508 : mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
4531 : :
4532 : 508 : opathkey = NULL;
4533 : 508 : opeclass = NULL;
4534 : 508 : lop = list_head(outerpathkeys);
4535 : 508 : lip = list_head(innerpathkeys);
4536 : 508 : i = 0;
4537 [ + + + + : 1095 : foreach(lc, best_path->path_mergeclauses)
+ + ]
4538 : : {
4539 : 587 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
4540 : 587 : EquivalenceClass *oeclass;
4541 : 587 : EquivalenceClass *ieclass;
4542 : 587 : PathKey *ipathkey = NULL;
4543 : 587 : EquivalenceClass *ipeclass = NULL;
4544 : 587 : bool first_inner_match = false;
4545 : :
4546 : : /* fetch outer/inner eclass from mergeclause */
4547 [ + + ]: 587 : if (rinfo->outer_is_left)
4548 : : {
4549 : 439 : oeclass = rinfo->left_ec;
4550 : 439 : ieclass = rinfo->right_ec;
4551 : 439 : }
4552 : : else
4553 : : {
4554 : 148 : oeclass = rinfo->right_ec;
4555 : 148 : ieclass = rinfo->left_ec;
4556 : : }
4557 [ + - ]: 587 : Assert(oeclass != NULL);
4558 [ + - ]: 587 : Assert(ieclass != NULL);
4559 : :
4560 : : /*
4561 : : * We must identify the pathkey elements associated with this clause
4562 : : * by matching the eclasses (which should give a unique match, since
4563 : : * the pathkey lists should be canonical). In typical cases the merge
4564 : : * clauses are one-to-one with the pathkeys, but when dealing with
4565 : : * partially redundant query conditions, things are more complicated.
4566 : : *
4567 : : * lop and lip reference the first as-yet-unmatched pathkey elements.
4568 : : * If they're NULL then all pathkey elements have been matched.
4569 : : *
4570 : : * The ordering of the outer pathkeys should match the mergeclauses,
4571 : : * by construction (see find_mergeclauses_for_outer_pathkeys()). There
4572 : : * could be more than one mergeclause for the same outer pathkey, but
4573 : : * no pathkey may be entirely skipped over.
4574 : : */
4575 [ + + ]: 587 : if (oeclass != opeclass) /* multiple matches are not interesting */
4576 : : {
4577 : : /* doesn't match the current opathkey, so must match the next */
4578 [ + - ]: 585 : if (lop == NULL)
4579 [ # # # # ]: 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4580 : 585 : opathkey = (PathKey *) lfirst(lop);
4581 : 585 : opeclass = opathkey->pk_eclass;
4582 : 585 : lop = lnext(outerpathkeys, lop);
4583 [ + - ]: 585 : if (oeclass != opeclass)
4584 [ # # # # ]: 0 : elog(ERROR, "outer pathkeys do not match mergeclauses");
4585 : 585 : }
4586 : :
4587 : : /*
4588 : : * The inner pathkeys likewise should not have skipped-over keys, but
4589 : : * it's possible for a mergeclause to reference some earlier inner
4590 : : * pathkey if we had redundant pathkeys. For example we might have
4591 : : * mergeclauses like "o.a = i.x AND o.b = i.y AND o.c = i.x". The
4592 : : * implied inner ordering is then "ORDER BY x, y, x", but the pathkey
4593 : : * mechanism drops the second sort by x as redundant, and this code
4594 : : * must cope.
4595 : : *
4596 : : * It's also possible for the implied inner-rel ordering to be like
4597 : : * "ORDER BY x, y, x DESC". We still drop the second instance of x as
4598 : : * redundant; but this means that the sort ordering of a redundant
4599 : : * inner pathkey should not be considered significant. So we must
4600 : : * detect whether this is the first clause matching an inner pathkey.
4601 : : */
4602 [ + + ]: 587 : if (lip)
4603 : : {
4604 : 584 : ipathkey = (PathKey *) lfirst(lip);
4605 : 584 : ipeclass = ipathkey->pk_eclass;
4606 [ - + ]: 584 : if (ieclass == ipeclass)
4607 : : {
4608 : : /* successful first match to this inner pathkey */
4609 : 584 : lip = lnext(innerpathkeys, lip);
4610 : 584 : first_inner_match = true;
4611 : 584 : }
4612 : 584 : }
4613 [ + + ]: 587 : if (!first_inner_match)
4614 : : {
4615 : : /* redundant clause ... must match something before lip */
4616 : 3 : ListCell *l2;
4617 : :
4618 [ + - - + : 6 : foreach(l2, innerpathkeys)
+ - ]
4619 : : {
4620 [ - + ]: 3 : if (l2 == lip)
4621 : 0 : break;
4622 : 3 : ipathkey = (PathKey *) lfirst(l2);
4623 : 3 : ipeclass = ipathkey->pk_eclass;
4624 [ + - ]: 3 : if (ieclass == ipeclass)
4625 : 3 : break;
4626 : 0 : }
4627 [ + - ]: 3 : if (ieclass != ipeclass)
4628 [ # # # # ]: 0 : elog(ERROR, "inner pathkeys do not match mergeclauses");
4629 : 3 : }
4630 : :
4631 : : /*
4632 : : * The pathkeys should always match each other as to opfamily and
4633 : : * collation (which affect equality), but if we're considering a
4634 : : * redundant inner pathkey, its sort ordering might not match. In
4635 : : * such cases we may ignore the inner pathkey's sort ordering and use
4636 : : * the outer's. (In effect, we're lying to the executor about the
4637 : : * sort direction of this inner column, but it does not matter since
4638 : : * the run-time row comparisons would only reach this column when
4639 : : * there's equality for the earlier column containing the same eclass.
4640 : : * There could be only one value in this column for the range of inner
4641 : : * rows having a given value in the earlier column, so it does not
4642 : : * matter which way we imagine this column to be ordered.) But a
4643 : : * non-redundant inner pathkey had better match outer's ordering too.
4644 : : */
4645 [ + - ]: 587 : if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
4646 : 587 : opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation)
4647 [ # # # # ]: 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4648 [ + + ]: 1171 : if (first_inner_match &&
4649 [ + - ]: 584 : (opathkey->pk_cmptype != ipathkey->pk_cmptype ||
4650 : 584 : opathkey->pk_nulls_first != ipathkey->pk_nulls_first))
4651 [ # # # # ]: 0 : elog(ERROR, "left and right pathkeys do not match in mergejoin");
4652 : :
4653 : : /* OK, save info for executor */
4654 : 587 : mergefamilies[i] = opathkey->pk_opfamily;
4655 : 587 : mergecollations[i] = opathkey->pk_eclass->ec_collation;
4656 : 587 : mergereversals[i] = (opathkey->pk_cmptype == COMPARE_GT ? true : false);
4657 : 587 : mergenullsfirst[i] = opathkey->pk_nulls_first;
4658 : 587 : i++;
4659 : 587 : }
4660 : :
4661 : : /*
4662 : : * Note: it is not an error if we have additional pathkey elements (i.e.,
4663 : : * lop or lip isn't NULL here). The input paths might be better-sorted
4664 : : * than we need for the current mergejoin.
4665 : : */
4666 : :
4667 : : /*
4668 : : * Now we can build the mergejoin node.
4669 : : */
4670 : 1016 : join_plan = make_mergejoin(tlist,
4671 : 508 : joinclauses,
4672 : 508 : otherclauses,
4673 : 508 : mergeclauses,
4674 : 508 : mergefamilies,
4675 : 508 : mergecollations,
4676 : 508 : mergereversals,
4677 : 508 : mergenullsfirst,
4678 : 508 : outer_plan,
4679 : 508 : inner_plan,
4680 : 508 : best_path->jpath.jointype,
4681 : 508 : best_path->jpath.inner_unique,
4682 : 508 : best_path->skip_mark_restore);
4683 : :
4684 : : /* Costs of sort and material steps are included in path cost already */
4685 : 508 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4686 : :
4687 : 1016 : return join_plan;
4688 : 508 : }
4689 : :
4690 : : static HashJoin *
4691 : 3335 : create_hashjoin_plan(PlannerInfo *root,
4692 : : HashPath *best_path)
4693 : : {
4694 : 3335 : HashJoin *join_plan;
4695 : 3335 : Hash *hash_plan;
4696 : 3335 : Plan *outer_plan;
4697 : 3335 : Plan *inner_plan;
4698 : 3335 : List *tlist = build_path_tlist(root, &best_path->jpath.path);
4699 : 3335 : List *joinclauses;
4700 : 3335 : List *otherclauses;
4701 : 3335 : List *hashclauses;
4702 : 3335 : List *hashoperators = NIL;
4703 : 3335 : List *hashcollations = NIL;
4704 : 3335 : List *inner_hashkeys = NIL;
4705 : 3335 : List *outer_hashkeys = NIL;
4706 : 3335 : Oid skewTable = InvalidOid;
4707 : 3335 : AttrNumber skewColumn = InvalidAttrNumber;
4708 : 3335 : bool skewInherit = false;
4709 : 3335 : ListCell *lc;
4710 : :
4711 : : /*
4712 : : * HashJoin can project, so we don't have to demand exact tlists from the
4713 : : * inputs. However, it's best to request a small tlist from the inner
4714 : : * side, so that we aren't storing more data than necessary. Likewise, if
4715 : : * we anticipate batching, request a small tlist from the outer side so
4716 : : * that we don't put extra data in the outer batch files.
4717 : : */
4718 : 6670 : outer_plan = create_plan_recurse(root, best_path->jpath.outerjoinpath,
4719 : 3335 : (best_path->num_batches > 1) ? CP_SMALL_TLIST : 0);
4720 : :
4721 : 3335 : inner_plan = create_plan_recurse(root, best_path->jpath.innerjoinpath,
4722 : : CP_SMALL_TLIST);
4723 : :
4724 : : /* Sort join qual clauses into best execution order */
4725 : 3335 : joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
4726 : : /* There's no point in sorting the hash clauses ... */
4727 : :
4728 : : /* Get the join qual clauses (in plain expression form) */
4729 : : /* Any pseudoconstant clauses are ignored here */
4730 [ + + ]: 3335 : if (IS_OUTER_JOIN(best_path->jpath.jointype))
4731 : : {
4732 : 1760 : extract_actual_join_clauses(joinclauses,
4733 : 880 : best_path->jpath.path.parent->relids,
4734 : : &joinclauses, &otherclauses);
4735 : 880 : }
4736 : : else
4737 : : {
4738 : : /* We can treat all clauses alike for an inner join */
4739 : 2455 : joinclauses = extract_actual_clauses(joinclauses, false);
4740 : 2455 : otherclauses = NIL;
4741 : : }
4742 : :
4743 : : /*
4744 : : * Remove the hashclauses from the list of join qual clauses, leaving the
4745 : : * list of quals that must be checked as qpquals.
4746 : : */
4747 : 3335 : hashclauses = get_actual_clauses(best_path->path_hashclauses);
4748 : 3335 : joinclauses = list_difference(joinclauses, hashclauses);
4749 : :
4750 : : /*
4751 : : * Replace any outer-relation variables with nestloop params. There
4752 : : * should not be any in the hashclauses.
4753 : : */
4754 [ + + ]: 3335 : if (best_path->jpath.path.param_info)
4755 : : {
4756 : 31 : joinclauses = (List *)
4757 : 31 : replace_nestloop_params(root, (Node *) joinclauses);
4758 : 31 : otherclauses = (List *)
4759 : 31 : replace_nestloop_params(root, (Node *) otherclauses);
4760 : 31 : }
4761 : :
4762 : : /*
4763 : : * Rearrange hashclauses, if needed, so that the outer variable is always
4764 : : * on the left.
4765 : : */
4766 : 6670 : hashclauses = get_switched_clauses(best_path->path_hashclauses,
4767 : 3335 : best_path->jpath.outerjoinpath->parent->relids);
4768 : :
4769 : : /*
4770 : : * If there is a single join clause and we can identify the outer variable
4771 : : * as a simple column reference, supply its identity for possible use in
4772 : : * skew optimization. (Note: in principle we could do skew optimization
4773 : : * with multiple join clauses, but we'd have to be able to determine the
4774 : : * most common combinations of outer values, which we don't currently have
4775 : : * enough stats for.)
4776 : : */
4777 [ + + ]: 3335 : if (list_length(hashclauses) == 1)
4778 : : {
4779 : 2965 : OpExpr *clause = (OpExpr *) linitial(hashclauses);
4780 : 2965 : Node *node;
4781 : :
4782 [ + - ]: 2965 : Assert(is_opclause(clause));
4783 : 2965 : node = (Node *) linitial(clause->args);
4784 [ + + ]: 2965 : if (IsA(node, RelabelType))
4785 : 89 : node = (Node *) ((RelabelType *) node)->arg;
4786 [ + + ]: 2965 : if (IsA(node, Var))
4787 : : {
4788 : 2362 : Var *var = (Var *) node;
4789 : 2362 : RangeTblEntry *rte;
4790 : :
4791 : 2362 : rte = root->simple_rte_array[var->varno];
4792 [ + + ]: 2362 : if (rte->rtekind == RTE_RELATION)
4793 : : {
4794 : 2238 : skewTable = rte->relid;
4795 : 2238 : skewColumn = var->varattno;
4796 : 2238 : skewInherit = rte->inh;
4797 : 2238 : }
4798 : 2362 : }
4799 : 2965 : }
4800 : :
4801 : : /*
4802 : : * Collect hash related information. The hashed expressions are
4803 : : * deconstructed into outer/inner expressions, so they can be computed
4804 : : * separately (inner expressions are used to build the hashtable via Hash,
4805 : : * outer expressions to perform lookups of tuples from HashJoin's outer
4806 : : * plan in the hashtable). Also collect operator information necessary to
4807 : : * build the hashtable.
4808 : : */
4809 [ + - + + : 7055 : foreach(lc, hashclauses)
+ + ]
4810 : : {
4811 : 3720 : OpExpr *hclause = lfirst_node(OpExpr, lc);
4812 : :
4813 : 3720 : hashoperators = lappend_oid(hashoperators, hclause->opno);
4814 : 3720 : hashcollations = lappend_oid(hashcollations, hclause->inputcollid);
4815 : 3720 : outer_hashkeys = lappend(outer_hashkeys, linitial(hclause->args));
4816 : 3720 : inner_hashkeys = lappend(inner_hashkeys, lsecond(hclause->args));
4817 : 3720 : }
4818 : :
4819 : : /*
4820 : : * Build the hash node and hash join node.
4821 : : */
4822 : 6670 : hash_plan = make_hash(inner_plan,
4823 : 3335 : inner_hashkeys,
4824 : 3335 : skewTable,
4825 : 3335 : skewColumn,
4826 : 3335 : skewInherit);
4827 : :
4828 : : /*
4829 : : * Set Hash node's startup & total costs equal to total cost of input
4830 : : * plan; this only affects EXPLAIN display not decisions.
4831 : : */
4832 : 3335 : copy_plan_costsize(&hash_plan->plan, inner_plan);
4833 : 3335 : hash_plan->plan.startup_cost = hash_plan->plan.total_cost;
4834 : :
4835 : : /*
4836 : : * If parallel-aware, the executor will also need an estimate of the total
4837 : : * number of rows expected from all participants so that it can size the
4838 : : * shared hash table.
4839 : : */
4840 [ + + ]: 3335 : if (best_path->jpath.path.parallel_aware)
4841 : : {
4842 : 40 : hash_plan->plan.parallel_aware = true;
4843 : 40 : hash_plan->rows_total = best_path->inner_rows_total;
4844 : 40 : }
4845 : :
4846 : 6670 : join_plan = make_hashjoin(tlist,
4847 : 3335 : joinclauses,
4848 : 3335 : otherclauses,
4849 : 3335 : hashclauses,
4850 : 3335 : hashoperators,
4851 : 3335 : hashcollations,
4852 : 3335 : outer_hashkeys,
4853 : 3335 : outer_plan,
4854 : 3335 : (Plan *) hash_plan,
4855 : 3335 : best_path->jpath.jointype,
4856 : 3335 : best_path->jpath.inner_unique);
4857 : :
4858 : 3335 : copy_generic_path_info(&join_plan->join.plan, &best_path->jpath.path);
4859 : :
4860 : 6670 : return join_plan;
4861 : 3335 : }
4862 : :
4863 : :
4864 : : /*****************************************************************************
4865 : : *
4866 : : * SUPPORTING ROUTINES
4867 : : *
4868 : : *****************************************************************************/
4869 : :
4870 : : /*
4871 : : * replace_nestloop_params
4872 : : * Replace outer-relation Vars and PlaceHolderVars in the given expression
4873 : : * with nestloop Params
4874 : : *
4875 : : * All Vars and PlaceHolderVars belonging to the relation(s) identified by
4876 : : * root->curOuterRels are replaced by Params, and entries are added to
4877 : : * root->curOuterParams if not already present.
4878 : : */
4879 : : static Node *
4880 : 32718 : replace_nestloop_params(PlannerInfo *root, Node *expr)
4881 : : {
4882 : : /* No setup needed for tree walk, so away we go */
4883 : 32718 : return replace_nestloop_params_mutator(expr, root);
4884 : : }
4885 : :
4886 : : static Node *
4887 : 119325 : replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
4888 : : {
4889 [ + + ]: 119325 : if (node == NULL)
4890 : 8657 : return NULL;
4891 [ + + ]: 110668 : if (IsA(node, Var))
4892 : : {
4893 : 34933 : Var *var = (Var *) node;
4894 : :
4895 : : /* Upper-level Vars should be long gone at this point */
4896 [ + - ]: 34933 : Assert(var->varlevelsup == 0);
4897 : : /* If not to be replaced, we can just return the Var unmodified */
4898 [ + + + + ]: 34933 : if (IS_SPECIAL_VARNO(var->varno) ||
4899 : 34931 : !bms_is_member(var->varno, root->curOuterRels))
4900 : 26339 : return node;
4901 : : /* Replace the Var with a nestloop Param */
4902 : 8594 : return (Node *) replace_nestloop_param_var(root, var);
4903 : 34933 : }
4904 [ + + ]: 75735 : if (IsA(node, PlaceHolderVar))
4905 : : {
4906 : 158 : PlaceHolderVar *phv = (PlaceHolderVar *) node;
4907 : :
4908 : : /* Upper-level PlaceHolderVars should be long gone at this point */
4909 [ + - ]: 158 : Assert(phv->phlevelsup == 0);
4910 : :
4911 : : /* Check whether we need to replace the PHV */
4912 [ + + + + ]: 316 : if (!bms_is_subset(find_placeholder_info(root, phv)->ph_eval_at,
4913 : 158 : root->curOuterRels))
4914 : : {
4915 : : /*
4916 : : * We can't replace the whole PHV, but we might still need to
4917 : : * replace Vars or PHVs within its expression, in case it ends up
4918 : : * actually getting evaluated here. (It might get evaluated in
4919 : : * this plan node, or some child node; in the latter case we don't
4920 : : * really need to process the expression here, but we haven't got
4921 : : * enough info to tell if that's the case.) Flat-copy the PHV
4922 : : * node and then recurse on its expression.
4923 : : *
4924 : : * Note that after doing this, we might have different
4925 : : * representations of the contents of the same PHV in different
4926 : : * parts of the plan tree. This is OK because equal() will just
4927 : : * match on phid/phlevelsup, so setrefs.c will still recognize an
4928 : : * upper-level reference to a lower-level copy of the same PHV.
4929 : : */
4930 : 104 : PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
4931 : :
4932 : 104 : memcpy(newphv, phv, sizeof(PlaceHolderVar));
4933 : 104 : newphv->phexpr = (Expr *)
4934 : 208 : replace_nestloop_params_mutator((Node *) phv->phexpr,
4935 : 104 : root);
4936 : 104 : return (Node *) newphv;
4937 : 104 : }
4938 : : /* Replace the PlaceHolderVar with a nestloop Param */
4939 : 54 : return (Node *) replace_nestloop_param_placeholdervar(root, phv);
4940 : 158 : }
4941 : 75577 : return expression_tree_mutator(node, replace_nestloop_params_mutator, root);
4942 : 119325 : }
4943 : :
4944 : : /*
4945 : : * fix_indexqual_references
4946 : : * Adjust indexqual clauses to the form the executor's indexqual
4947 : : * machinery needs.
4948 : : *
4949 : : * We have three tasks here:
4950 : : * * Select the actual qual clauses out of the input IndexClause list,
4951 : : * and remove RestrictInfo nodes from the qual clauses.
4952 : : * * Replace any outer-relation Var or PHV nodes with nestloop Params.
4953 : : * (XXX eventually, that responsibility should go elsewhere?)
4954 : : * * Index keys must be represented by Var nodes with varattno set to the
4955 : : * index's attribute number, not the attribute number in the original rel.
4956 : : *
4957 : : * *stripped_indexquals_p receives a list of the actual qual clauses.
4958 : : *
4959 : : * *fixed_indexquals_p receives a list of the adjusted quals. This is a copy
4960 : : * that shares no substructure with the original; this is needed in case there
4961 : : * are subplans in it (we need two separate copies of the subplan tree, or
4962 : : * things will go awry).
4963 : : */
4964 : : static void
4965 : 16254 : fix_indexqual_references(PlannerInfo *root, IndexPath *index_path,
4966 : : List **stripped_indexquals_p, List **fixed_indexquals_p)
4967 : : {
4968 : 16254 : IndexOptInfo *index = index_path->indexinfo;
4969 : 16254 : List *stripped_indexquals;
4970 : 16254 : List *fixed_indexquals;
4971 : 16254 : ListCell *lc;
4972 : :
4973 : 16254 : stripped_indexquals = fixed_indexquals = NIL;
4974 : :
4975 [ + + + + : 34616 : foreach(lc, index_path->indexclauses)
+ + ]
4976 : : {
4977 : 18362 : IndexClause *iclause = lfirst_node(IndexClause, lc);
4978 : 18362 : int indexcol = iclause->indexcol;
4979 : 18362 : ListCell *lc2;
4980 : :
4981 [ + - + + : 36885 : foreach(lc2, iclause->indexquals)
+ + ]
4982 : : {
4983 : 18523 : RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
4984 : 18523 : Node *clause = (Node *) rinfo->clause;
4985 : :
4986 : 18523 : stripped_indexquals = lappend(stripped_indexquals, clause);
4987 : 37046 : clause = fix_indexqual_clause(root, index, indexcol,
4988 : 18523 : clause, iclause->indexcols);
4989 : 18523 : fixed_indexquals = lappend(fixed_indexquals, clause);
4990 : 18523 : }
4991 : 18362 : }
4992 : :
4993 : 16254 : *stripped_indexquals_p = stripped_indexquals;
4994 : 16254 : *fixed_indexquals_p = fixed_indexquals;
4995 : 16254 : }
4996 : :
4997 : : /*
4998 : : * fix_indexorderby_references
4999 : : * Adjust indexorderby clauses to the form the executor's index
5000 : : * machinery needs.
5001 : : *
5002 : : * This is a simplified version of fix_indexqual_references. The input is
5003 : : * bare clauses and a separate indexcol list, instead of IndexClauses.
5004 : : */
5005 : : static List *
5006 : 16254 : fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
5007 : : {
5008 : 16254 : IndexOptInfo *index = index_path->indexinfo;
5009 : 16254 : List *fixed_indexorderbys;
5010 : 16254 : ListCell *lcc,
5011 : : *lci;
5012 : :
5013 : 16254 : fixed_indexorderbys = NIL;
5014 : :
5015 [ + + + + : 16304 : forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
+ + + + +
+ + + ]
5016 : : {
5017 : 50 : Node *clause = (Node *) lfirst(lcc);
5018 : 50 : int indexcol = lfirst_int(lci);
5019 : :
5020 : 50 : clause = fix_indexqual_clause(root, index, indexcol, clause, NIL);
5021 : 50 : fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
5022 : 50 : }
5023 : :
5024 : 32508 : return fixed_indexorderbys;
5025 : 16254 : }
5026 : :
5027 : : /*
5028 : : * fix_indexqual_clause
5029 : : * Convert a single indexqual clause to the form needed by the executor.
5030 : : *
5031 : : * We replace nestloop params here, and replace the index key variables
5032 : : * or expressions by index Var nodes.
5033 : : */
5034 : : static Node *
5035 : 18573 : fix_indexqual_clause(PlannerInfo *root, IndexOptInfo *index, int indexcol,
5036 : : Node *clause, List *indexcolnos)
5037 : : {
5038 : : /*
5039 : : * Replace any outer-relation variables with nestloop params.
5040 : : *
5041 : : * This also makes a copy of the clause, so it's safe to modify it
5042 : : * in-place below.
5043 : : */
5044 : 18573 : clause = replace_nestloop_params(root, clause);
5045 : :
5046 [ + + ]: 18573 : if (IsA(clause, OpExpr))
5047 : : {
5048 : 18130 : OpExpr *op = (OpExpr *) clause;
5049 : :
5050 : : /* Replace the indexkey expression with an index Var. */
5051 : 36260 : linitial(op->args) = fix_indexqual_operand(linitial(op->args),
5052 : 18130 : index,
5053 : 18130 : indexcol);
5054 : 18130 : }
5055 [ + + ]: 443 : else if (IsA(clause, RowCompareExpr))
5056 : : {
5057 : 28 : RowCompareExpr *rc = (RowCompareExpr *) clause;
5058 : 28 : ListCell *lca,
5059 : : *lcai;
5060 : :
5061 : : /* Replace the indexkey expressions with index Vars. */
5062 [ + - ]: 28 : Assert(list_length(rc->largs) == list_length(indexcolnos));
5063 [ + - + + : 84 : forboth(lca, rc->largs, lcai, indexcolnos)
+ - + + +
+ + + ]
5064 : : {
5065 : 112 : lfirst(lca) = fix_indexqual_operand(lfirst(lca),
5066 : 56 : index,
5067 : 56 : lfirst_int(lcai));
5068 : 56 : }
5069 : 28 : }
5070 [ + + ]: 415 : else if (IsA(clause, ScalarArrayOpExpr))
5071 : : {
5072 : 267 : ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
5073 : :
5074 : : /* Replace the indexkey expression with an index Var. */
5075 : 534 : linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
5076 : 267 : index,
5077 : 267 : indexcol);
5078 : 267 : }
5079 [ + - ]: 148 : else if (IsA(clause, NullTest))
5080 : : {
5081 : 148 : NullTest *nt = (NullTest *) clause;
5082 : :
5083 : : /* Replace the indexkey expression with an index Var. */
5084 : 296 : nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
5085 : 148 : index,
5086 : 148 : indexcol);
5087 : 148 : }
5088 : : else
5089 [ # # # # ]: 0 : elog(ERROR, "unsupported indexqual type: %d",
5090 : : (int) nodeTag(clause));
5091 : :
5092 : 18573 : return clause;
5093 : : }
5094 : :
5095 : : /*
5096 : : * fix_indexqual_operand
5097 : : * Convert an indexqual expression to a Var referencing the index column.
5098 : : *
5099 : : * We represent index keys by Var nodes having varno == INDEX_VAR and varattno
5100 : : * equal to the index's attribute number (index column position).
5101 : : *
5102 : : * Most of the code here is just for sanity cross-checking that the given
5103 : : * expression actually matches the index column it's claimed to. It should
5104 : : * match the logic in match_index_to_operand().
5105 : : */
5106 : : static Node *
5107 : 18601 : fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
5108 : : {
5109 : 18601 : Var *result;
5110 : 18601 : int pos;
5111 : 18601 : ListCell *indexpr_item;
5112 : :
5113 [ + - ]: 18601 : Assert(indexcol >= 0 && indexcol < index->ncolumns);
5114 : :
5115 : : /*
5116 : : * Remove any PlaceHolderVar wrapping of the indexkey
5117 : : */
5118 : 18601 : node = strip_phvs_in_index_operand(node);
5119 : :
5120 : : /*
5121 : : * Remove any binary-compatible relabeling of the indexkey
5122 : : */
5123 [ + + ]: 18726 : while (IsA(node, RelabelType))
5124 : 125 : node = (Node *) ((RelabelType *) node)->arg;
5125 : :
5126 [ + + ]: 18601 : if (index->indexkeys[indexcol] != 0)
5127 : : {
5128 : : /* It's a simple index column */
5129 [ + - ]: 18540 : if (IsA(node, Var) &&
5130 : 18540 : ((Var *) node)->varno == index->rel->relid &&
5131 : 18540 : ((Var *) node)->varattno == index->indexkeys[indexcol])
5132 : : {
5133 : 18540 : result = (Var *) copyObject(node);
5134 : 18540 : result->varno = INDEX_VAR;
5135 : 18540 : result->varattno = indexcol + 1;
5136 : 18540 : return (Node *) result;
5137 : : }
5138 : : else
5139 [ # # # # ]: 0 : elog(ERROR, "index key does not match expected index column");
5140 : 0 : }
5141 : :
5142 : : /* It's an index expression, so find and cross-check the expression */
5143 : 61 : indexpr_item = list_head(index->indexprs);
5144 [ + - ]: 61 : for (pos = 0; pos < index->ncolumns; pos++)
5145 : : {
5146 [ - + ]: 61 : if (index->indexkeys[pos] == 0)
5147 : : {
5148 [ + - ]: 61 : if (indexpr_item == NULL)
5149 [ # # # # ]: 0 : elog(ERROR, "too few entries in indexprs list");
5150 [ - + ]: 61 : if (pos == indexcol)
5151 : : {
5152 : 61 : Node *indexkey;
5153 : :
5154 : 61 : indexkey = (Node *) lfirst(indexpr_item);
5155 [ + - + - ]: 61 : if (indexkey && IsA(indexkey, RelabelType))
5156 : 0 : indexkey = (Node *) ((RelabelType *) indexkey)->arg;
5157 [ + - ]: 61 : if (equal(node, indexkey))
5158 : : {
5159 : 122 : result = makeVar(INDEX_VAR, indexcol + 1,
5160 : 61 : exprType(lfirst(indexpr_item)), -1,
5161 : 61 : exprCollation(lfirst(indexpr_item)),
5162 : : 0);
5163 : 61 : return (Node *) result;
5164 : : }
5165 : : else
5166 [ # # # # ]: 0 : elog(ERROR, "index key does not match expected index column");
5167 [ + - ]: 61 : }
5168 : 0 : indexpr_item = lnext(index->indexprs, indexpr_item);
5169 : 0 : }
5170 : 0 : }
5171 : :
5172 : : /* Oops... */
5173 [ # # # # ]: 0 : elog(ERROR, "index key does not match expected index column");
5174 : 0 : return NULL; /* keep compiler quiet */
5175 : 18601 : }
5176 : :
5177 : : /*
5178 : : * get_switched_clauses
5179 : : * Given a list of merge or hash joinclauses (as RestrictInfo nodes),
5180 : : * extract the bare clauses, and rearrange the elements within the
5181 : : * clauses, if needed, so the outer join variable is on the left and
5182 : : * the inner is on the right. The original clause data structure is not
5183 : : * touched; a modified list is returned. We do, however, set the transient
5184 : : * outer_is_left field in each RestrictInfo to show which side was which.
5185 : : */
5186 : : static List *
5187 : 3843 : get_switched_clauses(List *clauses, Relids outerrelids)
5188 : : {
5189 : 3843 : List *t_list = NIL;
5190 : 3843 : ListCell *l;
5191 : :
5192 [ + + + + : 8150 : foreach(l, clauses)
+ + ]
5193 : : {
5194 : 4307 : RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
5195 : 4307 : OpExpr *clause = (OpExpr *) restrictinfo->clause;
5196 : :
5197 [ - + ]: 4307 : Assert(is_opclause(clause));
5198 [ + + ]: 4307 : if (bms_is_subset(restrictinfo->right_relids, outerrelids))
5199 : : {
5200 : : /*
5201 : : * Duplicate just enough of the structure to allow commuting the
5202 : : * clause without changing the original list. Could use
5203 : : * copyObject, but a complete deep copy is overkill.
5204 : : */
5205 : 1939 : OpExpr *temp = makeNode(OpExpr);
5206 : :
5207 : 1939 : temp->opno = clause->opno;
5208 : 1939 : temp->opfuncid = InvalidOid;
5209 : 1939 : temp->opresulttype = clause->opresulttype;
5210 : 1939 : temp->opretset = clause->opretset;
5211 : 1939 : temp->opcollid = clause->opcollid;
5212 : 1939 : temp->inputcollid = clause->inputcollid;
5213 : 1939 : temp->args = list_copy(clause->args);
5214 : 1939 : temp->location = clause->location;
5215 : : /* Commute it --- note this modifies the temp node in-place. */
5216 : 1939 : CommuteOpExpr(temp);
5217 : 1939 : t_list = lappend(t_list, temp);
5218 : 1939 : restrictinfo->outer_is_left = false;
5219 : 1939 : }
5220 : : else
5221 : : {
5222 [ - + ]: 2368 : Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
5223 : 2368 : t_list = lappend(t_list, clause);
5224 : 2368 : restrictinfo->outer_is_left = true;
5225 : : }
5226 : 4307 : }
5227 : 7686 : return t_list;
5228 : 3843 : }
5229 : :
5230 : : /*
5231 : : * order_qual_clauses
5232 : : * Given a list of qual clauses that will all be evaluated at the same
5233 : : * plan node, sort the list into the order we want to check the quals
5234 : : * in at runtime.
5235 : : *
5236 : : * When security barrier quals are used in the query, we may have quals with
5237 : : * different security levels in the list. Quals of lower security_level
5238 : : * must go before quals of higher security_level, except that we can grant
5239 : : * exceptions to move up quals that are leakproof. When security level
5240 : : * doesn't force the decision, we prefer to order clauses by estimated
5241 : : * execution cost, cheapest first.
5242 : : *
5243 : : * Ideally the order should be driven by a combination of execution cost and
5244 : : * selectivity, but it's not immediately clear how to account for both,
5245 : : * and given the uncertainty of the estimates the reliability of the decisions
5246 : : * would be doubtful anyway. So we just order by security level then
5247 : : * estimated per-tuple cost, being careful not to change the order when
5248 : : * (as is often the case) the estimates are identical.
5249 : : *
5250 : : * Although this will work on either bare clauses or RestrictInfos, it's
5251 : : * much faster to apply it to RestrictInfos, since it can re-use cost
5252 : : * information that is cached in RestrictInfos. XXX in the bare-clause
5253 : : * case, we are also not able to apply security considerations. That is
5254 : : * all right for the moment, because the bare-clause case doesn't occur
5255 : : * anywhere that barrier quals could be present, but it would be better to
5256 : : * get rid of it.
5257 : : *
5258 : : * Note: some callers pass lists that contain entries that will later be
5259 : : * removed; this is the easiest way to let this routine see RestrictInfos
5260 : : * instead of bare clauses. This is another reason why trying to consider
5261 : : * selectivity in the ordering would likely do the wrong thing.
5262 : : */
5263 : : static List *
5264 : 94241 : order_qual_clauses(PlannerInfo *root, List *clauses)
5265 : : {
5266 : : typedef struct
5267 : : {
5268 : : Node *clause;
5269 : : Cost cost;
5270 : : Index security_level;
5271 : : } QualItem;
5272 : 94241 : int nitems = list_length(clauses);
5273 : 94241 : QualItem *items;
5274 : 94241 : ListCell *lc;
5275 : 94241 : int i;
5276 : 94241 : List *result;
5277 : :
5278 : : /* No need to work hard for 0 or 1 clause */
5279 [ + + ]: 94241 : if (nitems <= 1)
5280 : 86588 : return clauses;
5281 : :
5282 : : /*
5283 : : * Collect the items and costs into an array. This is to avoid repeated
5284 : : * cost_qual_eval work if the inputs aren't RestrictInfos.
5285 : : */
5286 : 7653 : items = (QualItem *) palloc(nitems * sizeof(QualItem));
5287 : 7653 : i = 0;
5288 [ + - + + : 24617 : foreach(lc, clauses)
+ + ]
5289 : : {
5290 : 16964 : Node *clause = (Node *) lfirst(lc);
5291 : 16964 : QualCost qcost;
5292 : :
5293 : 16964 : cost_qual_eval_node(&qcost, clause, root);
5294 : 16964 : items[i].clause = clause;
5295 : 16964 : items[i].cost = qcost.per_tuple;
5296 [ + + ]: 16964 : if (IsA(clause, RestrictInfo))
5297 : : {
5298 : 16952 : RestrictInfo *rinfo = (RestrictInfo *) clause;
5299 : :
5300 : : /*
5301 : : * If a clause is leakproof, it doesn't have to be constrained by
5302 : : * its nominal security level. If it's also reasonably cheap
5303 : : * (here defined as 10X cpu_operator_cost), pretend it has
5304 : : * security_level 0, which will allow it to go in front of
5305 : : * more-expensive quals of lower security levels. Of course, that
5306 : : * will also force it to go in front of cheaper quals of its own
5307 : : * security level, which is not so great, but we can alleviate
5308 : : * that risk by applying the cost limit cutoff.
5309 : : */
5310 [ + + + + ]: 16952 : if (rinfo->leakproof && items[i].cost < 10 * cpu_operator_cost)
5311 : 201 : items[i].security_level = 0;
5312 : : else
5313 : 16751 : items[i].security_level = rinfo->security_level;
5314 : 16952 : }
5315 : : else
5316 : 12 : items[i].security_level = 0;
5317 : 16964 : i++;
5318 : 16964 : }
5319 : :
5320 : : /*
5321 : : * Sort. We don't use qsort() because it's not guaranteed stable for
5322 : : * equal keys. The expected number of entries is small enough that a
5323 : : * simple insertion sort should be good enough.
5324 : : */
5325 [ + + ]: 16964 : for (i = 1; i < nitems; i++)
5326 : : {
5327 : 9311 : QualItem newitem = items[i];
5328 : 9311 : int j;
5329 : :
5330 : : /* insert newitem into the already-sorted subarray */
5331 [ + + ]: 10654 : for (j = i; j > 0; j--)
5332 : : {
5333 : 9631 : QualItem *olditem = &items[j - 1];
5334 : :
5335 [ + + + + ]: 18875 : if (newitem.security_level > olditem->security_level ||
5336 [ + + ]: 9482 : (newitem.security_level == olditem->security_level &&
5337 : 9244 : newitem.cost >= olditem->cost))
5338 : 8288 : break;
5339 : 1343 : items[j] = *olditem;
5340 [ - + + ]: 9631 : }
5341 : 9311 : items[j] = newitem;
5342 : 9311 : }
5343 : :
5344 : : /* Convert back to a list */
5345 : 7653 : result = NIL;
5346 [ + + ]: 24617 : for (i = 0; i < nitems; i++)
5347 : 16964 : result = lappend(result, items[i].clause);
5348 : :
5349 : 7653 : return result;
5350 : 94241 : }
5351 : :
5352 : : /*
5353 : : * Copy cost and size info from a Path node to the Plan node created from it.
5354 : : * The executor usually won't use this info, but it's needed by EXPLAIN.
5355 : : * Also copy the parallel-related flags, which the executor *will* use.
5356 : : */
5357 : : static void
5358 : 115259 : copy_generic_path_info(Plan *dest, Path *src)
5359 : : {
5360 : 115259 : dest->disabled_nodes = src->disabled_nodes;
5361 : 115259 : dest->startup_cost = src->startup_cost;
5362 : 115259 : dest->total_cost = src->total_cost;
5363 : 115259 : dest->plan_rows = src->rows;
5364 : 115259 : dest->plan_width = src->pathtarget->width;
5365 : 115259 : dest->parallel_aware = src->parallel_aware;
5366 : 115259 : dest->parallel_safe = src->parallel_safe;
5367 : 115259 : }
5368 : :
5369 : : /*
5370 : : * Copy cost and size info from a lower plan node to an inserted node.
5371 : : * (Most callers alter the info after copying it.)
5372 : : */
5373 : : static void
5374 : 5020 : copy_plan_costsize(Plan *dest, Plan *src)
5375 : : {
5376 : 5020 : dest->disabled_nodes = src->disabled_nodes;
5377 : 5020 : dest->startup_cost = src->startup_cost;
5378 : 5020 : dest->total_cost = src->total_cost;
5379 : 5020 : dest->plan_rows = src->plan_rows;
5380 : 5020 : dest->plan_width = src->plan_width;
5381 : : /* Assume the inserted node is not parallel-aware. */
5382 : 5020 : dest->parallel_aware = false;
5383 : : /* Assume the inserted node is parallel-safe, if child plan is. */
5384 : 5020 : dest->parallel_safe = src->parallel_safe;
5385 : 5020 : }
5386 : :
5387 : : /*
5388 : : * Some places in this file build Sort nodes that don't have a directly
5389 : : * corresponding Path node. The cost of the sort is, or should have been,
5390 : : * included in the cost of the Path node we're working from, but since it's
5391 : : * not split out, we have to re-figure it using cost_sort(). This is just
5392 : : * to label the Sort node nicely for EXPLAIN.
5393 : : *
5394 : : * limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
5395 : : */
5396 : : static void
5397 : 787 : label_sort_with_costsize(PlannerInfo *root, Sort *plan, double limit_tuples)
5398 : : {
5399 : 787 : Plan *lefttree = plan->plan.lefttree;
5400 : 787 : Path sort_path; /* dummy for result of cost_sort */
5401 : :
5402 [ + - ]: 787 : Assert(IsA(plan, Sort));
5403 : :
5404 : 1574 : cost_sort(&sort_path, root, NIL,
5405 : 787 : plan->plan.disabled_nodes,
5406 : 787 : lefttree->total_cost,
5407 : 787 : lefttree->plan_rows,
5408 : 787 : lefttree->plan_width,
5409 : : 0.0,
5410 : 787 : work_mem,
5411 : 787 : limit_tuples);
5412 : 787 : plan->plan.startup_cost = sort_path.startup_cost;
5413 : 787 : plan->plan.total_cost = sort_path.total_cost;
5414 : 787 : plan->plan.plan_rows = lefttree->plan_rows;
5415 : 787 : plan->plan.plan_width = lefttree->plan_width;
5416 : 787 : plan->plan.parallel_aware = false;
5417 : 787 : plan->plan.parallel_safe = lefttree->parallel_safe;
5418 : 787 : }
5419 : :
5420 : : /*
5421 : : * Same as label_sort_with_costsize, but labels the IncrementalSort node
5422 : : * instead.
5423 : : */
5424 : : static void
5425 : 6 : label_incrementalsort_with_costsize(PlannerInfo *root, IncrementalSort *plan,
5426 : : List *pathkeys, double limit_tuples)
5427 : : {
5428 : 6 : Plan *lefttree = plan->sort.plan.lefttree;
5429 : 6 : Path sort_path; /* dummy for result of cost_incremental_sort */
5430 : :
5431 [ + - ]: 6 : Assert(IsA(plan, IncrementalSort));
5432 : :
5433 : 12 : cost_incremental_sort(&sort_path, root, pathkeys,
5434 : 6 : plan->nPresortedCols,
5435 : 6 : plan->sort.plan.disabled_nodes,
5436 : 6 : lefttree->startup_cost,
5437 : 6 : lefttree->total_cost,
5438 : 6 : lefttree->plan_rows,
5439 : 6 : lefttree->plan_width,
5440 : : 0.0,
5441 : 6 : work_mem,
5442 : 6 : limit_tuples);
5443 : 6 : plan->sort.plan.startup_cost = sort_path.startup_cost;
5444 : 6 : plan->sort.plan.total_cost = sort_path.total_cost;
5445 : 6 : plan->sort.plan.plan_rows = lefttree->plan_rows;
5446 : 6 : plan->sort.plan.plan_width = lefttree->plan_width;
5447 : 6 : plan->sort.plan.parallel_aware = false;
5448 : 6 : plan->sort.plan.parallel_safe = lefttree->parallel_safe;
5449 : 6 : }
5450 : :
5451 : : /*
5452 : : * bitmap_subplan_mark_shared
5453 : : * Set isshared flag in bitmap subplan so that it will be created in
5454 : : * shared memory.
5455 : : */
5456 : : static void
5457 : 5 : bitmap_subplan_mark_shared(Plan *plan)
5458 : : {
5459 [ - + ]: 5 : if (IsA(plan, BitmapAnd))
5460 : 0 : bitmap_subplan_mark_shared(linitial(((BitmapAnd *) plan)->bitmapplans));
5461 [ - + ]: 5 : else if (IsA(plan, BitmapOr))
5462 : : {
5463 : 0 : ((BitmapOr *) plan)->isshared = true;
5464 : 0 : bitmap_subplan_mark_shared(linitial(((BitmapOr *) plan)->bitmapplans));
5465 : 0 : }
5466 [ + - ]: 5 : else if (IsA(plan, BitmapIndexScan))
5467 : 5 : ((BitmapIndexScan *) plan)->isshared = true;
5468 : : else
5469 [ # # # # ]: 0 : elog(ERROR, "unrecognized node type: %d", nodeTag(plan));
5470 : 5 : }
5471 : :
5472 : : /*****************************************************************************
5473 : : *
5474 : : * PLAN NODE BUILDING ROUTINES
5475 : : *
5476 : : * In general, these functions are not passed the original Path and therefore
5477 : : * leave it to the caller to fill in the cost/width fields from the Path,
5478 : : * typically by calling copy_generic_path_info(). This convention is
5479 : : * somewhat historical, but it does support a few places above where we build
5480 : : * a plan node without having an exactly corresponding Path node. Under no
5481 : : * circumstances should one of these functions do its own cost calculations,
5482 : : * as that would be redundant with calculations done while building Paths.
5483 : : *
5484 : : *****************************************************************************/
5485 : :
5486 : : static SeqScan *
5487 : 26168 : make_seqscan(List *qptlist,
5488 : : List *qpqual,
5489 : : Index scanrelid)
5490 : : {
5491 : 26168 : SeqScan *node = makeNode(SeqScan);
5492 : 26168 : Plan *plan = &node->scan.plan;
5493 : :
5494 : 26168 : plan->targetlist = qptlist;
5495 : 26168 : plan->qual = qpqual;
5496 : 26168 : plan->lefttree = NULL;
5497 : 26168 : plan->righttree = NULL;
5498 : 26168 : node->scan.scanrelid = scanrelid;
5499 : :
5500 : 52336 : return node;
5501 : 26168 : }
5502 : :
5503 : : static SampleScan *
5504 : 45 : make_samplescan(List *qptlist,
5505 : : List *qpqual,
5506 : : Index scanrelid,
5507 : : TableSampleClause *tsc)
5508 : : {
5509 : 45 : SampleScan *node = makeNode(SampleScan);
5510 : 45 : Plan *plan = &node->scan.plan;
5511 : :
5512 : 45 : plan->targetlist = qptlist;
5513 : 45 : plan->qual = qpqual;
5514 : 45 : plan->lefttree = NULL;
5515 : 45 : plan->righttree = NULL;
5516 : 45 : node->scan.scanrelid = scanrelid;
5517 : 45 : node->tablesample = tsc;
5518 : :
5519 : 90 : return node;
5520 : 45 : }
5521 : :
5522 : : static IndexScan *
5523 : 14409 : make_indexscan(List *qptlist,
5524 : : List *qpqual,
5525 : : Index scanrelid,
5526 : : Oid indexid,
5527 : : List *indexqual,
5528 : : List *indexqualorig,
5529 : : List *indexorderby,
5530 : : List *indexorderbyorig,
5531 : : List *indexorderbyops,
5532 : : ScanDirection indexscandir)
5533 : : {
5534 : 14409 : IndexScan *node = makeNode(IndexScan);
5535 : 14409 : Plan *plan = &node->scan.plan;
5536 : :
5537 : 14409 : plan->targetlist = qptlist;
5538 : 14409 : plan->qual = qpqual;
5539 : 14409 : plan->lefttree = NULL;
5540 : 14409 : plan->righttree = NULL;
5541 : 14409 : node->scan.scanrelid = scanrelid;
5542 : 14409 : node->indexid = indexid;
5543 : 14409 : node->indexqual = indexqual;
5544 : 14409 : node->indexqualorig = indexqualorig;
5545 : 14409 : node->indexorderby = indexorderby;
5546 : 14409 : node->indexorderbyorig = indexorderbyorig;
5547 : 14409 : node->indexorderbyops = indexorderbyops;
5548 : 14409 : node->indexorderdir = indexscandir;
5549 : :
5550 : 28818 : return node;
5551 : 14409 : }
5552 : :
5553 : : static IndexOnlyScan *
5554 : 1845 : make_indexonlyscan(List *qptlist,
5555 : : List *qpqual,
5556 : : Index scanrelid,
5557 : : Oid indexid,
5558 : : List *indexqual,
5559 : : List *recheckqual,
5560 : : List *indexorderby,
5561 : : List *indextlist,
5562 : : ScanDirection indexscandir)
5563 : : {
5564 : 1845 : IndexOnlyScan *node = makeNode(IndexOnlyScan);
5565 : 1845 : Plan *plan = &node->scan.plan;
5566 : :
5567 : 1845 : plan->targetlist = qptlist;
5568 : 1845 : plan->qual = qpqual;
5569 : 1845 : plan->lefttree = NULL;
5570 : 1845 : plan->righttree = NULL;
5571 : 1845 : node->scan.scanrelid = scanrelid;
5572 : 1845 : node->indexid = indexid;
5573 : 1845 : node->indexqual = indexqual;
5574 : 1845 : node->recheckqual = recheckqual;
5575 : 1845 : node->indexorderby = indexorderby;
5576 : 1845 : node->indextlist = indextlist;
5577 : 1845 : node->indexorderdir = indexscandir;
5578 : :
5579 : 3690 : return node;
5580 : 1845 : }
5581 : :
5582 : : static BitmapIndexScan *
5583 : 2717 : make_bitmap_indexscan(Index scanrelid,
5584 : : Oid indexid,
5585 : : List *indexqual,
5586 : : List *indexqualorig)
5587 : : {
5588 : 2717 : BitmapIndexScan *node = makeNode(BitmapIndexScan);
5589 : 2717 : Plan *plan = &node->scan.plan;
5590 : :
5591 : 2717 : plan->targetlist = NIL; /* not used */
5592 : 2717 : plan->qual = NIL; /* not used */
5593 : 2717 : plan->lefttree = NULL;
5594 : 2717 : plan->righttree = NULL;
5595 : 2717 : node->scan.scanrelid = scanrelid;
5596 : 2717 : node->indexid = indexid;
5597 : 2717 : node->indexqual = indexqual;
5598 : 2717 : node->indexqualorig = indexqualorig;
5599 : :
5600 : 5434 : return node;
5601 : 2717 : }
5602 : :
5603 : : static BitmapHeapScan *
5604 : 2666 : make_bitmap_heapscan(List *qptlist,
5605 : : List *qpqual,
5606 : : Plan *lefttree,
5607 : : List *bitmapqualorig,
5608 : : Index scanrelid)
5609 : : {
5610 : 2666 : BitmapHeapScan *node = makeNode(BitmapHeapScan);
5611 : 2666 : Plan *plan = &node->scan.plan;
5612 : :
5613 : 2666 : plan->targetlist = qptlist;
5614 : 2666 : plan->qual = qpqual;
5615 : 2666 : plan->lefttree = lefttree;
5616 : 2666 : plan->righttree = NULL;
5617 : 2666 : node->scan.scanrelid = scanrelid;
5618 : 2666 : node->bitmapqualorig = bitmapqualorig;
5619 : :
5620 : 5332 : return node;
5621 : 2666 : }
5622 : :
5623 : : static TidScan *
5624 : 87 : make_tidscan(List *qptlist,
5625 : : List *qpqual,
5626 : : Index scanrelid,
5627 : : List *tidquals)
5628 : : {
5629 : 87 : TidScan *node = makeNode(TidScan);
5630 : 87 : Plan *plan = &node->scan.plan;
5631 : :
5632 : 87 : plan->targetlist = qptlist;
5633 : 87 : plan->qual = qpqual;
5634 : 87 : plan->lefttree = NULL;
5635 : 87 : plan->righttree = NULL;
5636 : 87 : node->scan.scanrelid = scanrelid;
5637 : 87 : node->tidquals = tidquals;
5638 : :
5639 : 174 : return node;
5640 : 87 : }
5641 : :
5642 : : static TidRangeScan *
5643 : 334 : make_tidrangescan(List *qptlist,
5644 : : List *qpqual,
5645 : : Index scanrelid,
5646 : : List *tidrangequals)
5647 : : {
5648 : 334 : TidRangeScan *node = makeNode(TidRangeScan);
5649 : 334 : Plan *plan = &node->scan.plan;
5650 : :
5651 : 334 : plan->targetlist = qptlist;
5652 : 334 : plan->qual = qpqual;
5653 : 334 : plan->lefttree = NULL;
5654 : 334 : plan->righttree = NULL;
5655 : 334 : node->scan.scanrelid = scanrelid;
5656 : 334 : node->tidrangequals = tidrangequals;
5657 : :
5658 : 668 : return node;
5659 : 334 : }
5660 : :
5661 : : static SubqueryScan *
5662 : 3572 : make_subqueryscan(List *qptlist,
5663 : : List *qpqual,
5664 : : Index scanrelid,
5665 : : Plan *subplan)
5666 : : {
5667 : 3572 : SubqueryScan *node = makeNode(SubqueryScan);
5668 : 3572 : Plan *plan = &node->scan.plan;
5669 : :
5670 : 3572 : plan->targetlist = qptlist;
5671 : 3572 : plan->qual = qpqual;
5672 : 3572 : plan->lefttree = NULL;
5673 : 3572 : plan->righttree = NULL;
5674 : 3572 : node->scan.scanrelid = scanrelid;
5675 : 3572 : node->subplan = subplan;
5676 : 3572 : node->scanstatus = SUBQUERY_SCAN_UNKNOWN;
5677 : :
5678 : 7144 : return node;
5679 : 3572 : }
5680 : :
5681 : : static FunctionScan *
5682 : 3642 : make_functionscan(List *qptlist,
5683 : : List *qpqual,
5684 : : Index scanrelid,
5685 : : List *functions,
5686 : : bool funcordinality)
5687 : : {
5688 : 3642 : FunctionScan *node = makeNode(FunctionScan);
5689 : 3642 : Plan *plan = &node->scan.plan;
5690 : :
5691 : 3642 : plan->targetlist = qptlist;
5692 : 3642 : plan->qual = qpqual;
5693 : 3642 : plan->lefttree = NULL;
5694 : 3642 : plan->righttree = NULL;
5695 : 3642 : node->scan.scanrelid = scanrelid;
5696 : 3642 : node->functions = functions;
5697 : 3642 : node->funcordinality = funcordinality;
5698 : :
5699 : 7284 : return node;
5700 : 3642 : }
5701 : :
5702 : : static TableFuncScan *
5703 : 103 : make_tablefuncscan(List *qptlist,
5704 : : List *qpqual,
5705 : : Index scanrelid,
5706 : : TableFunc *tablefunc)
5707 : : {
5708 : 103 : TableFuncScan *node = makeNode(TableFuncScan);
5709 : 103 : Plan *plan = &node->scan.plan;
5710 : :
5711 : 103 : plan->targetlist = qptlist;
5712 : 103 : plan->qual = qpqual;
5713 : 103 : plan->lefttree = NULL;
5714 : 103 : plan->righttree = NULL;
5715 : 103 : node->scan.scanrelid = scanrelid;
5716 : 103 : node->tablefunc = tablefunc;
5717 : :
5718 : 206 : return node;
5719 : 103 : }
5720 : :
5721 : : static ValuesScan *
5722 : 1114 : make_valuesscan(List *qptlist,
5723 : : List *qpqual,
5724 : : Index scanrelid,
5725 : : List *values_lists)
5726 : : {
5727 : 1114 : ValuesScan *node = makeNode(ValuesScan);
5728 : 1114 : Plan *plan = &node->scan.plan;
5729 : :
5730 : 1114 : plan->targetlist = qptlist;
5731 : 1114 : plan->qual = qpqual;
5732 : 1114 : plan->lefttree = NULL;
5733 : 1114 : plan->righttree = NULL;
5734 : 1114 : node->scan.scanrelid = scanrelid;
5735 : 1114 : node->values_lists = values_lists;
5736 : :
5737 : 2228 : return node;
5738 : 1114 : }
5739 : :
5740 : : static CteScan *
5741 : 212 : make_ctescan(List *qptlist,
5742 : : List *qpqual,
5743 : : Index scanrelid,
5744 : : int ctePlanId,
5745 : : int cteParam)
5746 : : {
5747 : 212 : CteScan *node = makeNode(CteScan);
5748 : 212 : Plan *plan = &node->scan.plan;
5749 : :
5750 : 212 : plan->targetlist = qptlist;
5751 : 212 : plan->qual = qpqual;
5752 : 212 : plan->lefttree = NULL;
5753 : 212 : plan->righttree = NULL;
5754 : 212 : node->scan.scanrelid = scanrelid;
5755 : 212 : node->ctePlanId = ctePlanId;
5756 : 212 : node->cteParam = cteParam;
5757 : :
5758 : 424 : return node;
5759 : 212 : }
5760 : :
5761 : : static NamedTuplestoreScan *
5762 : 77 : make_namedtuplestorescan(List *qptlist,
5763 : : List *qpqual,
5764 : : Index scanrelid,
5765 : : char *enrname)
5766 : : {
5767 : 77 : NamedTuplestoreScan *node = makeNode(NamedTuplestoreScan);
5768 : 77 : Plan *plan = &node->scan.plan;
5769 : :
5770 : : /* cost should be inserted by caller */
5771 : 77 : plan->targetlist = qptlist;
5772 : 77 : plan->qual = qpqual;
5773 : 77 : plan->lefttree = NULL;
5774 : 77 : plan->righttree = NULL;
5775 : 77 : node->scan.scanrelid = scanrelid;
5776 : 77 : node->enrname = enrname;
5777 : :
5778 : 154 : return node;
5779 : 77 : }
5780 : :
5781 : : static WorkTableScan *
5782 : 73 : make_worktablescan(List *qptlist,
5783 : : List *qpqual,
5784 : : Index scanrelid,
5785 : : int wtParam)
5786 : : {
5787 : 73 : WorkTableScan *node = makeNode(WorkTableScan);
5788 : 73 : Plan *plan = &node->scan.plan;
5789 : :
5790 : 73 : plan->targetlist = qptlist;
5791 : 73 : plan->qual = qpqual;
5792 : 73 : plan->lefttree = NULL;
5793 : 73 : plan->righttree = NULL;
5794 : 73 : node->scan.scanrelid = scanrelid;
5795 : 73 : node->wtParam = wtParam;
5796 : :
5797 : 146 : return node;
5798 : 73 : }
5799 : :
5800 : : ForeignScan *
5801 : 0 : make_foreignscan(List *qptlist,
5802 : : List *qpqual,
5803 : : Index scanrelid,
5804 : : List *fdw_exprs,
5805 : : List *fdw_private,
5806 : : List *fdw_scan_tlist,
5807 : : List *fdw_recheck_quals,
5808 : : Plan *outer_plan)
5809 : : {
5810 : 0 : ForeignScan *node = makeNode(ForeignScan);
5811 : 0 : Plan *plan = &node->scan.plan;
5812 : :
5813 : : /* cost will be filled in by create_foreignscan_plan */
5814 : 0 : plan->targetlist = qptlist;
5815 : 0 : plan->qual = qpqual;
5816 : 0 : plan->lefttree = outer_plan;
5817 : 0 : plan->righttree = NULL;
5818 : 0 : node->scan.scanrelid = scanrelid;
5819 : :
5820 : : /* these may be overridden by the FDW's PlanDirectModify callback. */
5821 : 0 : node->operation = CMD_SELECT;
5822 : 0 : node->resultRelation = 0;
5823 : :
5824 : : /* checkAsUser, fs_server will be filled in by create_foreignscan_plan */
5825 : 0 : node->checkAsUser = InvalidOid;
5826 : 0 : node->fs_server = InvalidOid;
5827 : 0 : node->fdw_exprs = fdw_exprs;
5828 : 0 : node->fdw_private = fdw_private;
5829 : 0 : node->fdw_scan_tlist = fdw_scan_tlist;
5830 : 0 : node->fdw_recheck_quals = fdw_recheck_quals;
5831 : : /* fs_relids, fs_base_relids will be filled by create_foreignscan_plan */
5832 : 0 : node->fs_relids = NULL;
5833 : 0 : node->fs_base_relids = NULL;
5834 : : /* fsSystemCol will be filled in by create_foreignscan_plan */
5835 : 0 : node->fsSystemCol = false;
5836 : :
5837 : 0 : return node;
5838 : 0 : }
5839 : :
5840 : : static RecursiveUnion *
5841 : 73 : make_recursive_union(List *tlist,
5842 : : Plan *lefttree,
5843 : : Plan *righttree,
5844 : : int wtParam,
5845 : : List *distinctList,
5846 : : Cardinality numGroups)
5847 : : {
5848 : 73 : RecursiveUnion *node = makeNode(RecursiveUnion);
5849 : 73 : Plan *plan = &node->plan;
5850 : 73 : int numCols = list_length(distinctList);
5851 : :
5852 : 73 : plan->targetlist = tlist;
5853 : 73 : plan->qual = NIL;
5854 : 73 : plan->lefttree = lefttree;
5855 : 73 : plan->righttree = righttree;
5856 : 73 : node->wtParam = wtParam;
5857 : :
5858 : : /*
5859 : : * convert SortGroupClause list into arrays of attr indexes and equality
5860 : : * operators, as wanted by executor
5861 : : */
5862 : 73 : node->numCols = numCols;
5863 [ + + ]: 73 : if (numCols > 0)
5864 : : {
5865 : 13 : int keyno = 0;
5866 : 13 : AttrNumber *dupColIdx;
5867 : 13 : Oid *dupOperators;
5868 : 13 : Oid *dupCollations;
5869 : 13 : ListCell *slitem;
5870 : :
5871 : 13 : dupColIdx = palloc_array(AttrNumber, numCols);
5872 : 13 : dupOperators = palloc_array(Oid, numCols);
5873 : 13 : dupCollations = palloc_array(Oid, numCols);
5874 : :
5875 [ + - + + : 44 : foreach(slitem, distinctList)
+ + ]
5876 : : {
5877 : 31 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
5878 : 62 : TargetEntry *tle = get_sortgroupclause_tle(sortcl,
5879 : 31 : plan->targetlist);
5880 : :
5881 : 31 : dupColIdx[keyno] = tle->resno;
5882 : 31 : dupOperators[keyno] = sortcl->eqop;
5883 : 31 : dupCollations[keyno] = exprCollation((Node *) tle->expr);
5884 [ + - ]: 31 : Assert(OidIsValid(dupOperators[keyno]));
5885 : 31 : keyno++;
5886 : 31 : }
5887 : 13 : node->dupColIdx = dupColIdx;
5888 : 13 : node->dupOperators = dupOperators;
5889 : 13 : node->dupCollations = dupCollations;
5890 : 13 : }
5891 : 73 : node->numGroups = numGroups;
5892 : :
5893 : 146 : return node;
5894 : 73 : }
5895 : :
5896 : : static BitmapAnd *
5897 : 17 : make_bitmap_and(List *bitmapplans)
5898 : : {
5899 : 17 : BitmapAnd *node = makeNode(BitmapAnd);
5900 : 17 : Plan *plan = &node->plan;
5901 : :
5902 : 17 : plan->targetlist = NIL;
5903 : 17 : plan->qual = NIL;
5904 : 17 : plan->lefttree = NULL;
5905 : 17 : plan->righttree = NULL;
5906 : 17 : node->bitmapplans = bitmapplans;
5907 : :
5908 : 34 : return node;
5909 : 17 : }
5910 : :
5911 : : static BitmapOr *
5912 : 33 : make_bitmap_or(List *bitmapplans)
5913 : : {
5914 : 33 : BitmapOr *node = makeNode(BitmapOr);
5915 : 33 : Plan *plan = &node->plan;
5916 : :
5917 : 33 : plan->targetlist = NIL;
5918 : 33 : plan->qual = NIL;
5919 : 33 : plan->lefttree = NULL;
5920 : 33 : plan->righttree = NULL;
5921 : 33 : node->bitmapplans = bitmapplans;
5922 : :
5923 : 66 : return node;
5924 : 33 : }
5925 : :
5926 : : static NestLoop *
5927 : 9143 : make_nestloop(List *tlist,
5928 : : List *joinclauses,
5929 : : List *otherclauses,
5930 : : List *nestParams,
5931 : : Plan *lefttree,
5932 : : Plan *righttree,
5933 : : JoinType jointype,
5934 : : bool inner_unique)
5935 : : {
5936 : 9143 : NestLoop *node = makeNode(NestLoop);
5937 : 9143 : Plan *plan = &node->join.plan;
5938 : :
5939 : 9143 : plan->targetlist = tlist;
5940 : 9143 : plan->qual = otherclauses;
5941 : 9143 : plan->lefttree = lefttree;
5942 : 9143 : plan->righttree = righttree;
5943 : 9143 : node->join.jointype = jointype;
5944 : 9143 : node->join.inner_unique = inner_unique;
5945 : 9143 : node->join.joinqual = joinclauses;
5946 : 9143 : node->nestParams = nestParams;
5947 : :
5948 : 18286 : return node;
5949 : 9143 : }
5950 : :
5951 : : static HashJoin *
5952 : 3335 : make_hashjoin(List *tlist,
5953 : : List *joinclauses,
5954 : : List *otherclauses,
5955 : : List *hashclauses,
5956 : : List *hashoperators,
5957 : : List *hashcollations,
5958 : : List *hashkeys,
5959 : : Plan *lefttree,
5960 : : Plan *righttree,
5961 : : JoinType jointype,
5962 : : bool inner_unique)
5963 : : {
5964 : 3335 : HashJoin *node = makeNode(HashJoin);
5965 : 3335 : Plan *plan = &node->join.plan;
5966 : :
5967 : 3335 : plan->targetlist = tlist;
5968 : 3335 : plan->qual = otherclauses;
5969 : 3335 : plan->lefttree = lefttree;
5970 : 3335 : plan->righttree = righttree;
5971 : 3335 : node->hashclauses = hashclauses;
5972 : 3335 : node->hashoperators = hashoperators;
5973 : 3335 : node->hashcollations = hashcollations;
5974 : 3335 : node->hashkeys = hashkeys;
5975 : 3335 : node->join.jointype = jointype;
5976 : 3335 : node->join.inner_unique = inner_unique;
5977 : 3335 : node->join.joinqual = joinclauses;
5978 : :
5979 : 6670 : return node;
5980 : 3335 : }
5981 : :
5982 : : static Hash *
5983 : 3335 : make_hash(Plan *lefttree,
5984 : : List *hashkeys,
5985 : : Oid skewTable,
5986 : : AttrNumber skewColumn,
5987 : : bool skewInherit)
5988 : : {
5989 : 3335 : Hash *node = makeNode(Hash);
5990 : 3335 : Plan *plan = &node->plan;
5991 : :
5992 : 3335 : plan->targetlist = lefttree->targetlist;
5993 : 3335 : plan->qual = NIL;
5994 : 3335 : plan->lefttree = lefttree;
5995 : 3335 : plan->righttree = NULL;
5996 : :
5997 : 3335 : node->hashkeys = hashkeys;
5998 : 3335 : node->skewTable = skewTable;
5999 : 3335 : node->skewColumn = skewColumn;
6000 : 3335 : node->skewInherit = skewInherit;
6001 : :
6002 : 6670 : return node;
6003 : 3335 : }
6004 : :
6005 : : static MergeJoin *
6006 : 508 : make_mergejoin(List *tlist,
6007 : : List *joinclauses,
6008 : : List *otherclauses,
6009 : : List *mergeclauses,
6010 : : Oid *mergefamilies,
6011 : : Oid *mergecollations,
6012 : : bool *mergereversals,
6013 : : bool *mergenullsfirst,
6014 : : Plan *lefttree,
6015 : : Plan *righttree,
6016 : : JoinType jointype,
6017 : : bool inner_unique,
6018 : : bool skip_mark_restore)
6019 : : {
6020 : 508 : MergeJoin *node = makeNode(MergeJoin);
6021 : 508 : Plan *plan = &node->join.plan;
6022 : :
6023 : 508 : plan->targetlist = tlist;
6024 : 508 : plan->qual = otherclauses;
6025 : 508 : plan->lefttree = lefttree;
6026 : 508 : plan->righttree = righttree;
6027 : 508 : node->skip_mark_restore = skip_mark_restore;
6028 : 508 : node->mergeclauses = mergeclauses;
6029 : 508 : node->mergeFamilies = mergefamilies;
6030 : 508 : node->mergeCollations = mergecollations;
6031 : 508 : node->mergeReversals = mergereversals;
6032 : 508 : node->mergeNullsFirst = mergenullsfirst;
6033 : 508 : node->join.jointype = jointype;
6034 : 508 : node->join.inner_unique = inner_unique;
6035 : 508 : node->join.joinqual = joinclauses;
6036 : :
6037 : 1016 : return node;
6038 : 508 : }
6039 : :
6040 : : /*
6041 : : * make_sort --- basic routine to build a Sort plan node
6042 : : *
6043 : : * Caller must have built the sortColIdx, sortOperators, collations, and
6044 : : * nullsFirst arrays already.
6045 : : */
6046 : : static Sort *
6047 : 9402 : make_sort(Plan *lefttree, int numCols,
6048 : : AttrNumber *sortColIdx, Oid *sortOperators,
6049 : : Oid *collations, bool *nullsFirst)
6050 : : {
6051 : 9402 : Sort *node;
6052 : 9402 : Plan *plan;
6053 : :
6054 : 9402 : node = makeNode(Sort);
6055 : :
6056 : 9402 : plan = &node->plan;
6057 : 9402 : plan->targetlist = lefttree->targetlist;
6058 : 9402 : plan->disabled_nodes = lefttree->disabled_nodes + (enable_sort == false);
6059 : 9402 : plan->qual = NIL;
6060 : 9402 : plan->lefttree = lefttree;
6061 : 9402 : plan->righttree = NULL;
6062 : 9402 : node->numCols = numCols;
6063 : 9402 : node->sortColIdx = sortColIdx;
6064 : 9402 : node->sortOperators = sortOperators;
6065 : 9402 : node->collations = collations;
6066 : 9402 : node->nullsFirst = nullsFirst;
6067 : :
6068 : 18804 : return node;
6069 : 9402 : }
6070 : :
6071 : : /*
6072 : : * make_incrementalsort --- basic routine to build an IncrementalSort plan node
6073 : : *
6074 : : * Caller must have built the sortColIdx, sortOperators, collations, and
6075 : : * nullsFirst arrays already.
6076 : : */
6077 : : static IncrementalSort *
6078 : 119 : make_incrementalsort(Plan *lefttree, int numCols, int nPresortedCols,
6079 : : AttrNumber *sortColIdx, Oid *sortOperators,
6080 : : Oid *collations, bool *nullsFirst)
6081 : : {
6082 : 119 : IncrementalSort *node;
6083 : 119 : Plan *plan;
6084 : :
6085 : 119 : node = makeNode(IncrementalSort);
6086 : :
6087 : 119 : plan = &node->sort.plan;
6088 : 119 : plan->targetlist = lefttree->targetlist;
6089 : 119 : plan->qual = NIL;
6090 : 119 : plan->lefttree = lefttree;
6091 : 119 : plan->righttree = NULL;
6092 : 119 : node->nPresortedCols = nPresortedCols;
6093 : 119 : node->sort.numCols = numCols;
6094 : 119 : node->sort.sortColIdx = sortColIdx;
6095 : 119 : node->sort.sortOperators = sortOperators;
6096 : 119 : node->sort.collations = collations;
6097 : 119 : node->sort.nullsFirst = nullsFirst;
6098 : :
6099 : 238 : return node;
6100 : 119 : }
6101 : :
6102 : : /*
6103 : : * prepare_sort_from_pathkeys
6104 : : * Prepare to sort according to given pathkeys
6105 : : *
6106 : : * This is used to set up for Sort, MergeAppend, and Gather Merge nodes. It
6107 : : * calculates the executor's representation of the sort key information, and
6108 : : * adjusts the plan targetlist if needed to add resjunk sort columns.
6109 : : *
6110 : : * Input parameters:
6111 : : * 'lefttree' is the plan node which yields input tuples
6112 : : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6113 : : * 'relids' identifies the child relation being sorted, if any
6114 : : * 'reqColIdx' is NULL or an array of required sort key column numbers
6115 : : * 'adjust_tlist_in_place' is true if lefttree must be modified in-place
6116 : : *
6117 : : * We must convert the pathkey information into arrays of sort key column
6118 : : * numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
6119 : : * which is the representation the executor wants. These are returned into
6120 : : * the output parameters *p_numsortkeys etc.
6121 : : *
6122 : : * When looking for matches to an EquivalenceClass's members, we will only
6123 : : * consider child EC members if they belong to given 'relids'. This protects
6124 : : * against possible incorrect matches to child expressions that contain no
6125 : : * Vars.
6126 : : *
6127 : : * If reqColIdx isn't NULL then it contains sort key column numbers that
6128 : : * we should match. This is used when making child plans for a MergeAppend;
6129 : : * it's an error if we can't match the columns.
6130 : : *
6131 : : * If the pathkeys include expressions that aren't simple Vars, we will
6132 : : * usually need to add resjunk items to the input plan's targetlist to
6133 : : * compute these expressions, since a Sort or MergeAppend node itself won't
6134 : : * do any such calculations. If the input plan type isn't one that can do
6135 : : * projections, this means adding a Result node just to do the projection.
6136 : : * However, the caller can pass adjust_tlist_in_place = true to force the
6137 : : * lefttree tlist to be modified in-place regardless of whether the node type
6138 : : * can project --- we use this for fixing the tlist of MergeAppend itself.
6139 : : *
6140 : : * Returns the node which is to be the input to the Sort (either lefttree,
6141 : : * or a Result stacked atop lefttree).
6142 : : */
6143 : : static Plan *
6144 : 10040 : prepare_sort_from_pathkeys(Plan *lefttree, List *pathkeys,
6145 : : Relids relids,
6146 : : const AttrNumber *reqColIdx,
6147 : : bool adjust_tlist_in_place,
6148 : : int *p_numsortkeys,
6149 : : AttrNumber **p_sortColIdx,
6150 : : Oid **p_sortOperators,
6151 : : Oid **p_collations,
6152 : : bool **p_nullsFirst)
6153 : : {
6154 : 10040 : List *tlist = lefttree->targetlist;
6155 : 10040 : ListCell *i;
6156 : 10040 : int numsortkeys;
6157 : 10040 : AttrNumber *sortColIdx;
6158 : 10040 : Oid *sortOperators;
6159 : 10040 : Oid *collations;
6160 : 10040 : bool *nullsFirst;
6161 : :
6162 : : /*
6163 : : * We will need at most list_length(pathkeys) sort columns; possibly less
6164 : : */
6165 : 10040 : numsortkeys = list_length(pathkeys);
6166 : 10040 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6167 : 10040 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6168 : 10040 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6169 : 10040 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6170 : :
6171 : 10040 : numsortkeys = 0;
6172 : :
6173 [ + - + + : 25411 : foreach(i, pathkeys)
+ + ]
6174 : : {
6175 : 15371 : PathKey *pathkey = (PathKey *) lfirst(i);
6176 : 15371 : EquivalenceClass *ec = pathkey->pk_eclass;
6177 : 15371 : EquivalenceMember *em;
6178 : 15371 : TargetEntry *tle = NULL;
6179 : 15371 : Oid pk_datatype = InvalidOid;
6180 : 15371 : Oid sortop;
6181 : 15371 : ListCell *j;
6182 : :
6183 [ + + ]: 15371 : if (ec->ec_has_volatile)
6184 : : {
6185 : : /*
6186 : : * If the pathkey's EquivalenceClass is volatile, then it must
6187 : : * have come from an ORDER BY clause, and we have to match it to
6188 : : * that same targetlist entry.
6189 : : */
6190 [ + - ]: 31 : if (ec->ec_sortref == 0) /* can't happen */
6191 [ # # # # ]: 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6192 : 31 : tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
6193 [ + - ]: 31 : Assert(tle);
6194 [ + - ]: 31 : Assert(list_length(ec->ec_members) == 1);
6195 : 31 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6196 : 31 : }
6197 [ + + ]: 15340 : else if (reqColIdx != NULL)
6198 : : {
6199 : : /*
6200 : : * If we are given a sort column number to match, only consider
6201 : : * the single TLE at that position. It's possible that there is
6202 : : * no such TLE, in which case fall through and generate a resjunk
6203 : : * targetentry (we assume this must have happened in the parent
6204 : : * plan as well). If there is a TLE but it doesn't match the
6205 : : * pathkey's EC, we do the same, which is probably the wrong thing
6206 : : * but we'll leave it to caller to complain about the mismatch.
6207 : : */
6208 : 527 : tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
6209 [ + + ]: 527 : if (tle)
6210 : : {
6211 : 507 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6212 [ + - ]: 507 : if (em)
6213 : : {
6214 : : /* found expr at right place in tlist */
6215 : 507 : pk_datatype = em->em_datatype;
6216 : 507 : }
6217 : : else
6218 : 0 : tle = NULL;
6219 : 507 : }
6220 : 527 : }
6221 : : else
6222 : : {
6223 : : /*
6224 : : * Otherwise, we can sort by any non-constant expression listed in
6225 : : * the pathkey's EquivalenceClass. For now, we take the first
6226 : : * tlist item found in the EC. If there's no match, we'll generate
6227 : : * a resjunk entry using the first EC member that is an expression
6228 : : * in the input's vars.
6229 : : *
6230 : : * XXX if we have a choice, is there any way of figuring out which
6231 : : * might be cheapest to execute? (For example, int4lt is likely
6232 : : * much cheaper to execute than numericlt, but both might appear
6233 : : * in the same equivalence class...) Not clear that we ever will
6234 : : * have an interesting choice in practice, so it may not matter.
6235 : : */
6236 [ + - + + : 52194 : foreach(j, tlist)
+ + ]
6237 : : {
6238 : 37381 : tle = (TargetEntry *) lfirst(j);
6239 : 37381 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6240 [ + + ]: 37381 : if (em)
6241 : : {
6242 : : /* found expr already in tlist */
6243 : 14763 : pk_datatype = em->em_datatype;
6244 : 14763 : break;
6245 : : }
6246 : 22618 : tle = NULL;
6247 : 22618 : }
6248 : : }
6249 : :
6250 [ + + ]: 15371 : if (!tle)
6251 : : {
6252 : : /*
6253 : : * No matching tlist item; look for a computable expression.
6254 : : */
6255 : 70 : em = find_computable_ec_member(NULL, ec, tlist, relids, false);
6256 [ + - ]: 70 : if (!em)
6257 [ # # # # ]: 0 : elog(ERROR, "could not find pathkey item to sort");
6258 : 70 : pk_datatype = em->em_datatype;
6259 : :
6260 : : /*
6261 : : * Do we need to insert a Result node?
6262 : : */
6263 [ + + + + ]: 70 : if (!adjust_tlist_in_place &&
6264 : 64 : !is_projection_capable_plan(lefttree))
6265 : : {
6266 : : /* copy needed so we don't modify input's tlist below */
6267 : 4 : tlist = copyObject(tlist);
6268 : 8 : lefttree = inject_projection_plan(lefttree, tlist,
6269 : 4 : lefttree->parallel_safe);
6270 : 4 : }
6271 : :
6272 : : /* Don't bother testing is_projection_capable_plan again */
6273 : 70 : adjust_tlist_in_place = true;
6274 : :
6275 : : /*
6276 : : * Add resjunk entry to input's tlist
6277 : : */
6278 : 140 : tle = makeTargetEntry(copyObject(em->em_expr),
6279 : 70 : list_length(tlist) + 1,
6280 : : NULL,
6281 : : true);
6282 : 70 : tlist = lappend(tlist, tle);
6283 : 70 : lefttree->targetlist = tlist; /* just in case NIL before */
6284 : 70 : }
6285 : :
6286 : : /*
6287 : : * Look up the correct sort operator from the PathKey's slightly
6288 : : * abstracted representation.
6289 : : */
6290 : 30742 : sortop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6291 : 15371 : pk_datatype,
6292 : 15371 : pk_datatype,
6293 : 15371 : pathkey->pk_cmptype);
6294 [ + - ]: 15371 : if (!OidIsValid(sortop)) /* should not happen */
6295 [ # # # # ]: 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6296 : : pathkey->pk_cmptype, pk_datatype, pk_datatype,
6297 : : pathkey->pk_opfamily);
6298 : :
6299 : : /* Add the column to the sort arrays */
6300 : 15371 : sortColIdx[numsortkeys] = tle->resno;
6301 : 15371 : sortOperators[numsortkeys] = sortop;
6302 : 15371 : collations[numsortkeys] = ec->ec_collation;
6303 : 15371 : nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
6304 : 15371 : numsortkeys++;
6305 : 15371 : }
6306 : :
6307 : : /* Return results */
6308 : 10040 : *p_numsortkeys = numsortkeys;
6309 : 10040 : *p_sortColIdx = sortColIdx;
6310 : 10040 : *p_sortOperators = sortOperators;
6311 : 10040 : *p_collations = collations;
6312 : 10040 : *p_nullsFirst = nullsFirst;
6313 : :
6314 : 20080 : return lefttree;
6315 : 10040 : }
6316 : :
6317 : : /*
6318 : : * make_sort_from_pathkeys
6319 : : * Create sort plan to sort according to given pathkeys
6320 : : *
6321 : : * 'lefttree' is the node which yields input tuples
6322 : : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6323 : : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6324 : : */
6325 : : static Sort *
6326 : 9342 : make_sort_from_pathkeys(Plan *lefttree, List *pathkeys, Relids relids)
6327 : : {
6328 : 9342 : int numsortkeys;
6329 : 9342 : AttrNumber *sortColIdx;
6330 : 9342 : Oid *sortOperators;
6331 : 9342 : Oid *collations;
6332 : 9342 : bool *nullsFirst;
6333 : :
6334 : : /* Compute sort column info, and adjust lefttree as needed */
6335 : 18684 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6336 : 9342 : relids,
6337 : : NULL,
6338 : : false,
6339 : : &numsortkeys,
6340 : : &sortColIdx,
6341 : : &sortOperators,
6342 : : &collations,
6343 : : &nullsFirst);
6344 : :
6345 : : /* Now build the Sort node */
6346 : 28026 : return make_sort(lefttree, numsortkeys,
6347 : 9342 : sortColIdx, sortOperators,
6348 : 9342 : collations, nullsFirst);
6349 : 9342 : }
6350 : :
6351 : : /*
6352 : : * make_incrementalsort_from_pathkeys
6353 : : * Create sort plan to sort according to given pathkeys
6354 : : *
6355 : : * 'lefttree' is the node which yields input tuples
6356 : : * 'pathkeys' is the list of pathkeys by which the result is to be sorted
6357 : : * 'relids' is the set of relations required by prepare_sort_from_pathkeys()
6358 : : * 'nPresortedCols' is the number of presorted columns in input tuples
6359 : : */
6360 : : static IncrementalSort *
6361 : 115 : make_incrementalsort_from_pathkeys(Plan *lefttree, List *pathkeys,
6362 : : Relids relids, int nPresortedCols)
6363 : : {
6364 : 115 : int numsortkeys;
6365 : 115 : AttrNumber *sortColIdx;
6366 : 115 : Oid *sortOperators;
6367 : 115 : Oid *collations;
6368 : 115 : bool *nullsFirst;
6369 : :
6370 : : /* Compute sort column info, and adjust lefttree as needed */
6371 : 230 : lefttree = prepare_sort_from_pathkeys(lefttree, pathkeys,
6372 : 115 : relids,
6373 : : NULL,
6374 : : false,
6375 : : &numsortkeys,
6376 : : &sortColIdx,
6377 : : &sortOperators,
6378 : : &collations,
6379 : : &nullsFirst);
6380 : :
6381 : : /* Now build the Sort node */
6382 : 345 : return make_incrementalsort(lefttree, numsortkeys, nPresortedCols,
6383 : 115 : sortColIdx, sortOperators,
6384 : 115 : collations, nullsFirst);
6385 : 115 : }
6386 : :
6387 : : /*
6388 : : * make_sort_from_sortclauses
6389 : : * Create sort plan to sort according to given sortclauses
6390 : : *
6391 : : * 'sortcls' is a list of SortGroupClauses
6392 : : * 'lefttree' is the node which yields input tuples
6393 : : */
6394 : : Sort *
6395 : 0 : make_sort_from_sortclauses(List *sortcls, Plan *lefttree)
6396 : : {
6397 : 0 : List *sub_tlist = lefttree->targetlist;
6398 : 0 : ListCell *l;
6399 : 0 : int numsortkeys;
6400 : 0 : AttrNumber *sortColIdx;
6401 : 0 : Oid *sortOperators;
6402 : 0 : Oid *collations;
6403 : 0 : bool *nullsFirst;
6404 : :
6405 : : /* Convert list-ish representation to arrays wanted by executor */
6406 : 0 : numsortkeys = list_length(sortcls);
6407 : 0 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6408 : 0 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6409 : 0 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6410 : 0 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6411 : :
6412 : 0 : numsortkeys = 0;
6413 [ # # # # : 0 : foreach(l, sortcls)
# # ]
6414 : : {
6415 : 0 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
6416 : 0 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
6417 : :
6418 : 0 : sortColIdx[numsortkeys] = tle->resno;
6419 : 0 : sortOperators[numsortkeys] = sortcl->sortop;
6420 : 0 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6421 : 0 : nullsFirst[numsortkeys] = sortcl->nulls_first;
6422 : 0 : numsortkeys++;
6423 : 0 : }
6424 : :
6425 : 0 : return make_sort(lefttree, numsortkeys,
6426 : 0 : sortColIdx, sortOperators,
6427 : 0 : collations, nullsFirst);
6428 : 0 : }
6429 : :
6430 : : /*
6431 : : * make_sort_from_groupcols
6432 : : * Create sort plan to sort based on grouping columns
6433 : : *
6434 : : * 'groupcls' is the list of SortGroupClauses
6435 : : * 'grpColIdx' gives the column numbers to use
6436 : : *
6437 : : * This might look like it could be merged with make_sort_from_sortclauses,
6438 : : * but presently we *must* use the grpColIdx[] array to locate sort columns,
6439 : : * because the child plan's tlist is not marked with ressortgroupref info
6440 : : * appropriate to the grouping node. So, only the sort ordering info
6441 : : * is used from the SortGroupClause entries.
6442 : : */
6443 : : static Sort *
6444 : 48 : make_sort_from_groupcols(List *groupcls,
6445 : : AttrNumber *grpColIdx,
6446 : : Plan *lefttree)
6447 : : {
6448 : 48 : List *sub_tlist = lefttree->targetlist;
6449 : 48 : ListCell *l;
6450 : 48 : int numsortkeys;
6451 : 48 : AttrNumber *sortColIdx;
6452 : 48 : Oid *sortOperators;
6453 : 48 : Oid *collations;
6454 : 48 : bool *nullsFirst;
6455 : :
6456 : : /* Convert list-ish representation to arrays wanted by executor */
6457 : 48 : numsortkeys = list_length(groupcls);
6458 : 48 : sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
6459 : 48 : sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
6460 : 48 : collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
6461 : 48 : nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
6462 : :
6463 : 48 : numsortkeys = 0;
6464 [ + - + + : 111 : foreach(l, groupcls)
+ + ]
6465 : : {
6466 : 63 : SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
6467 : 63 : TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
6468 : :
6469 [ + - ]: 63 : if (!tle)
6470 [ # # # # ]: 0 : elog(ERROR, "could not retrieve tle for sort-from-groupcols");
6471 : :
6472 : 63 : sortColIdx[numsortkeys] = tle->resno;
6473 : 63 : sortOperators[numsortkeys] = grpcl->sortop;
6474 : 63 : collations[numsortkeys] = exprCollation((Node *) tle->expr);
6475 : 63 : nullsFirst[numsortkeys] = grpcl->nulls_first;
6476 : 63 : numsortkeys++;
6477 : 63 : }
6478 : :
6479 : 144 : return make_sort(lefttree, numsortkeys,
6480 : 48 : sortColIdx, sortOperators,
6481 : 48 : collations, nullsFirst);
6482 : 48 : }
6483 : :
6484 : : static Material *
6485 : 535 : make_material(Plan *lefttree)
6486 : : {
6487 : 535 : Material *node = makeNode(Material);
6488 : 535 : Plan *plan = &node->plan;
6489 : :
6490 : 535 : plan->targetlist = lefttree->targetlist;
6491 : 535 : plan->qual = NIL;
6492 : 535 : plan->lefttree = lefttree;
6493 : 535 : plan->righttree = NULL;
6494 : :
6495 : 1070 : return node;
6496 : 535 : }
6497 : :
6498 : : /*
6499 : : * materialize_finished_plan: stick a Material node atop a completed plan
6500 : : *
6501 : : * There are a couple of places where we want to attach a Material node
6502 : : * after completion of create_plan(), without any MaterialPath path.
6503 : : * Those places should probably be refactored someday to do this on the
6504 : : * Path representation, but it's not worth the trouble yet.
6505 : : */
6506 : : Plan *
6507 : 12 : materialize_finished_plan(Plan *subplan)
6508 : : {
6509 : 12 : Plan *matplan;
6510 : 12 : Path matpath; /* dummy for cost_material */
6511 : 12 : Cost initplan_cost;
6512 : 12 : bool unsafe_initplans;
6513 : :
6514 : 12 : matplan = (Plan *) make_material(subplan);
6515 : :
6516 : : /*
6517 : : * XXX horrid kluge: if there are any initPlans attached to the subplan,
6518 : : * move them up to the Material node, which is now effectively the top
6519 : : * plan node in its query level. This prevents failure in
6520 : : * SS_finalize_plan(), which see for comments.
6521 : : */
6522 : 12 : matplan->initPlan = subplan->initPlan;
6523 : 12 : subplan->initPlan = NIL;
6524 : :
6525 : : /* Move the initplans' cost delta, as well */
6526 : 12 : SS_compute_initplan_cost(matplan->initPlan,
6527 : : &initplan_cost, &unsafe_initplans);
6528 : 12 : subplan->startup_cost -= initplan_cost;
6529 : 12 : subplan->total_cost -= initplan_cost;
6530 : :
6531 : : /* Set cost data */
6532 : 12 : matpath.parent = NULL;
6533 : 12 : cost_material(&matpath,
6534 : 12 : enable_material,
6535 : 12 : subplan->disabled_nodes,
6536 : 12 : subplan->startup_cost,
6537 : 12 : subplan->total_cost,
6538 : 12 : subplan->plan_rows,
6539 : 12 : subplan->plan_width);
6540 : 12 : matplan->disabled_nodes = subplan->disabled_nodes;
6541 : 12 : matplan->startup_cost = matpath.startup_cost + initplan_cost;
6542 : 12 : matplan->total_cost = matpath.total_cost + initplan_cost;
6543 : 12 : matplan->plan_rows = subplan->plan_rows;
6544 : 12 : matplan->plan_width = subplan->plan_width;
6545 : 12 : matplan->parallel_aware = false;
6546 : 12 : matplan->parallel_safe = subplan->parallel_safe;
6547 : :
6548 : 24 : return matplan;
6549 : 12 : }
6550 : :
6551 : : static Memoize *
6552 : 215 : make_memoize(Plan *lefttree, Oid *hashoperators, Oid *collations,
6553 : : List *param_exprs, bool singlerow, bool binary_mode,
6554 : : uint32 est_entries, Bitmapset *keyparamids,
6555 : : Cardinality est_calls, Cardinality est_unique_keys,
6556 : : double est_hit_ratio)
6557 : : {
6558 : 215 : Memoize *node = makeNode(Memoize);
6559 : 215 : Plan *plan = &node->plan;
6560 : :
6561 : 215 : plan->targetlist = lefttree->targetlist;
6562 : 215 : plan->qual = NIL;
6563 : 215 : plan->lefttree = lefttree;
6564 : 215 : plan->righttree = NULL;
6565 : :
6566 : 215 : node->numKeys = list_length(param_exprs);
6567 : 215 : node->hashOperators = hashoperators;
6568 : 215 : node->collations = collations;
6569 : 215 : node->param_exprs = param_exprs;
6570 : 215 : node->singlerow = singlerow;
6571 : 215 : node->binary_mode = binary_mode;
6572 : 215 : node->est_entries = est_entries;
6573 : 215 : node->keyparamids = keyparamids;
6574 : 215 : node->est_calls = est_calls;
6575 : 215 : node->est_unique_keys = est_unique_keys;
6576 : 215 : node->est_hit_ratio = est_hit_ratio;
6577 : :
6578 : 430 : return node;
6579 : 215 : }
6580 : :
6581 : : Agg *
6582 : 5688 : make_agg(List *tlist, List *qual,
6583 : : AggStrategy aggstrategy, AggSplit aggsplit,
6584 : : int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators, Oid *grpCollations,
6585 : : List *groupingSets, List *chain, Cardinality numGroups,
6586 : : Size transitionSpace, Plan *lefttree)
6587 : : {
6588 : 5688 : Agg *node = makeNode(Agg);
6589 : 5688 : Plan *plan = &node->plan;
6590 : :
6591 : 5688 : node->aggstrategy = aggstrategy;
6592 : 5688 : node->aggsplit = aggsplit;
6593 : 5688 : node->numCols = numGroupCols;
6594 : 5688 : node->grpColIdx = grpColIdx;
6595 : 5688 : node->grpOperators = grpOperators;
6596 : 5688 : node->grpCollations = grpCollations;
6597 : 5688 : node->numGroups = numGroups;
6598 : 5688 : node->transitionSpace = transitionSpace;
6599 : 5688 : node->aggParams = NULL; /* SS_finalize_plan() will fill this */
6600 : 5688 : node->groupingSets = groupingSets;
6601 : 5688 : node->chain = chain;
6602 : :
6603 : 5688 : plan->qual = qual;
6604 : 5688 : plan->targetlist = tlist;
6605 : 5688 : plan->lefttree = lefttree;
6606 : 5688 : plan->righttree = NULL;
6607 : :
6608 : 11376 : return node;
6609 : 5688 : }
6610 : :
6611 : : static WindowAgg *
6612 : 457 : make_windowagg(List *tlist, WindowClause *wc,
6613 : : int partNumCols, AttrNumber *partColIdx, Oid *partOperators, Oid *partCollations,
6614 : : int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators, Oid *ordCollations,
6615 : : List *runCondition, List *qual, bool topWindow, Plan *lefttree)
6616 : : {
6617 : 457 : WindowAgg *node = makeNode(WindowAgg);
6618 : 457 : Plan *plan = &node->plan;
6619 : :
6620 : 457 : node->winname = wc->name;
6621 : 457 : node->winref = wc->winref;
6622 : 457 : node->partNumCols = partNumCols;
6623 : 457 : node->partColIdx = partColIdx;
6624 : 457 : node->partOperators = partOperators;
6625 : 457 : node->partCollations = partCollations;
6626 : 457 : node->ordNumCols = ordNumCols;
6627 : 457 : node->ordColIdx = ordColIdx;
6628 : 457 : node->ordOperators = ordOperators;
6629 : 457 : node->ordCollations = ordCollations;
6630 : 457 : node->frameOptions = wc->frameOptions;
6631 : 457 : node->startOffset = wc->startOffset;
6632 : 457 : node->endOffset = wc->endOffset;
6633 : 457 : node->runCondition = runCondition;
6634 : : /* a duplicate of the above for EXPLAIN */
6635 : 457 : node->runConditionOrig = runCondition;
6636 : 457 : node->startInRangeFunc = wc->startInRangeFunc;
6637 : 457 : node->endInRangeFunc = wc->endInRangeFunc;
6638 : 457 : node->inRangeColl = wc->inRangeColl;
6639 : 457 : node->inRangeAsc = wc->inRangeAsc;
6640 : 457 : node->inRangeNullsFirst = wc->inRangeNullsFirst;
6641 : 457 : node->topWindow = topWindow;
6642 : :
6643 : 457 : plan->targetlist = tlist;
6644 : 457 : plan->lefttree = lefttree;
6645 : 457 : plan->righttree = NULL;
6646 : 457 : plan->qual = qual;
6647 : :
6648 : 914 : return node;
6649 : 457 : }
6650 : :
6651 : : static Group *
6652 : 39 : make_group(List *tlist,
6653 : : List *qual,
6654 : : int numGroupCols,
6655 : : AttrNumber *grpColIdx,
6656 : : Oid *grpOperators,
6657 : : Oid *grpCollations,
6658 : : Plan *lefttree)
6659 : : {
6660 : 39 : Group *node = makeNode(Group);
6661 : 39 : Plan *plan = &node->plan;
6662 : :
6663 : 39 : node->numCols = numGroupCols;
6664 : 39 : node->grpColIdx = grpColIdx;
6665 : 39 : node->grpOperators = grpOperators;
6666 : 39 : node->grpCollations = grpCollations;
6667 : :
6668 : 39 : plan->qual = qual;
6669 : 39 : plan->targetlist = tlist;
6670 : 39 : plan->lefttree = lefttree;
6671 : 39 : plan->righttree = NULL;
6672 : :
6673 : 78 : return node;
6674 : 39 : }
6675 : :
6676 : : /*
6677 : : * pathkeys is a list of PathKeys, identifying the sort columns and semantics.
6678 : : * The input plan must already be sorted accordingly.
6679 : : *
6680 : : * relids identifies the child relation being unique-ified, if any.
6681 : : */
6682 : : static Unique *
6683 : 711 : make_unique_from_pathkeys(Plan *lefttree, List *pathkeys, int numCols,
6684 : : Relids relids)
6685 : : {
6686 : 711 : Unique *node = makeNode(Unique);
6687 : 711 : Plan *plan = &node->plan;
6688 : 711 : int keyno = 0;
6689 : 711 : AttrNumber *uniqColIdx;
6690 : 711 : Oid *uniqOperators;
6691 : 711 : Oid *uniqCollations;
6692 : 711 : ListCell *lc;
6693 : :
6694 : 711 : plan->targetlist = lefttree->targetlist;
6695 : 711 : plan->qual = NIL;
6696 : 711 : plan->lefttree = lefttree;
6697 : 711 : plan->righttree = NULL;
6698 : :
6699 : : /*
6700 : : * Convert pathkeys list into arrays of attr indexes and equality
6701 : : * operators, as wanted by executor. This has a lot in common with
6702 : : * prepare_sort_from_pathkeys ... maybe unify sometime?
6703 : : */
6704 [ + - ]: 711 : Assert(numCols >= 0 && numCols <= list_length(pathkeys));
6705 : 711 : uniqColIdx = palloc_array(AttrNumber, numCols);
6706 : 711 : uniqOperators = palloc_array(Oid, numCols);
6707 : 711 : uniqCollations = palloc_array(Oid, numCols);
6708 : :
6709 [ + + + + : 2555 : foreach(lc, pathkeys)
+ + ]
6710 : : {
6711 : 1844 : PathKey *pathkey = (PathKey *) lfirst(lc);
6712 : 1844 : EquivalenceClass *ec = pathkey->pk_eclass;
6713 : 1844 : EquivalenceMember *em;
6714 : 1844 : TargetEntry *tle = NULL;
6715 : 1844 : Oid pk_datatype = InvalidOid;
6716 : 1844 : Oid eqop;
6717 : 1844 : ListCell *j;
6718 : :
6719 : : /* Ignore pathkeys beyond the specified number of columns */
6720 [ + + ]: 1844 : if (keyno >= numCols)
6721 : 7 : break;
6722 : :
6723 [ + + ]: 1837 : if (ec->ec_has_volatile)
6724 : : {
6725 : : /*
6726 : : * If the pathkey's EquivalenceClass is volatile, then it must
6727 : : * have come from an ORDER BY clause, and we have to match it to
6728 : : * that same targetlist entry.
6729 : : */
6730 [ + - ]: 5 : if (ec->ec_sortref == 0) /* can't happen */
6731 [ # # # # ]: 0 : elog(ERROR, "volatile EquivalenceClass has no sortref");
6732 : 5 : tle = get_sortgroupref_tle(ec->ec_sortref, plan->targetlist);
6733 [ + - ]: 5 : Assert(tle);
6734 [ + - ]: 5 : Assert(list_length(ec->ec_members) == 1);
6735 : 5 : pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
6736 : 5 : }
6737 : : else
6738 : : {
6739 : : /*
6740 : : * Otherwise, we can use any non-constant expression listed in the
6741 : : * pathkey's EquivalenceClass. For now, we take the first tlist
6742 : : * item found in the EC.
6743 : : */
6744 [ + - - + : 5423 : foreach(j, plan->targetlist)
+ - ]
6745 : : {
6746 : 3591 : tle = (TargetEntry *) lfirst(j);
6747 : 3591 : em = find_ec_member_matching_expr(ec, tle->expr, relids);
6748 [ + + ]: 3591 : if (em)
6749 : : {
6750 : : /* found expr already in tlist */
6751 : 1832 : pk_datatype = em->em_datatype;
6752 : 1832 : break;
6753 : : }
6754 : 1759 : tle = NULL;
6755 : 1759 : }
6756 : : }
6757 : :
6758 [ + - ]: 1837 : if (!tle)
6759 [ # # # # ]: 0 : elog(ERROR, "could not find pathkey item to sort");
6760 : :
6761 : : /*
6762 : : * Look up the correct equality operator from the PathKey's slightly
6763 : : * abstracted representation.
6764 : : */
6765 : 3674 : eqop = get_opfamily_member_for_cmptype(pathkey->pk_opfamily,
6766 : 1837 : pk_datatype,
6767 : 1837 : pk_datatype,
6768 : : COMPARE_EQ);
6769 [ + - ]: 1837 : if (!OidIsValid(eqop)) /* should not happen */
6770 [ # # # # ]: 0 : elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
6771 : : COMPARE_EQ, pk_datatype, pk_datatype,
6772 : : pathkey->pk_opfamily);
6773 : :
6774 : 1837 : uniqColIdx[keyno] = tle->resno;
6775 : 1837 : uniqOperators[keyno] = eqop;
6776 : 1837 : uniqCollations[keyno] = ec->ec_collation;
6777 : :
6778 : 1837 : keyno++;
6779 [ + + ]: 1844 : }
6780 : :
6781 : 711 : node->numCols = numCols;
6782 : 711 : node->uniqColIdx = uniqColIdx;
6783 : 711 : node->uniqOperators = uniqOperators;
6784 : 711 : node->uniqCollations = uniqCollations;
6785 : :
6786 : 1422 : return node;
6787 : 711 : }
6788 : :
6789 : : static Gather *
6790 : 173 : make_gather(List *qptlist,
6791 : : List *qpqual,
6792 : : int nworkers,
6793 : : int rescan_param,
6794 : : bool single_copy,
6795 : : Plan *subplan)
6796 : : {
6797 : 173 : Gather *node = makeNode(Gather);
6798 : 173 : Plan *plan = &node->plan;
6799 : :
6800 : 173 : plan->targetlist = qptlist;
6801 : 173 : plan->qual = qpqual;
6802 : 173 : plan->lefttree = subplan;
6803 : 173 : plan->righttree = NULL;
6804 : 173 : node->num_workers = nworkers;
6805 : 173 : node->rescan_param = rescan_param;
6806 : 173 : node->single_copy = single_copy;
6807 : 173 : node->invisible = false;
6808 : 173 : node->initParam = NULL;
6809 : :
6810 : 346 : return node;
6811 : 173 : }
6812 : :
6813 : : /*
6814 : : * groupList is a list of SortGroupClauses, identifying the targetlist
6815 : : * items that should be considered by the SetOp filter. The input plans must
6816 : : * already be sorted accordingly, if we're doing SETOP_SORTED mode.
6817 : : */
6818 : : static SetOp *
6819 : 110 : make_setop(SetOpCmd cmd, SetOpStrategy strategy,
6820 : : List *tlist, Plan *lefttree, Plan *righttree,
6821 : : List *groupList, Cardinality numGroups)
6822 : : {
6823 : 110 : SetOp *node = makeNode(SetOp);
6824 : 110 : Plan *plan = &node->plan;
6825 : 110 : int numCols = list_length(groupList);
6826 : 110 : int keyno = 0;
6827 : 110 : AttrNumber *cmpColIdx;
6828 : 110 : Oid *cmpOperators;
6829 : 110 : Oid *cmpCollations;
6830 : 110 : bool *cmpNullsFirst;
6831 : 110 : ListCell *slitem;
6832 : :
6833 : 110 : plan->targetlist = tlist;
6834 : 110 : plan->qual = NIL;
6835 : 110 : plan->lefttree = lefttree;
6836 : 110 : plan->righttree = righttree;
6837 : :
6838 : : /*
6839 : : * convert SortGroupClause list into arrays of attr indexes and comparison
6840 : : * operators, as wanted by executor
6841 : : */
6842 : 110 : cmpColIdx = palloc_array(AttrNumber, numCols);
6843 : 110 : cmpOperators = palloc_array(Oid, numCols);
6844 : 110 : cmpCollations = palloc_array(Oid, numCols);
6845 : 110 : cmpNullsFirst = palloc_array(bool, numCols);
6846 : :
6847 [ + + + + : 475 : foreach(slitem, groupList)
+ + ]
6848 : : {
6849 : 365 : SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
6850 : 365 : TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
6851 : :
6852 : 365 : cmpColIdx[keyno] = tle->resno;
6853 [ + + ]: 365 : if (strategy == SETOP_HASHED)
6854 : 172 : cmpOperators[keyno] = sortcl->eqop;
6855 : : else
6856 : 193 : cmpOperators[keyno] = sortcl->sortop;
6857 [ + - ]: 365 : Assert(OidIsValid(cmpOperators[keyno]));
6858 : 365 : cmpCollations[keyno] = exprCollation((Node *) tle->expr);
6859 : 365 : cmpNullsFirst[keyno] = sortcl->nulls_first;
6860 : 365 : keyno++;
6861 : 365 : }
6862 : :
6863 : 110 : node->cmd = cmd;
6864 : 110 : node->strategy = strategy;
6865 : 110 : node->numCols = numCols;
6866 : 110 : node->cmpColIdx = cmpColIdx;
6867 : 110 : node->cmpOperators = cmpOperators;
6868 : 110 : node->cmpCollations = cmpCollations;
6869 : 110 : node->cmpNullsFirst = cmpNullsFirst;
6870 : 110 : node->numGroups = numGroups;
6871 : :
6872 : 220 : return node;
6873 : 110 : }
6874 : :
6875 : : /*
6876 : : * make_lockrows
6877 : : * Build a LockRows plan node
6878 : : */
6879 : : static LockRows *
6880 : 801 : make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
6881 : : {
6882 : 801 : LockRows *node = makeNode(LockRows);
6883 : 801 : Plan *plan = &node->plan;
6884 : :
6885 : 801 : plan->targetlist = lefttree->targetlist;
6886 : 801 : plan->qual = NIL;
6887 : 801 : plan->lefttree = lefttree;
6888 : 801 : plan->righttree = NULL;
6889 : :
6890 : 801 : node->rowMarks = rowMarks;
6891 : 801 : node->epqParam = epqParam;
6892 : :
6893 : 1602 : return node;
6894 : 801 : }
6895 : :
6896 : : /*
6897 : : * make_limit
6898 : : * Build a Limit plan node
6899 : : */
6900 : : Limit *
6901 : 491 : make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
6902 : : LimitOption limitOption, int uniqNumCols, AttrNumber *uniqColIdx,
6903 : : Oid *uniqOperators, Oid *uniqCollations)
6904 : : {
6905 : 491 : Limit *node = makeNode(Limit);
6906 : 491 : Plan *plan = &node->plan;
6907 : :
6908 : 491 : plan->targetlist = lefttree->targetlist;
6909 : 491 : plan->qual = NIL;
6910 : 491 : plan->lefttree = lefttree;
6911 : 491 : plan->righttree = NULL;
6912 : :
6913 : 491 : node->limitOffset = limitOffset;
6914 : 491 : node->limitCount = limitCount;
6915 : 491 : node->limitOption = limitOption;
6916 : 491 : node->uniqNumCols = uniqNumCols;
6917 : 491 : node->uniqColIdx = uniqColIdx;
6918 : 491 : node->uniqOperators = uniqOperators;
6919 : 491 : node->uniqCollations = uniqCollations;
6920 : :
6921 : 982 : return node;
6922 : 491 : }
6923 : :
6924 : : /*
6925 : : * make_gating_result
6926 : : * Build a Result plan node that performs projection of a subplan, and/or
6927 : : * applies a one time filter (resconstantqual)
6928 : : */
6929 : : static Result *
6930 : 1820 : make_gating_result(List *tlist,
6931 : : Node *resconstantqual,
6932 : : Plan *subplan)
6933 : : {
6934 : 1820 : Result *node = makeNode(Result);
6935 : 1820 : Plan *plan = &node->plan;
6936 : :
6937 [ + - ]: 1820 : Assert(subplan != NULL);
6938 : :
6939 : 1820 : plan->targetlist = tlist;
6940 : 1820 : plan->qual = NIL;
6941 : 1820 : plan->lefttree = subplan;
6942 : 1820 : plan->righttree = NULL;
6943 : 1820 : node->result_type = RESULT_TYPE_GATING;
6944 : 1820 : node->resconstantqual = resconstantqual;
6945 : 1820 : node->relids = NULL;
6946 : :
6947 : 3640 : return node;
6948 : 1820 : }
6949 : :
6950 : : /*
6951 : : * make_one_row_result
6952 : : * Build a Result plan node that returns a single row (or possibly no rows,
6953 : : * if the one-time filtered defined by resconstantqual returns false)
6954 : : *
6955 : : * 'rel' should be this path's RelOptInfo. In essence, we're saying that this
6956 : : * Result node generates all the tuples for that RelOptInfo. Note that the same
6957 : : * consideration can never arise in make_gating_result(), because in that case
6958 : : * the tuples are always coming from some subordinate node.
6959 : : */
6960 : : static Result *
6961 : 18002 : make_one_row_result(List *tlist,
6962 : : Node *resconstantqual,
6963 : : RelOptInfo *rel)
6964 : : {
6965 : 18002 : Result *node = makeNode(Result);
6966 : 18002 : Plan *plan = &node->plan;
6967 : :
6968 : 18002 : plan->targetlist = tlist;
6969 : 18002 : plan->qual = NIL;
6970 : 18002 : plan->lefttree = NULL;
6971 : 18002 : plan->righttree = NULL;
6972 [ + + - + ]: 35936 : node->result_type = IS_UPPER_REL(rel) ? RESULT_TYPE_UPPER :
6973 [ + + ]: 17934 : IS_JOIN_REL(rel) ? RESULT_TYPE_JOIN : RESULT_TYPE_SCAN;
6974 : 18002 : node->resconstantqual = resconstantqual;
6975 : 18002 : node->relids = rel->relids;
6976 : :
6977 : 36004 : return node;
6978 : 18002 : }
6979 : :
6980 : : /*
6981 : : * make_project_set
6982 : : * Build a ProjectSet plan node
6983 : : */
6984 : : static ProjectSet *
6985 : 1646 : make_project_set(List *tlist,
6986 : : Plan *subplan)
6987 : : {
6988 : 1646 : ProjectSet *node = makeNode(ProjectSet);
6989 : 1646 : Plan *plan = &node->plan;
6990 : :
6991 : 1646 : plan->targetlist = tlist;
6992 : 1646 : plan->qual = NIL;
6993 : 1646 : plan->lefttree = subplan;
6994 : 1646 : plan->righttree = NULL;
6995 : :
6996 : 3292 : return node;
6997 : 1646 : }
6998 : :
6999 : : /*
7000 : : * make_modifytable
7001 : : * Build a ModifyTable plan node
7002 : : */
7003 : : static ModifyTable *
7004 : 7234 : make_modifytable(PlannerInfo *root, Plan *subplan,
7005 : : CmdType operation, bool canSetTag,
7006 : : Index nominalRelation, Index rootRelation,
7007 : : List *resultRelations,
7008 : : List *updateColnosLists,
7009 : : List *withCheckOptionLists, List *returningLists,
7010 : : List *rowMarks, OnConflictExpr *onconflict,
7011 : : List *mergeActionLists, List *mergeJoinConditions,
7012 : : int epqParam)
7013 : : {
7014 : 7234 : ModifyTable *node = makeNode(ModifyTable);
7015 : 7234 : bool returning_old_or_new = false;
7016 : 7234 : bool returning_old_or_new_valid = false;
7017 : 7234 : bool transition_tables = false;
7018 : 7234 : bool transition_tables_valid = false;
7019 : 7234 : List *fdw_private_list;
7020 : 7234 : Bitmapset *direct_modify_plans;
7021 : 7234 : ListCell *lc;
7022 : 7234 : int i;
7023 : :
7024 [ + + + + : 7234 : Assert(operation == CMD_MERGE ||
+ - ]
7025 : : (operation == CMD_UPDATE ?
7026 : : list_length(resultRelations) == list_length(updateColnosLists) :
7027 : : updateColnosLists == NIL));
7028 [ + + + - ]: 7234 : Assert(withCheckOptionLists == NIL ||
7029 : : list_length(resultRelations) == list_length(withCheckOptionLists));
7030 [ + + + - ]: 7234 : Assert(returningLists == NIL ||
7031 : : list_length(resultRelations) == list_length(returningLists));
7032 : :
7033 : 7234 : node->plan.lefttree = subplan;
7034 : 7234 : node->plan.righttree = NULL;
7035 : 7234 : node->plan.qual = NIL;
7036 : : /* setrefs.c will fill in the targetlist, if needed */
7037 : 7234 : node->plan.targetlist = NIL;
7038 : :
7039 : 7234 : node->operation = operation;
7040 : 7234 : node->canSetTag = canSetTag;
7041 : 7234 : node->nominalRelation = nominalRelation;
7042 : 7234 : node->rootRelation = rootRelation;
7043 : 7234 : node->resultRelations = resultRelations;
7044 [ + + ]: 7234 : if (!onconflict)
7045 : : {
7046 : 6950 : node->onConflictAction = ONCONFLICT_NONE;
7047 : 6950 : node->onConflictSet = NIL;
7048 : 6950 : node->onConflictCols = NIL;
7049 : 6950 : node->onConflictWhere = NULL;
7050 : 6950 : node->arbiterIndexes = NIL;
7051 : 6950 : node->exclRelRTI = 0;
7052 : 6950 : node->exclRelTlist = NIL;
7053 : 6950 : }
7054 : : else
7055 : : {
7056 : 284 : node->onConflictAction = onconflict->action;
7057 : :
7058 : : /*
7059 : : * Here we convert the ON CONFLICT UPDATE tlist, if any, to the
7060 : : * executor's convention of having consecutive resno's. The actual
7061 : : * target column numbers are saved in node->onConflictCols. (This
7062 : : * could be done earlier, but there seems no need to.)
7063 : : */
7064 : 284 : node->onConflictSet = onconflict->onConflictSet;
7065 : 284 : node->onConflictCols =
7066 : 284 : extract_update_targetlist_colnos(node->onConflictSet);
7067 : 284 : node->onConflictWhere = onconflict->onConflictWhere;
7068 : :
7069 : : /*
7070 : : * If a set of unique index inference elements was provided (an
7071 : : * INSERT...ON CONFLICT "inference specification"), then infer
7072 : : * appropriate unique indexes (or throw an error if none are
7073 : : * available).
7074 : : */
7075 : 284 : node->arbiterIndexes = infer_arbiter_indexes(root);
7076 : :
7077 : 284 : node->exclRelRTI = onconflict->exclRelIndex;
7078 : 284 : node->exclRelTlist = onconflict->exclRelTlist;
7079 : : }
7080 : 7234 : node->updateColnosLists = updateColnosLists;
7081 : 7234 : node->withCheckOptionLists = withCheckOptionLists;
7082 : 7234 : node->returningOldAlias = root->parse->returningOldAlias;
7083 : 7234 : node->returningNewAlias = root->parse->returningNewAlias;
7084 : 7234 : node->returningLists = returningLists;
7085 : 7234 : node->rowMarks = rowMarks;
7086 : 7234 : node->mergeActionLists = mergeActionLists;
7087 : 7234 : node->mergeJoinConditions = mergeJoinConditions;
7088 : 7234 : node->epqParam = epqParam;
7089 : :
7090 : : /*
7091 : : * For each result relation that is a foreign table, allow the FDW to
7092 : : * construct private plan data, and accumulate it all into a list.
7093 : : */
7094 : 7234 : fdw_private_list = NIL;
7095 : 7234 : direct_modify_plans = NULL;
7096 : 7234 : i = 0;
7097 [ + + + + : 14773 : foreach(lc, resultRelations)
+ + ]
7098 : : {
7099 : 7539 : Index rti = lfirst_int(lc);
7100 : 7539 : FdwRoutine *fdwroutine;
7101 : 7539 : List *fdw_private;
7102 : 7539 : bool direct_modify;
7103 : :
7104 : : /*
7105 : : * If possible, we want to get the FdwRoutine from our RelOptInfo for
7106 : : * the table. But sometimes we don't have a RelOptInfo and must get
7107 : : * it the hard way. (In INSERT, the target relation is not scanned,
7108 : : * so it's not a baserel; and there are also corner cases for
7109 : : * updatable views where the target rel isn't a baserel.)
7110 : : */
7111 [ + - + + ]: 7539 : if (rti < root->simple_rel_array_size &&
7112 : 7539 : root->simple_rel_array[rti] != NULL)
7113 : : {
7114 : 2230 : RelOptInfo *resultRel = root->simple_rel_array[rti];
7115 : :
7116 : 2230 : fdwroutine = resultRel->fdwroutine;
7117 : 2230 : }
7118 : : else
7119 : : {
7120 [ + - ]: 5309 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7121 : :
7122 [ + - + - ]: 5309 : if (rte->rtekind == RTE_RELATION &&
7123 : 5309 : rte->relkind == RELKIND_FOREIGN_TABLE)
7124 : : {
7125 : : /* Check if the access to foreign tables is restricted */
7126 [ # # ]: 0 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
7127 : : {
7128 : : /* there must not be built-in foreign tables */
7129 [ # # ]: 0 : Assert(rte->relid >= FirstNormalObjectId);
7130 [ # # # # ]: 0 : ereport(ERROR,
7131 : : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
7132 : : errmsg("access to non-system foreign table is restricted")));
7133 : 0 : }
7134 : :
7135 : 0 : fdwroutine = GetFdwRoutineByRelId(rte->relid);
7136 : 0 : }
7137 : : else
7138 : 5309 : fdwroutine = NULL;
7139 : 5309 : }
7140 : :
7141 : : /*
7142 : : * MERGE is not currently supported for foreign tables. We already
7143 : : * checked that when the table mentioned in the query is foreign; but
7144 : : * we can still get here if a partitioned table has a foreign table as
7145 : : * partition. Disallow that now, to avoid an uglier error message
7146 : : * later.
7147 : : */
7148 [ + + + - ]: 7539 : if (operation == CMD_MERGE && fdwroutine != NULL)
7149 : : {
7150 [ # # ]: 0 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
7151 : :
7152 [ # # # # ]: 0 : ereport(ERROR,
7153 : : errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
7154 : : errmsg("cannot execute MERGE on relation \"%s\"",
7155 : : get_rel_name(rte->relid)),
7156 : : errdetail_relkind_not_supported(rte->relkind));
7157 : 0 : }
7158 : :
7159 : : /*
7160 : : * Try to modify the foreign table directly if (1) the FDW provides
7161 : : * callback functions needed for that and (2) there are no local
7162 : : * structures that need to be run for each modified row: row-level
7163 : : * triggers on the foreign table, stored generated columns, WITH CHECK
7164 : : * OPTIONs from parent views, Vars returning OLD/NEW in the RETURNING
7165 : : * list, or transition tables on the named relation.
7166 : : */
7167 : 7539 : direct_modify = false;
7168 [ - + ]: 7539 : if (fdwroutine != NULL &&
7169 [ # # ]: 0 : fdwroutine->PlanDirectModify != NULL &&
7170 [ # # ]: 0 : fdwroutine->BeginDirectModify != NULL &&
7171 [ # # ]: 0 : fdwroutine->IterateDirectModify != NULL &&
7172 [ # # ]: 0 : fdwroutine->EndDirectModify != NULL &&
7173 [ # # ]: 0 : withCheckOptionLists == NIL &&
7174 [ # # # # ]: 0 : !has_row_triggers(root, rti, operation) &&
7175 : 0 : !has_stored_generated_columns(root, rti))
7176 : : {
7177 : : /*
7178 : : * returning_old_or_new and transition_tables are the same for all
7179 : : * result relations, respectively
7180 : : */
7181 [ # # ]: 0 : if (!returning_old_or_new_valid)
7182 : : {
7183 : 0 : returning_old_or_new =
7184 : 0 : contain_vars_returning_old_or_new((Node *)
7185 : 0 : root->parse->returningList);
7186 : 0 : returning_old_or_new_valid = true;
7187 : 0 : }
7188 [ # # ]: 0 : if (!returning_old_or_new)
7189 : : {
7190 [ # # ]: 0 : if (!transition_tables_valid)
7191 : : {
7192 : 0 : transition_tables = has_transition_tables(root,
7193 : 0 : nominalRelation,
7194 : 0 : operation);
7195 : 0 : transition_tables_valid = true;
7196 : 0 : }
7197 [ # # ]: 0 : if (!transition_tables)
7198 : 0 : direct_modify = fdwroutine->PlanDirectModify(root, node,
7199 : 0 : rti, i);
7200 : 0 : }
7201 : 0 : }
7202 [ + - ]: 7539 : if (direct_modify)
7203 : 0 : direct_modify_plans = bms_add_member(direct_modify_plans, i);
7204 : :
7205 [ + - ]: 7539 : if (!direct_modify &&
7206 [ - + # # ]: 7539 : fdwroutine != NULL &&
7207 : 0 : fdwroutine->PlanForeignModify != NULL)
7208 : 0 : fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
7209 : : else
7210 : 7539 : fdw_private = NIL;
7211 : 7539 : fdw_private_list = lappend(fdw_private_list, fdw_private);
7212 : 7539 : i++;
7213 : 7539 : }
7214 : 7234 : node->fdwPrivLists = fdw_private_list;
7215 : 7234 : node->fdwDirectModifyPlans = direct_modify_plans;
7216 : :
7217 : 14468 : return node;
7218 : 7234 : }
7219 : :
7220 : : /*
7221 : : * is_projection_capable_path
7222 : : * Check whether a given Path node is able to do projection.
7223 : : */
7224 : : bool
7225 : 79282 : is_projection_capable_path(Path *path)
7226 : : {
7227 : : /* Most plan types can project, so just list the ones that can't */
7228 [ + + + - : 79282 : switch (path->pathtype)
+ ]
7229 : : {
7230 : : case T_Hash:
7231 : : case T_Material:
7232 : : case T_Memoize:
7233 : : case T_Sort:
7234 : : case T_IncrementalSort:
7235 : : case T_Unique:
7236 : : case T_SetOp:
7237 : : case T_LockRows:
7238 : : case T_Limit:
7239 : : case T_ModifyTable:
7240 : : case T_MergeAppend:
7241 : : case T_RecursiveUnion:
7242 : 174 : return false;
7243 : : case T_CustomScan:
7244 [ # # ]: 0 : if (castNode(CustomPath, path)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7245 : 0 : return true;
7246 : 0 : return false;
7247 : : case T_Append:
7248 : :
7249 : : /*
7250 : : * Append can't project, but if an AppendPath is being used to
7251 : : * represent a dummy path, what will actually be generated is a
7252 : : * Result which can project.
7253 : : */
7254 [ - + ]: 2636 : return IS_DUMMY_APPEND(path);
7255 : : case T_ProjectSet:
7256 : :
7257 : : /*
7258 : : * Although ProjectSet certainly projects, say "no" because we
7259 : : * don't want the planner to randomly replace its tlist with
7260 : : * something else; the SRFs have to stay at top level. This might
7261 : : * get relaxed later.
7262 : : */
7263 : 203 : return false;
7264 : : default:
7265 : 76269 : break;
7266 : : }
7267 : 76269 : return true;
7268 : 79282 : }
7269 : :
7270 : : /*
7271 : : * is_projection_capable_plan
7272 : : * Check whether a given Plan node is able to do projection.
7273 : : */
7274 : : bool
7275 : 33098 : is_projection_capable_plan(Plan *plan)
7276 : : {
7277 : : /* Most plan types can project, so just list the ones that can't */
7278 [ + + - - ]: 33098 : switch (nodeTag(plan))
7279 : : {
7280 : : case T_Hash:
7281 : : case T_Material:
7282 : : case T_Memoize:
7283 : : case T_Sort:
7284 : : case T_Unique:
7285 : : case T_SetOp:
7286 : : case T_LockRows:
7287 : : case T_Limit:
7288 : : case T_ModifyTable:
7289 : : case T_Append:
7290 : : case T_MergeAppend:
7291 : : case T_RecursiveUnion:
7292 : 5 : return false;
7293 : : case T_CustomScan:
7294 [ # # ]: 0 : if (((CustomScan *) plan)->flags & CUSTOMPATH_SUPPORT_PROJECTION)
7295 : 0 : return true;
7296 : 0 : return false;
7297 : : case T_ProjectSet:
7298 : :
7299 : : /*
7300 : : * Although ProjectSet certainly projects, say "no" because we
7301 : : * don't want the planner to randomly replace its tlist with
7302 : : * something else; the SRFs have to stay at top level. This might
7303 : : * get relaxed later.
7304 : : */
7305 : 0 : return false;
7306 : : default:
7307 : 33093 : break;
7308 : : }
7309 : 33093 : return true;
7310 : 33098 : }
|