Branch data Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * pathnode.c
4 : : * Routines to manipulate pathlists and create path nodes
5 : : *
6 : : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
7 : : * Portions Copyright (c) 1994, Regents of the University of California
8 : : *
9 : : *
10 : : * IDENTIFICATION
11 : : * src/backend/optimizer/util/pathnode.c
12 : : *
13 : : *-------------------------------------------------------------------------
14 : : */
15 : : #include "postgres.h"
16 : :
17 : : #include "access/htup_details.h"
18 : : #include "executor/nodeSetOp.h"
19 : : #include "foreign/fdwapi.h"
20 : : #include "miscadmin.h"
21 : : #include "nodes/extensible.h"
22 : : #include "optimizer/appendinfo.h"
23 : : #include "optimizer/clauses.h"
24 : : #include "optimizer/cost.h"
25 : : #include "optimizer/optimizer.h"
26 : : #include "optimizer/pathnode.h"
27 : : #include "optimizer/paths.h"
28 : : #include "optimizer/planmain.h"
29 : : #include "optimizer/tlist.h"
30 : : #include "parser/parsetree.h"
31 : : #include "utils/memutils.h"
32 : : #include "utils/selfuncs.h"
33 : :
34 : : typedef enum
35 : : {
36 : : COSTS_EQUAL, /* path costs are fuzzily equal */
37 : : COSTS_BETTER1, /* first path is cheaper than second */
38 : : COSTS_BETTER2, /* second path is cheaper than first */
39 : : COSTS_DIFFERENT, /* neither path dominates the other on cost */
40 : : } PathCostComparison;
41 : :
42 : : /*
43 : : * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
44 : : * XXX is it worth making this user-controllable? It provides a tradeoff
45 : : * between planner runtime and the accuracy of path cost comparisons.
46 : : */
47 : : #define STD_FUZZ_FACTOR 1.01
48 : :
49 : : static int append_total_cost_compare(const ListCell *a, const ListCell *b);
50 : : static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
51 : : static List *reparameterize_pathlist_by_child(PlannerInfo *root,
52 : : List *pathlist,
53 : : RelOptInfo *child_rel);
54 : : static bool pathlist_is_reparameterizable_by_child(List *pathlist,
55 : : RelOptInfo *child_rel);
56 : :
57 : :
58 : : /*****************************************************************************
59 : : * MISC. PATH UTILITIES
60 : : *****************************************************************************/
61 : :
62 : : /*
63 : : * compare_path_costs
64 : : * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
65 : : * or more expensive than path2 for the specified criterion.
66 : : */
67 : : int
68 : 117695 : compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
69 : : {
70 : : /* Number of disabled nodes, if different, trumps all else. */
71 [ + + ]: 117695 : if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
72 : : {
73 [ + - ]: 532 : if (path1->disabled_nodes < path2->disabled_nodes)
74 : 532 : return -1;
75 : : else
76 : 0 : return +1;
77 : : }
78 : :
79 [ + + ]: 117163 : if (criterion == STARTUP_COST)
80 : : {
81 [ + + ]: 60617 : if (path1->startup_cost < path2->startup_cost)
82 : 35631 : return -1;
83 [ + + ]: 24986 : if (path1->startup_cost > path2->startup_cost)
84 : 10419 : return +1;
85 : :
86 : : /*
87 : : * If paths have the same startup cost (not at all unlikely), order
88 : : * them by total cost.
89 : : */
90 [ + + ]: 14567 : if (path1->total_cost < path2->total_cost)
91 : 7749 : return -1;
92 [ + + ]: 6818 : if (path1->total_cost > path2->total_cost)
93 : 879 : return +1;
94 : 5939 : }
95 : : else
96 : : {
97 [ + + ]: 56546 : if (path1->total_cost < path2->total_cost)
98 : 54069 : return -1;
99 [ + + ]: 2477 : if (path1->total_cost > path2->total_cost)
100 : 669 : return +1;
101 : :
102 : : /*
103 : : * If paths have the same total cost, order them by startup cost.
104 : : */
105 [ + + ]: 1808 : if (path1->startup_cost < path2->startup_cost)
106 : 10 : return -1;
107 [ + + ]: 1798 : if (path1->startup_cost > path2->startup_cost)
108 : 2 : return +1;
109 : : }
110 : 7735 : return 0;
111 : 117695 : }
112 : :
113 : : /*
114 : : * compare_fractional_path_costs
115 : : * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
116 : : * or more expensive than path2 for fetching the specified fraction
117 : : * of the total tuples.
118 : : *
119 : : * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
120 : : * path with the cheaper total_cost.
121 : : */
122 : : int
123 : 889 : compare_fractional_path_costs(Path *path1, Path *path2,
124 : : double fraction)
125 : : {
126 : 889 : Cost cost1,
127 : : cost2;
128 : :
129 : : /* Number of disabled nodes, if different, trumps all else. */
130 [ + + ]: 889 : if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
131 : : {
132 [ + - ]: 6 : if (path1->disabled_nodes < path2->disabled_nodes)
133 : 6 : return -1;
134 : : else
135 : 0 : return +1;
136 : : }
137 : :
138 [ + - + + ]: 883 : if (fraction <= 0.0 || fraction >= 1.0)
139 : 290 : return compare_path_costs(path1, path2, TOTAL_COST);
140 : 1186 : cost1 = path1->startup_cost +
141 : 593 : fraction * (path1->total_cost - path1->startup_cost);
142 : 1186 : cost2 = path2->startup_cost +
143 : 593 : fraction * (path2->total_cost - path2->startup_cost);
144 [ + + ]: 593 : if (cost1 < cost2)
145 : 505 : return -1;
146 [ + - ]: 88 : if (cost1 > cost2)
147 : 88 : return +1;
148 : 0 : return 0;
149 : 889 : }
150 : :
151 : : /*
152 : : * compare_path_costs_fuzzily
153 : : * Compare the costs of two paths to see if either can be said to
154 : : * dominate the other.
155 : : *
156 : : * We use fuzzy comparisons so that add_path() can avoid keeping both of
157 : : * a pair of paths that really have insignificantly different cost.
158 : : *
159 : : * The fuzz_factor argument must be 1.0 plus delta, where delta is the
160 : : * fraction of the smaller cost that is considered to be a significant
161 : : * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
162 : : * be 1% of the smaller cost.
163 : : *
164 : : * The two paths are said to have "equal" costs if both startup and total
165 : : * costs are fuzzily the same. Path1 is said to be better than path2 if
166 : : * it has fuzzily better startup cost and fuzzily no worse total cost,
167 : : * or if it has fuzzily better total cost and fuzzily no worse startup cost.
168 : : * Path2 is better than path1 if the reverse holds. Finally, if one path
169 : : * is fuzzily better than the other on startup cost and fuzzily worse on
170 : : * total cost, we just say that their costs are "different", since neither
171 : : * dominates the other across the whole performance spectrum.
172 : : *
173 : : * This function also enforces a policy rule that paths for which the relevant
174 : : * one of parent->consider_startup and parent->consider_param_startup is false
175 : : * cannot survive comparisons solely on the grounds of good startup cost, so
176 : : * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
177 : : * (But if total costs are fuzzily equal, we compare startup costs anyway,
178 : : * in hopes of eliminating one path or the other.)
179 : : */
180 : : static PathCostComparison
181 : 412883 : compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
182 : : {
183 : : #define CONSIDER_PATH_STARTUP_COST(p) \
184 : : ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
185 : :
186 : : /* Number of disabled nodes, if different, trumps all else. */
187 [ + + ]: 412883 : if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
188 : : {
189 [ + + ]: 4787 : if (path1->disabled_nodes < path2->disabled_nodes)
190 : 2412 : return COSTS_BETTER1;
191 : : else
192 : 2375 : return COSTS_BETTER2;
193 : : }
194 : :
195 : : /*
196 : : * Check total cost first since it's more likely to be different; many
197 : : * paths have zero startup cost.
198 : : */
199 [ + + ]: 408096 : if (path1->total_cost > path2->total_cost * fuzz_factor)
200 : : {
201 : : /* path1 fuzzily worse on total cost */
202 [ + + + + ]: 203111 : if (CONSIDER_PATH_STARTUP_COST(path1) &&
203 : 368141 : path2->startup_cost > path1->startup_cost * fuzz_factor)
204 : : {
205 : : /* ... but path2 fuzzily worse on startup, so DIFFERENT */
206 : 1775 : return COSTS_DIFFERENT;
207 : : }
208 : : /* else path2 dominates */
209 : 165030 : return COSTS_BETTER2;
210 : : }
211 [ + + ]: 204985 : if (path2->total_cost > path1->total_cost * fuzz_factor)
212 : : {
213 : : /* path2 fuzzily worse on total cost */
214 [ + + + + ]: 94861 : if (CONSIDER_PATH_STARTUP_COST(path2) &&
215 : 184058 : path1->startup_cost > path2->startup_cost * fuzz_factor)
216 : : {
217 : : /* ... but path1 fuzzily worse on startup, so DIFFERENT */
218 : 1114 : return COSTS_DIFFERENT;
219 : : }
220 : : /* else path1 dominates */
221 : 89197 : return COSTS_BETTER1;
222 : : }
223 : : /* fuzzily the same on total cost ... */
224 [ + + ]: 110124 : if (path1->startup_cost > path2->startup_cost * fuzz_factor)
225 : : {
226 : : /* ... but path1 fuzzily worse on startup, so path2 wins */
227 : 37697 : return COSTS_BETTER2;
228 : : }
229 [ + + ]: 72427 : if (path2->startup_cost > path1->startup_cost * fuzz_factor)
230 : : {
231 : : /* ... but path2 fuzzily worse on startup, so path1 wins */
232 : 6069 : return COSTS_BETTER1;
233 : : }
234 : : /* fuzzily the same on both costs */
235 : 66358 : return COSTS_EQUAL;
236 : :
237 : : #undef CONSIDER_PATH_STARTUP_COST
238 : 372027 : }
239 : :
240 : : /*
241 : : * set_cheapest
242 : : * Find the minimum-cost paths from among a relation's paths,
243 : : * and save them in the rel's cheapest-path fields.
244 : : *
245 : : * cheapest_total_path is normally the cheapest-total-cost unparameterized
246 : : * path; but if there are no unparameterized paths, we assign it to be the
247 : : * best (cheapest least-parameterized) parameterized path. However, only
248 : : * unparameterized paths are considered candidates for cheapest_startup_path,
249 : : * so that will be NULL if there are no unparameterized paths.
250 : : *
251 : : * The cheapest_parameterized_paths list collects all parameterized paths
252 : : * that have survived the add_path() tournament for this relation. (Since
253 : : * add_path ignores pathkeys for a parameterized path, these will be paths
254 : : * that have best cost or best row count for their parameterization. We
255 : : * may also have both a parallel-safe and a non-parallel-safe path in some
256 : : * cases for the same parameterization in some cases, but this should be
257 : : * relatively rare since, most typically, all paths for the same relation
258 : : * will be parallel-safe or none of them will.)
259 : : *
260 : : * cheapest_parameterized_paths always includes the cheapest-total
261 : : * unparameterized path, too, if there is one; the users of that list find
262 : : * it more convenient if that's included.
263 : : *
264 : : * This is normally called only after we've finished constructing the path
265 : : * list for the rel node.
266 : : */
267 : : void
268 : 210203 : set_cheapest(RelOptInfo *parent_rel)
269 : : {
270 : 210203 : Path *cheapest_startup_path;
271 : 210203 : Path *cheapest_total_path;
272 : 210203 : Path *best_param_path;
273 : 210203 : List *parameterized_paths;
274 : 210203 : ListCell *p;
275 : :
276 [ + - ]: 210203 : Assert(IsA(parent_rel, RelOptInfo));
277 : :
278 [ + - ]: 210203 : if (parent_rel->pathlist == NIL)
279 [ # # # # ]: 0 : elog(ERROR, "could not devise a query plan for the given query");
280 : :
281 : 210203 : cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
282 : 210203 : parameterized_paths = NIL;
283 : :
284 [ + - + + : 479685 : foreach(p, parent_rel->pathlist)
+ + ]
285 : : {
286 : 269482 : Path *path = (Path *) lfirst(p);
287 : 269482 : int cmp;
288 : :
289 [ + + ]: 269482 : if (path->param_info)
290 : : {
291 : : /* Parameterized path, so add it to parameterized_paths */
292 : 12865 : parameterized_paths = lappend(parameterized_paths, path);
293 : :
294 : : /*
295 : : * If we have an unparameterized cheapest-total, we no longer care
296 : : * about finding the best parameterized path, so move on.
297 : : */
298 [ + + ]: 12865 : if (cheapest_total_path)
299 : 2638 : continue;
300 : :
301 : : /*
302 : : * Otherwise, track the best parameterized path, which is the one
303 : : * with least total cost among those of the minimum
304 : : * parameterization.
305 : : */
306 [ + + ]: 10227 : if (best_param_path == NULL)
307 : 9390 : best_param_path = path;
308 : : else
309 : : {
310 [ + - + + : 1674 : switch (bms_subset_compare(PATH_REQ_OUTER(path),
+ ]
311 [ + - ]: 837 : PATH_REQ_OUTER(best_param_path)))
312 : : {
313 : : case BMS_EQUAL:
314 : : /* keep the cheaper one */
315 : 10 : if (compare_path_costs(path, best_param_path,
316 [ + - ]: 10 : TOTAL_COST) < 0)
317 : 0 : best_param_path = path;
318 : 10 : break;
319 : : case BMS_SUBSET1:
320 : : /* new path is less-parameterized */
321 : 56 : best_param_path = path;
322 : 56 : break;
323 : : case BMS_SUBSET2:
324 : : /* old path is less-parameterized, keep it */
325 : : break;
326 : : case BMS_DIFFERENT:
327 : :
328 : : /*
329 : : * This means that neither path has the least possible
330 : : * parameterization for the rel. We'll sit on the old
331 : : * path until something better comes along.
332 : : */
333 : : break;
334 : : }
335 : : }
336 : 10227 : }
337 : : else
338 : : {
339 : : /* Unparameterized path, so consider it for cheapest slots */
340 [ + + ]: 256617 : if (cheapest_total_path == NULL)
341 : : {
342 : 209626 : cheapest_startup_path = cheapest_total_path = path;
343 : 209626 : continue;
344 : : }
345 : :
346 : : /*
347 : : * If we find two paths of identical costs, try to keep the
348 : : * better-sorted one. The paths might have unrelated sort
349 : : * orderings, in which case we can only guess which might be
350 : : * better to keep, but if one is superior then we definitely
351 : : * should keep that one.
352 : : */
353 : 46991 : cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
354 [ + + - + ]: 47021 : if (cmp > 0 ||
355 [ + + ]: 39803 : (cmp == 0 &&
356 : 60 : compare_pathkeys(cheapest_startup_path->pathkeys,
357 : 60 : path->pathkeys) == PATHKEYS_BETTER2))
358 : 7188 : cheapest_startup_path = path;
359 : :
360 : 46991 : cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
361 [ + + - + ]: 46999 : if (cmp > 0 ||
362 [ + + ]: 46989 : (cmp == 0 &&
363 : 16 : compare_pathkeys(cheapest_total_path->pathkeys,
364 : 16 : path->pathkeys) == PATHKEYS_BETTER2))
365 : 2 : cheapest_total_path = path;
366 : : }
367 [ - + + ]: 269482 : }
368 : :
369 : : /* Add cheapest unparameterized path, if any, to parameterized_paths */
370 [ + + ]: 210203 : if (cheapest_total_path)
371 : 209626 : parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
372 : :
373 : : /*
374 : : * If there is no unparameterized path, use the best parameterized path as
375 : : * cheapest_total_path (but not as cheapest_startup_path).
376 : : */
377 [ + + ]: 210203 : if (cheapest_total_path == NULL)
378 : 577 : cheapest_total_path = best_param_path;
379 [ + - ]: 210203 : Assert(cheapest_total_path != NULL);
380 : :
381 : 210203 : parent_rel->cheapest_startup_path = cheapest_startup_path;
382 : 210203 : parent_rel->cheapest_total_path = cheapest_total_path;
383 : 210203 : parent_rel->cheapest_parameterized_paths = parameterized_paths;
384 : 210203 : }
385 : :
386 : : /*
387 : : * add_path
388 : : * Consider a potential implementation path for the specified parent rel,
389 : : * and add it to the rel's pathlist if it is worthy of consideration.
390 : : *
391 : : * A path is worthy if it has a better sort order (better pathkeys) or
392 : : * cheaper cost (as defined below), or generates fewer rows, than any
393 : : * existing path that has the same or superset parameterization rels. We
394 : : * also consider parallel-safe paths more worthy than others.
395 : : *
396 : : * Cheaper cost can mean either a cheaper total cost or a cheaper startup
397 : : * cost; if one path is cheaper in one of these aspects and another is
398 : : * cheaper in the other, we keep both. However, when some path type is
399 : : * disabled (e.g. due to enable_seqscan=false), the number of times that
400 : : * a disabled path type is used is considered to be a higher-order
401 : : * component of the cost. Hence, if path A uses no disabled path type,
402 : : * and path B uses 1 or more disabled path types, A is cheaper, no matter
403 : : * what we estimate for the startup and total costs. The startup and total
404 : : * cost essentially act as a tiebreak when comparing paths that use equal
405 : : * numbers of disabled path nodes; but in practice this tiebreak is almost
406 : : * always used, since normally no path types are disabled.
407 : : *
408 : : * In addition to possibly adding new_path, we also remove from the rel's
409 : : * pathlist any old paths that are dominated by new_path --- that is,
410 : : * new_path is cheaper, at least as well ordered, generates no more rows,
411 : : * requires no outer rels not required by the old path, and is no less
412 : : * parallel-safe.
413 : : *
414 : : * In most cases, a path with a superset parameterization will generate
415 : : * fewer rows (since it has more join clauses to apply), so that those two
416 : : * figures of merit move in opposite directions; this means that a path of
417 : : * one parameterization can seldom dominate a path of another. But such
418 : : * cases do arise, so we make the full set of checks anyway.
419 : : *
420 : : * There are two policy decisions embedded in this function, along with
421 : : * its sibling add_path_precheck. First, we treat all parameterized paths
422 : : * as having NIL pathkeys, so that they cannot win comparisons on the
423 : : * basis of sort order. This is to reduce the number of parameterized
424 : : * paths that are kept; see discussion in src/backend/optimizer/README.
425 : : *
426 : : * Second, we only consider cheap startup cost to be interesting if
427 : : * parent_rel->consider_startup is true for an unparameterized path, or
428 : : * parent_rel->consider_param_startup is true for a parameterized one.
429 : : * Again, this allows discarding useless paths sooner.
430 : : *
431 : : * The pathlist is kept sorted by disabled_nodes and then by total_cost,
432 : : * with cheaper paths at the front. Within this routine, that's simply a
433 : : * speed hack: doing it that way makes it more likely that we will reject
434 : : * an inferior path after a few comparisons, rather than many comparisons.
435 : : * However, add_path_precheck relies on this ordering to exit early
436 : : * when possible.
437 : : *
438 : : * NOTE: discarded Path objects are immediately pfree'd to reduce planner
439 : : * memory consumption. We dare not try to free the substructure of a Path,
440 : : * since much of it may be shared with other Paths or the query tree itself;
441 : : * but just recycling discarded Path nodes is a very useful savings in
442 : : * a large join tree. We can recycle the List nodes of pathlist, too.
443 : : *
444 : : * As noted in optimizer/README, deleting a previously-accepted Path is
445 : : * safe because we know that Paths of this rel cannot yet be referenced
446 : : * from any other rel, such as a higher-level join. However, in some cases
447 : : * it is possible that a Path is referenced by another Path for its own
448 : : * rel; we must not delete such a Path, even if it is dominated by the new
449 : : * Path. Currently this occurs only for IndexPath objects, which may be
450 : : * referenced as children of BitmapHeapPaths as well as being paths in
451 : : * their own right. Hence, we don't pfree IndexPaths when rejecting them.
452 : : *
453 : : * 'parent_rel' is the relation entry to which the path corresponds.
454 : : * 'new_path' is a potential path for parent_rel.
455 : : *
456 : : * Returns nothing, but modifies parent_rel->pathlist.
457 : : */
458 : : void
459 : 444168 : add_path(RelOptInfo *parent_rel, Path *new_path)
460 : : {
461 : 444168 : bool accept_new = true; /* unless we find a superior old path */
462 : 444168 : int insert_at = 0; /* where to insert new item */
463 : 444168 : List *new_path_pathkeys;
464 : 444168 : ListCell *p1;
465 : :
466 : : /*
467 : : * This is a convenient place to check for query cancel --- no part of the
468 : : * planner goes very long without calling add_path().
469 : : */
470 [ + - ]: 444168 : CHECK_FOR_INTERRUPTS();
471 : :
472 : : /* Pretend parameterized paths have no pathkeys, per comment above */
473 [ + + ]: 444168 : new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
474 : :
475 : : /*
476 : : * Loop to check proposed new path against old paths. Note it is possible
477 : : * for more than one old path to be tossed out because new_path dominates
478 : : * it.
479 : : */
480 [ + + + + : 815918 : foreach(p1, parent_rel->pathlist)
+ + ]
481 : : {
482 : 371750 : Path *old_path = (Path *) lfirst(p1);
483 : 371750 : bool remove_old = false; /* unless new proves superior */
484 : 371750 : PathCostComparison costcmp;
485 : 371750 : PathKeysComparison keyscmp;
486 : 371750 : BMS_Comparison outercmp;
487 : :
488 : : /*
489 : : * Do a fuzzy cost comparison with standard fuzziness limit.
490 : : */
491 : 371750 : costcmp = compare_path_costs_fuzzily(new_path, old_path,
492 : : STD_FUZZ_FACTOR);
493 : :
494 : : /*
495 : : * If the two paths compare differently for startup and total cost,
496 : : * then we want to keep both, and we can skip comparing pathkeys and
497 : : * required_outer rels. If they compare the same, proceed with the
498 : : * other comparisons. Row count is checked last. (We make the tests
499 : : * in this order because the cost comparison is most likely to turn
500 : : * out "different", and the pathkeys comparison next most likely. As
501 : : * explained above, row count very seldom makes a difference, so even
502 : : * though it's cheap to compare there's not much point in checking it
503 : : * earlier.)
504 : : */
505 [ + + ]: 371750 : if (costcmp != COSTS_DIFFERENT)
506 : : {
507 : : /* Similarly check to see if either dominates on pathkeys */
508 : 368861 : List *old_path_pathkeys;
509 : :
510 [ + + ]: 368861 : old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
511 : 737722 : keyscmp = compare_pathkeys(new_path_pathkeys,
512 : 368861 : old_path_pathkeys);
513 [ + + ]: 368861 : if (keyscmp != PATHKEYS_DIFFERENT)
514 : : {
515 [ - + + + ]: 356713 : switch (costcmp)
516 : : {
517 : : case COSTS_EQUAL:
518 [ + + ]: 89366 : outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
519 [ + + ]: 44683 : PATH_REQ_OUTER(old_path));
520 [ + + ]: 44683 : if (keyscmp == PATHKEYS_BETTER1)
521 : : {
522 [ - + ]: 995 : if ((outercmp == BMS_EQUAL ||
523 : 0 : outercmp == BMS_SUBSET1) &&
524 [ + - - + ]: 995 : new_path->rows <= old_path->rows &&
525 : 995 : new_path->parallel_safe >= old_path->parallel_safe)
526 : 995 : remove_old = true; /* new dominates old */
527 : 995 : }
528 [ + + ]: 43688 : else if (keyscmp == PATHKEYS_BETTER2)
529 : : {
530 [ + + ]: 2053 : if ((outercmp == BMS_EQUAL ||
531 : 114 : outercmp == BMS_SUBSET2) &&
532 [ + - - + ]: 2053 : new_path->rows >= old_path->rows &&
533 : 2053 : new_path->parallel_safe <= old_path->parallel_safe)
534 : 2053 : accept_new = false; /* old dominates new */
535 : 2053 : }
536 : : else /* keyscmp == PATHKEYS_EQUAL */
537 : : {
538 [ + + ]: 41635 : if (outercmp == BMS_EQUAL)
539 : : {
540 : : /*
541 : : * Same pathkeys and outer rels, and fuzzily
542 : : * the same cost, so keep just one; to decide
543 : : * which, first check parallel-safety, then
544 : : * rows, then do a fuzzy cost comparison with
545 : : * very small fuzz limit. (We used to do an
546 : : * exact cost comparison, but that results in
547 : : * annoying platform-specific plan variations
548 : : * due to roundoff in the cost estimates.) If
549 : : * things are still tied, arbitrarily keep
550 : : * only the old path. Notice that we will
551 : : * keep only the old path even if the
552 : : * less-fuzzy comparison decides the startup
553 : : * and total costs compare differently.
554 : : */
555 [ + + + + ]: 82334 : if (new_path->parallel_safe >
556 : 41167 : old_path->parallel_safe)
557 : 7 : remove_old = true; /* new dominates old */
558 [ + + + + ]: 82320 : else if (new_path->parallel_safe <
559 : 41160 : old_path->parallel_safe)
560 : 9 : accept_new = false; /* old dominates new */
561 [ + + ]: 41151 : else if (new_path->rows < old_path->rows)
562 : 6 : remove_old = true; /* new dominates old */
563 [ + + ]: 41145 : else if (new_path->rows > old_path->rows)
564 : 12 : accept_new = false; /* old dominates new */
565 : 82266 : else if (compare_path_costs_fuzzily(new_path,
566 : 41133 : old_path,
567 [ + + ]: 41133 : 1.0000000001) == COSTS_BETTER1)
568 : 1514 : remove_old = true; /* new dominates old */
569 : : else
570 : 39619 : accept_new = false; /* old equals or
571 : : * dominates new */
572 : 41167 : }
573 [ + + ]: 468 : else if (outercmp == BMS_SUBSET1 &&
574 [ + + + - ]: 7 : new_path->rows <= old_path->rows &&
575 : 5 : new_path->parallel_safe >= old_path->parallel_safe)
576 : 5 : remove_old = true; /* new dominates old */
577 [ + + ]: 463 : else if (outercmp == BMS_SUBSET2 &&
578 [ + + - + ]: 375 : new_path->rows >= old_path->rows &&
579 : 374 : new_path->parallel_safe <= old_path->parallel_safe)
580 : 374 : accept_new = false; /* old dominates new */
581 : : /* else different parameterizations, keep both */
582 : : }
583 : 44683 : break;
584 : : case COSTS_BETTER1:
585 [ + + ]: 98944 : if (keyscmp != PATHKEYS_BETTER2)
586 : : {
587 [ + + ]: 129426 : outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
588 [ + + ]: 64713 : PATH_REQ_OUTER(old_path));
589 [ + + ]: 64713 : if ((outercmp == BMS_EQUAL ||
590 : 10505 : outercmp == BMS_SUBSET1) &&
591 [ + + + + ]: 64713 : new_path->rows <= old_path->rows &&
592 : 54213 : new_path->parallel_safe >= old_path->parallel_safe)
593 : 53726 : remove_old = true; /* new dominates old */
594 : 64713 : }
595 : 98944 : break;
596 : : case COSTS_BETTER2:
597 [ + + ]: 213086 : if (keyscmp != PATHKEYS_BETTER1)
598 : : {
599 [ + + ]: 278108 : outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
600 [ + + ]: 139054 : PATH_REQ_OUTER(old_path));
601 [ + + ]: 139054 : if ((outercmp == BMS_EQUAL ||
602 : 17330 : outercmp == BMS_SUBSET2) &&
603 [ + + + + ]: 139054 : new_path->rows >= old_path->rows &&
604 : 122295 : new_path->parallel_safe <= old_path->parallel_safe)
605 : 121978 : accept_new = false; /* old dominates new */
606 : 139054 : }
607 : 213086 : break;
608 : : case COSTS_DIFFERENT:
609 : :
610 : : /*
611 : : * can't get here, but keep this case to keep compiler
612 : : * quiet
613 : : */
614 : : break;
615 : : }
616 : 356713 : }
617 : 368861 : }
618 : :
619 : : /*
620 : : * Remove current element from pathlist if dominated by new.
621 : : */
622 [ + + ]: 371750 : if (remove_old)
623 : : {
624 : 56253 : parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
625 : : p1);
626 : :
627 : : /*
628 : : * Delete the data pointed-to by the deleted cell, if possible
629 : : */
630 [ + + ]: 56253 : if (!IsA(old_path, IndexPath))
631 : 54697 : pfree(old_path);
632 : 56253 : }
633 : : else
634 : : {
635 : : /*
636 : : * new belongs after this old path if it has more disabled nodes
637 : : * or if it has the same number of nodes but a greater total cost
638 : : */
639 [ + + + + ]: 628431 : if (new_path->disabled_nodes > old_path->disabled_nodes ||
640 [ + + ]: 313122 : (new_path->disabled_nodes == old_path->disabled_nodes &&
641 : 312934 : new_path->total_cost >= old_path->total_cost))
642 : 262147 : insert_at = foreach_current_index(p1) + 1;
643 : : }
644 : :
645 : : /*
646 : : * If we found an old path that dominates new_path, we can quit
647 : : * scanning the pathlist; we will not add new_path, and we assume
648 : : * new_path cannot dominate any other elements of the pathlist.
649 : : */
650 [ + + ]: 371750 : if (!accept_new)
651 : 164045 : break;
652 [ + + ]: 371750 : }
653 : :
654 [ + + ]: 444168 : if (accept_new)
655 : : {
656 : : /* Accept the new path: insert it at proper place in pathlist */
657 : 280123 : parent_rel->pathlist =
658 : 280123 : list_insert_nth(parent_rel->pathlist, insert_at, new_path);
659 : 280123 : }
660 : : else
661 : : {
662 : : /* Reject and recycle the new path */
663 [ + + ]: 164045 : if (!IsA(new_path, IndexPath))
664 : 154827 : pfree(new_path);
665 : : }
666 : 444168 : }
667 : :
668 : : /*
669 : : * add_path_precheck
670 : : * Check whether a proposed new path could possibly get accepted.
671 : : * We assume we know the path's pathkeys and parameterization accurately,
672 : : * and have lower bounds for its costs.
673 : : *
674 : : * Note that we do not know the path's rowcount, since getting an estimate for
675 : : * that is too expensive to do before prechecking. We assume here that paths
676 : : * of a superset parameterization will generate fewer rows; if that holds,
677 : : * then paths with different parameterizations cannot dominate each other
678 : : * and so we can simply ignore existing paths of another parameterization.
679 : : * (In the infrequent cases where that rule of thumb fails, add_path will
680 : : * get rid of the inferior path.)
681 : : *
682 : : * At the time this is called, we haven't actually built a Path structure,
683 : : * so the required information has to be passed piecemeal.
684 : : */
685 : : bool
686 : 433692 : add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
687 : : Cost startup_cost, Cost total_cost,
688 : : List *pathkeys, Relids required_outer)
689 : : {
690 : 433692 : List *new_path_pathkeys;
691 : 433692 : bool consider_startup;
692 : 433692 : ListCell *p1;
693 : :
694 : : /* Pretend parameterized paths have no pathkeys, per add_path policy */
695 [ + + ]: 433692 : new_path_pathkeys = required_outer ? NIL : pathkeys;
696 : :
697 : : /* Decide whether new path's startup cost is interesting */
698 [ + + ]: 433692 : consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
699 : :
700 [ + + + + : 920733 : foreach(p1, parent_rel->pathlist)
+ + + + ]
701 : : {
702 : 487041 : Path *old_path = (Path *) lfirst(p1);
703 : 487041 : PathKeysComparison keyscmp;
704 : :
705 : : /*
706 : : * Since the pathlist is sorted by disabled_nodes and then by
707 : : * total_cost, we can stop looking once we reach a path with more
708 : : * disabled nodes, or the same number of disabled nodes plus a
709 : : * total_cost larger than the new path's.
710 : : */
711 [ + + ]: 487041 : if (unlikely(old_path->disabled_nodes != disabled_nodes))
712 : : {
713 [ + + ]: 1665 : if (disabled_nodes < old_path->disabled_nodes)
714 : 106 : break;
715 : 1559 : }
716 [ + + ]: 485376 : else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
717 : 178116 : break;
718 : :
719 : : /*
720 : : * We are looking for an old_path with the same parameterization (and
721 : : * by assumption the same rowcount) that dominates the new path on
722 : : * pathkeys as well as both cost metrics. If we find one, we can
723 : : * reject the new path.
724 : : *
725 : : * Cost comparisons here should match compare_path_costs_fuzzily.
726 : : */
727 : : /* new path can win on startup cost only if consider_startup */
728 [ + + + + ]: 308819 : if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
729 : 148396 : !consider_startup)
730 : : {
731 : : /* new path loses on cost, so check pathkeys... */
732 : 308237 : List *old_path_pathkeys;
733 : :
734 [ + + ]: 308237 : old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
735 : 616474 : keyscmp = compare_pathkeys(new_path_pathkeys,
736 : 308237 : old_path_pathkeys);
737 [ + + + + ]: 308237 : if (keyscmp == PATHKEYS_EQUAL ||
738 : 96552 : keyscmp == PATHKEYS_BETTER2)
739 : : {
740 : : /* new path does not win on pathkeys... */
741 [ + + + + ]: 228423 : if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
742 : : {
743 : : /* Found an old path that dominates the new one */
744 : 223458 : return false;
745 : : }
746 : 4965 : }
747 [ + + ]: 308237 : }
748 [ + + ]: 487041 : }
749 : :
750 : 210234 : return true;
751 : 433692 : }
752 : :
753 : : /*
754 : : * add_partial_path
755 : : * Like add_path, our goal here is to consider whether a path is worthy
756 : : * of being kept around, but the considerations here are a bit different.
757 : : * A partial path is one which can be executed in any number of workers in
758 : : * parallel such that each worker will generate a subset of the path's
759 : : * overall result.
760 : : *
761 : : * As in add_path, the partial_pathlist is kept sorted with the cheapest
762 : : * total path in front. This is depended on by multiple places, which
763 : : * just take the front entry as the cheapest path without searching.
764 : : *
765 : : * We don't generate parameterized partial paths for several reasons. Most
766 : : * importantly, they're not safe to execute, because there's nothing to
767 : : * make sure that a parallel scan within the parameterized portion of the
768 : : * plan is running with the same value in every worker at the same time.
769 : : * Fortunately, it seems unlikely to be worthwhile anyway, because having
770 : : * each worker scan the entire outer relation and a subset of the inner
771 : : * relation will generally be a terrible plan. The inner (parameterized)
772 : : * side of the plan will be small anyway. There could be rare cases where
773 : : * this wins big - e.g. if join order constraints put a 1-row relation on
774 : : * the outer side of the topmost join with a parameterized plan on the inner
775 : : * side - but we'll have to be content not to handle such cases until
776 : : * somebody builds an executor infrastructure that can cope with them.
777 : : *
778 : : * Because we don't consider parameterized paths here, we also don't
779 : : * need to consider the row counts as a measure of quality: every path will
780 : : * produce the same number of rows. Neither do we need to consider startup
781 : : * costs: parallelism is only used for plans that will be run to completion.
782 : : * Therefore, this routine is much simpler than add_path: it needs to
783 : : * consider only disabled nodes, pathkeys and total cost.
784 : : *
785 : : * As with add_path, we pfree paths that are found to be dominated by
786 : : * another partial path; this requires that there be no other references to
787 : : * such paths yet. Hence, GatherPaths must not be created for a rel until
788 : : * we're done creating all partial paths for it. Unlike add_path, we don't
789 : : * take an exception for IndexPaths as partial index paths won't be
790 : : * referenced by partial BitmapHeapPaths.
791 : : */
792 : : void
793 : 49107 : add_partial_path(RelOptInfo *parent_rel, Path *new_path)
794 : : {
795 : 49107 : bool accept_new = true; /* unless we find a superior old path */
796 : 49107 : int insert_at = 0; /* where to insert new item */
797 : 49107 : ListCell *p1;
798 : :
799 : : /* Check for query cancel. */
800 [ + - ]: 49107 : CHECK_FOR_INTERRUPTS();
801 : :
802 : : /* Path to be added must be parallel safe. */
803 [ + - ]: 49107 : Assert(new_path->parallel_safe);
804 : :
805 : : /* Relation should be OK for parallelism, too. */
806 [ + - ]: 49107 : Assert(parent_rel->consider_parallel);
807 : :
808 : : /*
809 : : * As in add_path, throw out any paths which are dominated by the new
810 : : * path, but throw out the new path if some existing path dominates it.
811 : : */
812 [ + + + + : 90549 : foreach(p1, parent_rel->partial_pathlist)
+ + ]
813 : : {
814 : 41442 : Path *old_path = (Path *) lfirst(p1);
815 : 41442 : bool remove_old = false; /* unless new proves superior */
816 : 41442 : PathKeysComparison keyscmp;
817 : :
818 : : /* Compare pathkeys. */
819 : 41442 : keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
820 : :
821 : : /* Unless pathkeys are incompatible, keep just one of the two paths. */
822 [ + + ]: 41442 : if (keyscmp != PATHKEYS_DIFFERENT)
823 : : {
824 [ + + ]: 41401 : if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
825 : : {
826 [ + + ]: 259 : if (new_path->disabled_nodes > old_path->disabled_nodes)
827 : 154 : accept_new = false;
828 : : else
829 : 105 : remove_old = true;
830 : 259 : }
831 [ + + + + ]: 82284 : else if (new_path->total_cost > old_path->total_cost
832 : 41142 : * STD_FUZZ_FACTOR)
833 : : {
834 : : /* New path costs more; keep it only if pathkeys are better. */
835 [ + + ]: 20637 : if (keyscmp != PATHKEYS_BETTER1)
836 : 14976 : accept_new = false;
837 : 20637 : }
838 [ + + + + ]: 41010 : else if (old_path->total_cost > new_path->total_cost
839 : 20505 : * STD_FUZZ_FACTOR)
840 : : {
841 : : /* Old path costs more; keep it only if pathkeys are better. */
842 [ + + ]: 13764 : if (keyscmp != PATHKEYS_BETTER2)
843 : 4568 : remove_old = true;
844 : 13764 : }
845 [ - + ]: 6741 : else if (keyscmp == PATHKEYS_BETTER1)
846 : : {
847 : : /* Costs are about the same, new path has better pathkeys. */
848 : 0 : remove_old = true;
849 : 0 : }
850 [ + + ]: 6741 : else if (keyscmp == PATHKEYS_BETTER2)
851 : : {
852 : : /* Costs are about the same, old path has better pathkeys. */
853 : 344 : accept_new = false;
854 : 344 : }
855 [ + + ]: 6397 : else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
856 : : {
857 : : /* Pathkeys are the same, and the old path costs more. */
858 : 114 : remove_old = true;
859 : 114 : }
860 : : else
861 : : {
862 : : /*
863 : : * Pathkeys are the same, and new path isn't materially
864 : : * cheaper.
865 : : */
866 : 6283 : accept_new = false;
867 : : }
868 : 41401 : }
869 : :
870 : : /*
871 : : * Remove current element from partial_pathlist if dominated by new.
872 : : */
873 [ + + ]: 41442 : if (remove_old)
874 : : {
875 : 4787 : parent_rel->partial_pathlist =
876 : 4787 : foreach_delete_current(parent_rel->partial_pathlist, p1);
877 : 4787 : pfree(old_path);
878 : 4787 : }
879 : : else
880 : : {
881 : : /* new belongs after this old path if it has cost >= old's */
882 [ + + ]: 36655 : if (new_path->total_cost >= old_path->total_cost)
883 : 27256 : insert_at = foreach_current_index(p1) + 1;
884 : : }
885 : :
886 : : /*
887 : : * If we found an old path that dominates new_path, we can quit
888 : : * scanning the partial_pathlist; we will not add new_path, and we
889 : : * assume new_path cannot dominate any later path.
890 : : */
891 [ + + ]: 41442 : if (!accept_new)
892 : 21757 : break;
893 [ + + ]: 41442 : }
894 : :
895 [ + + ]: 49107 : if (accept_new)
896 : : {
897 : : /* Accept the new path: insert it at proper place */
898 : 27350 : parent_rel->partial_pathlist =
899 : 27350 : list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
900 : 27350 : }
901 : : else
902 : : {
903 : : /* Reject and recycle the new path */
904 : 21757 : pfree(new_path);
905 : : }
906 : 49107 : }
907 : :
908 : : /*
909 : : * add_partial_path_precheck
910 : : * Check whether a proposed new partial path could possibly get accepted.
911 : : *
912 : : * Unlike add_path_precheck, we can ignore startup cost and parameterization,
913 : : * since they don't matter for partial paths (see add_partial_path). But
914 : : * we do want to make sure we don't add a partial path if there's already
915 : : * a complete path that dominates it, since in that case the proposed path
916 : : * is surely a loser.
917 : : */
918 : : bool
919 : 74460 : add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
920 : : Cost total_cost, List *pathkeys)
921 : : {
922 : 74460 : ListCell *p1;
923 : :
924 : : /*
925 : : * Our goal here is twofold. First, we want to find out whether this path
926 : : * is clearly inferior to some existing partial path. If so, we want to
927 : : * reject it immediately. Second, we want to find out whether this path
928 : : * is clearly superior to some existing partial path -- at least, modulo
929 : : * final cost computations. If so, we definitely want to consider it.
930 : : *
931 : : * Unlike add_path(), we always compare pathkeys here. This is because we
932 : : * expect partial_pathlist to be very short, and getting a definitive
933 : : * answer at this stage avoids the need to call add_path_precheck.
934 : : */
935 [ + + + + : 152046 : foreach(p1, parent_rel->partial_pathlist)
+ + + + ]
936 : : {
937 : 77586 : Path *old_path = (Path *) lfirst(p1);
938 : 77586 : PathKeysComparison keyscmp;
939 : :
940 : 77586 : keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
941 [ + + ]: 77586 : if (keyscmp != PATHKEYS_DIFFERENT)
942 : : {
943 [ + + + + ]: 77548 : if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
944 : 47291 : keyscmp != PATHKEYS_BETTER1)
945 : 38080 : return false;
946 [ + + + + ]: 39468 : if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
947 : 29496 : keyscmp != PATHKEYS_BETTER2)
948 : 18879 : return true;
949 : 20589 : }
950 [ + + ]: 77586 : }
951 : :
952 : : /*
953 : : * This path is neither clearly inferior to an existing partial path nor
954 : : * clearly good enough that it might replace one. Compare it to
955 : : * non-parallel plans. If it loses even before accounting for the cost of
956 : : * the Gather node, we should definitely reject it.
957 : : *
958 : : * Note that we pass the total_cost to add_path_precheck twice. This is
959 : : * because it's never advantageous to consider the startup cost of a
960 : : * partial path; the resulting plans, if run in parallel, will be run to
961 : : * completion.
962 : : */
963 [ + + + + ]: 35002 : if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
964 : 17501 : pathkeys, NULL))
965 : 201 : return false;
966 : :
967 : 17300 : return true;
968 : 74460 : }
969 : :
970 : :
971 : : /*****************************************************************************
972 : : * PATH NODE CREATION ROUTINES
973 : : *****************************************************************************/
974 : :
975 : : /*
976 : : * create_seqscan_path
977 : : * Creates a path corresponding to a sequential scan, returning the
978 : : * pathnode.
979 : : */
980 : : Path *
981 : 47397 : create_seqscan_path(PlannerInfo *root, RelOptInfo *rel,
982 : : Relids required_outer, int parallel_workers)
983 : : {
984 : 47397 : Path *pathnode = makeNode(Path);
985 : :
986 : 47397 : pathnode->pathtype = T_SeqScan;
987 : 47397 : pathnode->parent = rel;
988 : 47397 : pathnode->pathtarget = rel->reltarget;
989 : 94794 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
990 : 47397 : required_outer);
991 : 47397 : pathnode->parallel_aware = (parallel_workers > 0);
992 : 47397 : pathnode->parallel_safe = rel->consider_parallel;
993 : 47397 : pathnode->parallel_workers = parallel_workers;
994 : 47397 : pathnode->pathkeys = NIL; /* seqscan has unordered result */
995 : :
996 : 47397 : cost_seqscan(pathnode, root, rel, pathnode->param_info);
997 : :
998 : 94794 : return pathnode;
999 : 47397 : }
1000 : :
1001 : : /*
1002 : : * create_samplescan_path
1003 : : * Creates a path node for a sampled table scan.
1004 : : */
1005 : : Path *
1006 : 45 : create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
1007 : : {
1008 : 45 : Path *pathnode = makeNode(Path);
1009 : :
1010 : 45 : pathnode->pathtype = T_SampleScan;
1011 : 45 : pathnode->parent = rel;
1012 : 45 : pathnode->pathtarget = rel->reltarget;
1013 : 90 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1014 : 45 : required_outer);
1015 : 45 : pathnode->parallel_aware = false;
1016 : 45 : pathnode->parallel_safe = rel->consider_parallel;
1017 : 45 : pathnode->parallel_workers = 0;
1018 : 45 : pathnode->pathkeys = NIL; /* samplescan has unordered result */
1019 : :
1020 : 45 : cost_samplescan(pathnode, root, rel, pathnode->param_info);
1021 : :
1022 : 90 : return pathnode;
1023 : 45 : }
1024 : :
1025 : : /*
1026 : : * create_index_path
1027 : : * Creates a path node for an index scan.
1028 : : *
1029 : : * 'index' is a usable index.
1030 : : * 'indexclauses' is a list of IndexClause nodes representing clauses
1031 : : * to be enforced as qual conditions in the scan.
1032 : : * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1033 : : * to be used as index ordering operators in the scan.
1034 : : * 'indexorderbycols' is an integer list of index column numbers (zero based)
1035 : : * the ordering operators can be used with.
1036 : : * 'pathkeys' describes the ordering of the path.
1037 : : * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1038 : : * 'indexonly' is true if an index-only scan is wanted.
1039 : : * 'required_outer' is the set of outer relids for a parameterized path.
1040 : : * 'loop_count' is the number of repetitions of the indexscan to factor into
1041 : : * estimates of caching behavior.
1042 : : * 'partial_path' is true if constructing a parallel index scan path.
1043 : : *
1044 : : * Returns the new path node.
1045 : : */
1046 : : IndexPath *
1047 : 75698 : create_index_path(PlannerInfo *root,
1048 : : IndexOptInfo *index,
1049 : : List *indexclauses,
1050 : : List *indexorderbys,
1051 : : List *indexorderbycols,
1052 : : List *pathkeys,
1053 : : ScanDirection indexscandir,
1054 : : bool indexonly,
1055 : : Relids required_outer,
1056 : : double loop_count,
1057 : : bool partial_path)
1058 : : {
1059 : 75698 : IndexPath *pathnode = makeNode(IndexPath);
1060 : 75698 : RelOptInfo *rel = index->rel;
1061 : :
1062 : 75698 : pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1063 : 75698 : pathnode->path.parent = rel;
1064 : 75698 : pathnode->path.pathtarget = rel->reltarget;
1065 : 151396 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1066 : 75698 : required_outer);
1067 : 75698 : pathnode->path.parallel_aware = false;
1068 : 75698 : pathnode->path.parallel_safe = rel->consider_parallel;
1069 : 75698 : pathnode->path.parallel_workers = 0;
1070 : 75698 : pathnode->path.pathkeys = pathkeys;
1071 : :
1072 : 75698 : pathnode->indexinfo = index;
1073 : 75698 : pathnode->indexclauses = indexclauses;
1074 : 75698 : pathnode->indexorderbys = indexorderbys;
1075 : 75698 : pathnode->indexorderbycols = indexorderbycols;
1076 : 75698 : pathnode->indexscandir = indexscandir;
1077 : :
1078 : 75698 : cost_index(pathnode, root, loop_count, partial_path);
1079 : :
1080 : 151396 : return pathnode;
1081 : 75698 : }
1082 : :
1083 : : /*
1084 : : * create_bitmap_heap_path
1085 : : * Creates a path node for a bitmap scan.
1086 : : *
1087 : : * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1088 : : * 'required_outer' is the set of outer relids for a parameterized path.
1089 : : * 'loop_count' is the number of repetitions of the indexscan to factor into
1090 : : * estimates of caching behavior.
1091 : : *
1092 : : * loop_count should match the value used when creating the component
1093 : : * IndexPaths.
1094 : : */
1095 : : BitmapHeapPath *
1096 : 32352 : create_bitmap_heap_path(PlannerInfo *root,
1097 : : RelOptInfo *rel,
1098 : : Path *bitmapqual,
1099 : : Relids required_outer,
1100 : : double loop_count,
1101 : : int parallel_degree)
1102 : : {
1103 : 32352 : BitmapHeapPath *pathnode = makeNode(BitmapHeapPath);
1104 : :
1105 : 32352 : pathnode->path.pathtype = T_BitmapHeapScan;
1106 : 32352 : pathnode->path.parent = rel;
1107 : 32352 : pathnode->path.pathtarget = rel->reltarget;
1108 : 64704 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1109 : 32352 : required_outer);
1110 : 32352 : pathnode->path.parallel_aware = (parallel_degree > 0);
1111 : 32352 : pathnode->path.parallel_safe = rel->consider_parallel;
1112 : 32352 : pathnode->path.parallel_workers = parallel_degree;
1113 : 32352 : pathnode->path.pathkeys = NIL; /* always unordered */
1114 : :
1115 : 32352 : pathnode->bitmapqual = bitmapqual;
1116 : :
1117 : 64704 : cost_bitmap_heap_scan(&pathnode->path, root, rel,
1118 : 32352 : pathnode->path.param_info,
1119 : 32352 : bitmapqual, loop_count);
1120 : :
1121 : 64704 : return pathnode;
1122 : 32352 : }
1123 : :
1124 : : /*
1125 : : * create_bitmap_and_path
1126 : : * Creates a path node representing a BitmapAnd.
1127 : : */
1128 : : BitmapAndPath *
1129 : 4375 : create_bitmap_and_path(PlannerInfo *root,
1130 : : RelOptInfo *rel,
1131 : : List *bitmapquals)
1132 : : {
1133 : 4375 : BitmapAndPath *pathnode = makeNode(BitmapAndPath);
1134 : 4375 : Relids required_outer = NULL;
1135 : 4375 : ListCell *lc;
1136 : :
1137 : 4375 : pathnode->path.pathtype = T_BitmapAnd;
1138 : 4375 : pathnode->path.parent = rel;
1139 : 4375 : pathnode->path.pathtarget = rel->reltarget;
1140 : :
1141 : : /*
1142 : : * Identify the required outer rels as the union of what the child paths
1143 : : * depend on. (Alternatively, we could insist that the caller pass this
1144 : : * in, but it's more convenient and reliable to compute it here.)
1145 : : */
1146 [ + - + + : 13125 : foreach(lc, bitmapquals)
+ + ]
1147 : : {
1148 : 8750 : Path *bitmapqual = (Path *) lfirst(lc);
1149 : :
1150 : 17500 : required_outer = bms_add_members(required_outer,
1151 [ + + ]: 8750 : PATH_REQ_OUTER(bitmapqual));
1152 : 8750 : }
1153 : 8750 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1154 : 4375 : required_outer);
1155 : :
1156 : : /*
1157 : : * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1158 : : * parallel-safe if and only if rel->consider_parallel is set. So, we can
1159 : : * set the flag for this path based only on the relation-level flag,
1160 : : * without actually iterating over the list of children.
1161 : : */
1162 : 4375 : pathnode->path.parallel_aware = false;
1163 : 4375 : pathnode->path.parallel_safe = rel->consider_parallel;
1164 : 4375 : pathnode->path.parallel_workers = 0;
1165 : :
1166 : 4375 : pathnode->path.pathkeys = NIL; /* always unordered */
1167 : :
1168 : 4375 : pathnode->bitmapquals = bitmapquals;
1169 : :
1170 : : /* this sets bitmapselectivity as well as the regular cost fields: */
1171 : 4375 : cost_bitmap_and_node(pathnode, root);
1172 : :
1173 : 8750 : return pathnode;
1174 : 4375 : }
1175 : :
1176 : : /*
1177 : : * create_bitmap_or_path
1178 : : * Creates a path node representing a BitmapOr.
1179 : : */
1180 : : BitmapOrPath *
1181 : 98 : create_bitmap_or_path(PlannerInfo *root,
1182 : : RelOptInfo *rel,
1183 : : List *bitmapquals)
1184 : : {
1185 : 98 : BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1186 : 98 : Relids required_outer = NULL;
1187 : 98 : ListCell *lc;
1188 : :
1189 : 98 : pathnode->path.pathtype = T_BitmapOr;
1190 : 98 : pathnode->path.parent = rel;
1191 : 98 : pathnode->path.pathtarget = rel->reltarget;
1192 : :
1193 : : /*
1194 : : * Identify the required outer rels as the union of what the child paths
1195 : : * depend on. (Alternatively, we could insist that the caller pass this
1196 : : * in, but it's more convenient and reliable to compute it here.)
1197 : : */
1198 [ + - + + : 261 : foreach(lc, bitmapquals)
+ + ]
1199 : : {
1200 : 163 : Path *bitmapqual = (Path *) lfirst(lc);
1201 : :
1202 : 326 : required_outer = bms_add_members(required_outer,
1203 [ + + ]: 163 : PATH_REQ_OUTER(bitmapqual));
1204 : 163 : }
1205 : 196 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1206 : 98 : required_outer);
1207 : :
1208 : : /*
1209 : : * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1210 : : * parallel-safe if and only if rel->consider_parallel is set. So, we can
1211 : : * set the flag for this path based only on the relation-level flag,
1212 : : * without actually iterating over the list of children.
1213 : : */
1214 : 98 : pathnode->path.parallel_aware = false;
1215 : 98 : pathnode->path.parallel_safe = rel->consider_parallel;
1216 : 98 : pathnode->path.parallel_workers = 0;
1217 : :
1218 : 98 : pathnode->path.pathkeys = NIL; /* always unordered */
1219 : :
1220 : 98 : pathnode->bitmapquals = bitmapquals;
1221 : :
1222 : : /* this sets bitmapselectivity as well as the regular cost fields: */
1223 : 98 : cost_bitmap_or_node(pathnode, root);
1224 : :
1225 : 196 : return pathnode;
1226 : 98 : }
1227 : :
1228 : : /*
1229 : : * create_tidscan_path
1230 : : * Creates a path corresponding to a scan by TID, returning the pathnode.
1231 : : */
1232 : : TidPath *
1233 : 104 : create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals,
1234 : : Relids required_outer)
1235 : : {
1236 : 104 : TidPath *pathnode = makeNode(TidPath);
1237 : :
1238 : 104 : pathnode->path.pathtype = T_TidScan;
1239 : 104 : pathnode->path.parent = rel;
1240 : 104 : pathnode->path.pathtarget = rel->reltarget;
1241 : 208 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1242 : 104 : required_outer);
1243 : 104 : pathnode->path.parallel_aware = false;
1244 : 104 : pathnode->path.parallel_safe = rel->consider_parallel;
1245 : 104 : pathnode->path.parallel_workers = 0;
1246 : 104 : pathnode->path.pathkeys = NIL; /* always unordered */
1247 : :
1248 : 104 : pathnode->tidquals = tidquals;
1249 : :
1250 : 208 : cost_tidscan(&pathnode->path, root, rel, tidquals,
1251 : 104 : pathnode->path.param_info);
1252 : :
1253 : 208 : return pathnode;
1254 : 104 : }
1255 : :
1256 : : /*
1257 : : * create_tidrangescan_path
1258 : : * Creates a path corresponding to a scan by a range of TIDs, returning
1259 : : * the pathnode.
1260 : : */
1261 : : TidRangePath *
1262 : 342 : create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel,
1263 : : List *tidrangequals, Relids required_outer,
1264 : : int parallel_workers)
1265 : : {
1266 : 342 : TidRangePath *pathnode = makeNode(TidRangePath);
1267 : :
1268 : 342 : pathnode->path.pathtype = T_TidRangeScan;
1269 : 342 : pathnode->path.parent = rel;
1270 : 342 : pathnode->path.pathtarget = rel->reltarget;
1271 : 684 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1272 : 342 : required_outer);
1273 : 342 : pathnode->path.parallel_aware = (parallel_workers > 0);
1274 : 342 : pathnode->path.parallel_safe = rel->consider_parallel;
1275 : 342 : pathnode->path.parallel_workers = parallel_workers;
1276 : 342 : pathnode->path.pathkeys = NIL; /* always unordered */
1277 : :
1278 : 342 : pathnode->tidrangequals = tidrangequals;
1279 : :
1280 : 684 : cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1281 : 342 : pathnode->path.param_info);
1282 : :
1283 : 684 : return pathnode;
1284 : 342 : }
1285 : :
1286 : : /*
1287 : : * create_append_path
1288 : : * Creates a path corresponding to an Append plan, returning the
1289 : : * pathnode.
1290 : : *
1291 : : * Note that we must handle subpaths = NIL, representing a dummy access path.
1292 : : * Also, there are callers that pass root = NULL.
1293 : : *
1294 : : * 'rows', when passed as a non-negative number, will be used to overwrite the
1295 : : * returned path's row estimate. Otherwise, the row estimate is calculated
1296 : : * by totalling the row estimates from the 'subpaths' list.
1297 : : */
1298 : : AppendPath *
1299 : 12746 : create_append_path(PlannerInfo *root,
1300 : : RelOptInfo *rel,
1301 : : AppendPathInput input,
1302 : : List *pathkeys, Relids required_outer,
1303 : : int parallel_workers, bool parallel_aware,
1304 : : double rows)
1305 : : {
1306 : 12746 : AppendPath *pathnode = makeNode(AppendPath);
1307 : 12746 : ListCell *l;
1308 : :
1309 [ + + + - ]: 12746 : Assert(!parallel_aware || parallel_workers > 0);
1310 : :
1311 : 12746 : pathnode->child_append_relid_sets = input.child_append_relid_sets;
1312 : 12746 : pathnode->path.pathtype = T_Append;
1313 : 12746 : pathnode->path.parent = rel;
1314 : 12746 : pathnode->path.pathtarget = rel->reltarget;
1315 : :
1316 : : /*
1317 : : * If this is for a baserel (not a join or non-leaf partition), we prefer
1318 : : * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1319 : : * for the path. This supports building a Memoize path atop this path,
1320 : : * and if this is a partitioned table the info may be useful for run-time
1321 : : * pruning (cf make_partition_pruneinfo()).
1322 : : *
1323 : : * However, if we don't have "root" then that won't work and we fall back
1324 : : * on the simpler get_appendrel_parampathinfo. There's no point in doing
1325 : : * the more expensive thing for a dummy path, either.
1326 : : */
1327 [ + + + + : 12746 : if (rel->reloptkind == RELOPT_BASEREL && root && input.subpaths != NIL)
+ + ]
1328 : 10280 : pathnode->path.param_info = get_baserel_parampathinfo(root,
1329 : 5140 : rel,
1330 : 5140 : required_outer);
1331 : : else
1332 : 15212 : pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1333 : 7606 : required_outer);
1334 : :
1335 : 12746 : pathnode->path.parallel_aware = parallel_aware;
1336 : 12746 : pathnode->path.parallel_safe = rel->consider_parallel;
1337 : 12746 : pathnode->path.parallel_workers = parallel_workers;
1338 : 12746 : pathnode->path.pathkeys = pathkeys;
1339 : :
1340 : : /*
1341 : : * For parallel append, non-partial paths are sorted by descending total
1342 : : * costs. That way, the total time to finish all non-partial paths is
1343 : : * minimized. Also, the partial paths are sorted by descending startup
1344 : : * costs. There may be some paths that require to do startup work by a
1345 : : * single worker. In such case, it's better for workers to choose the
1346 : : * expensive ones first, whereas the leader should choose the cheapest
1347 : : * startup plan.
1348 : : */
1349 [ + + ]: 12746 : if (pathnode->path.parallel_aware)
1350 : : {
1351 : : /*
1352 : : * We mustn't fiddle with the order of subpaths when the Append has
1353 : : * pathkeys. The order they're listed in is critical to keeping the
1354 : : * pathkeys valid.
1355 : : */
1356 [ + - ]: 4532 : Assert(pathkeys == NIL);
1357 : :
1358 : 4532 : list_sort(input.subpaths, append_total_cost_compare);
1359 : 4532 : list_sort(input.partial_subpaths, append_startup_cost_compare);
1360 : 4532 : }
1361 : 12746 : pathnode->first_partial_path = list_length(input.subpaths);
1362 : 12746 : pathnode->subpaths = list_concat(input.subpaths, input.partial_subpaths);
1363 : :
1364 : : /*
1365 : : * Apply query-wide LIMIT if known and path is for sole base relation.
1366 : : * (Handling this at this low level is a bit klugy.)
1367 : : */
1368 [ + + + + ]: 12746 : if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1369 : 5371 : pathnode->limit_tuples = root->limit_tuples;
1370 : : else
1371 : 7375 : pathnode->limit_tuples = -1.0;
1372 : :
1373 [ + + + + : 44861 : foreach(l, pathnode->subpaths)
+ + ]
1374 : : {
1375 : 32115 : Path *subpath = (Path *) lfirst(l);
1376 : :
1377 [ + + ]: 58295 : pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1378 : 26180 : subpath->parallel_safe;
1379 : :
1380 : : /* All child paths must have same parameterization */
1381 [ + + + - ]: 32115 : Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1382 : 32115 : }
1383 : :
1384 [ + + + - ]: 12746 : Assert(!parallel_aware || pathnode->path.parallel_safe);
1385 : :
1386 : : /*
1387 : : * If there's exactly one child path then the output of the Append is
1388 : : * necessarily ordered the same as the child's, so we can inherit the
1389 : : * child's pathkeys if any, overriding whatever the caller might've said.
1390 : : * Furthermore, if the child's parallel awareness matches the Append's,
1391 : : * then the Append is a no-op and will be discarded later (in setrefs.c).
1392 : : * Then we can inherit the child's size and cost too, effectively charging
1393 : : * zero for the Append. Otherwise, we must do the normal costsize
1394 : : * calculation.
1395 : : */
1396 [ + + ]: 12746 : if (list_length(pathnode->subpaths) == 1)
1397 : : {
1398 : 1870 : Path *child = (Path *) linitial(pathnode->subpaths);
1399 : :
1400 [ + + ]: 1870 : if (child->parallel_aware == parallel_aware)
1401 : : {
1402 : 1795 : pathnode->path.rows = child->rows;
1403 : 1795 : pathnode->path.startup_cost = child->startup_cost;
1404 : 1795 : pathnode->path.total_cost = child->total_cost;
1405 : 1795 : }
1406 : : else
1407 : 75 : cost_append(pathnode, root);
1408 : : /* Must do this last, else cost_append complains */
1409 : 1870 : pathnode->path.pathkeys = child->pathkeys;
1410 : 1870 : }
1411 : : else
1412 : 10876 : cost_append(pathnode, root);
1413 : :
1414 : : /* If the caller provided a row estimate, override the computed value. */
1415 [ + + ]: 12746 : if (rows >= 0)
1416 : 91 : pathnode->path.rows = rows;
1417 : :
1418 : 25492 : return pathnode;
1419 : 12746 : }
1420 : :
1421 : : /*
1422 : : * append_total_cost_compare
1423 : : * list_sort comparator for sorting append child paths
1424 : : * by total_cost descending
1425 : : *
1426 : : * For equal total costs, we fall back to comparing startup costs; if those
1427 : : * are equal too, break ties using bms_compare on the paths' relids.
1428 : : * (This is to avoid getting unpredictable results from list_sort.)
1429 : : */
1430 : : static int
1431 : 800 : append_total_cost_compare(const ListCell *a, const ListCell *b)
1432 : : {
1433 : 800 : Path *path1 = (Path *) lfirst(a);
1434 : 800 : Path *path2 = (Path *) lfirst(b);
1435 : 800 : int cmp;
1436 : :
1437 : 800 : cmp = compare_path_costs(path1, path2, TOTAL_COST);
1438 [ + + ]: 800 : if (cmp != 0)
1439 : 738 : return -cmp;
1440 : 62 : return bms_compare(path1->parent->relids, path2->parent->relids);
1441 : 800 : }
1442 : :
1443 : : /*
1444 : : * append_startup_cost_compare
1445 : : * list_sort comparator for sorting append child paths
1446 : : * by startup_cost descending
1447 : : *
1448 : : * For equal startup costs, we fall back to comparing total costs; if those
1449 : : * are equal too, break ties using bms_compare on the paths' relids.
1450 : : * (This is to avoid getting unpredictable results from list_sort.)
1451 : : */
1452 : : static int
1453 : 7448 : append_startup_cost_compare(const ListCell *a, const ListCell *b)
1454 : : {
1455 : 7448 : Path *path1 = (Path *) lfirst(a);
1456 : 7448 : Path *path2 = (Path *) lfirst(b);
1457 : 7448 : int cmp;
1458 : :
1459 : 7448 : cmp = compare_path_costs(path1, path2, STARTUP_COST);
1460 [ + + ]: 7448 : if (cmp != 0)
1461 : 3645 : return -cmp;
1462 : 3803 : return bms_compare(path1->parent->relids, path2->parent->relids);
1463 : 7448 : }
1464 : :
1465 : : /*
1466 : : * create_merge_append_path
1467 : : * Creates a path corresponding to a MergeAppend plan, returning the
1468 : : * pathnode.
1469 : : */
1470 : : MergeAppendPath *
1471 : 1654 : create_merge_append_path(PlannerInfo *root,
1472 : : RelOptInfo *rel,
1473 : : List *subpaths,
1474 : : List *child_append_relid_sets,
1475 : : List *pathkeys,
1476 : : Relids required_outer)
1477 : : {
1478 : 1654 : MergeAppendPath *pathnode = makeNode(MergeAppendPath);
1479 : 1654 : int input_disabled_nodes;
1480 : 1654 : Cost input_startup_cost;
1481 : 1654 : Cost input_total_cost;
1482 : 1654 : ListCell *l;
1483 : :
1484 : : /*
1485 : : * We don't currently support parameterized MergeAppend paths, as
1486 : : * explained in the comments for generate_orderedappend_paths.
1487 : : */
1488 [ + - ]: 1654 : Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
1489 : :
1490 : 1654 : pathnode->child_append_relid_sets = child_append_relid_sets;
1491 : 1654 : pathnode->path.pathtype = T_MergeAppend;
1492 : 1654 : pathnode->path.parent = rel;
1493 : 1654 : pathnode->path.pathtarget = rel->reltarget;
1494 : 1654 : pathnode->path.param_info = NULL;
1495 : 1654 : pathnode->path.parallel_aware = false;
1496 : 1654 : pathnode->path.parallel_safe = rel->consider_parallel;
1497 : 1654 : pathnode->path.parallel_workers = 0;
1498 : 1654 : pathnode->path.pathkeys = pathkeys;
1499 : 1654 : pathnode->subpaths = subpaths;
1500 : :
1501 : : /*
1502 : : * Apply query-wide LIMIT if known and path is for sole base relation.
1503 : : * (Handling this at this low level is a bit klugy.)
1504 : : */
1505 [ + + ]: 1654 : if (bms_equal(rel->relids, root->all_query_rels))
1506 : 759 : pathnode->limit_tuples = root->limit_tuples;
1507 : : else
1508 : 895 : pathnode->limit_tuples = -1.0;
1509 : :
1510 : : /*
1511 : : * Add up the sizes and costs of the input paths.
1512 : : */
1513 : 1654 : pathnode->path.rows = 0;
1514 : 1654 : input_disabled_nodes = 0;
1515 : 1654 : input_startup_cost = 0;
1516 : 1654 : input_total_cost = 0;
1517 [ + - + + : 5989 : foreach(l, subpaths)
+ + ]
1518 : : {
1519 : 4335 : Path *subpath = (Path *) lfirst(l);
1520 : 4335 : int presorted_keys;
1521 : 4335 : Path sort_path; /* dummy for result of
1522 : : * cost_sort/cost_incremental_sort */
1523 : :
1524 : : /* All child paths should be unparameterized */
1525 [ - + + - ]: 4335 : Assert(bms_is_empty(PATH_REQ_OUTER(subpath)));
1526 : :
1527 : 4335 : pathnode->path.rows += subpath->rows;
1528 [ + + ]: 8207 : pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1529 : 3872 : subpath->parallel_safe;
1530 : :
1531 [ + + ]: 4335 : if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1532 : : &presorted_keys))
1533 : : {
1534 : : /*
1535 : : * We'll need to insert a Sort node, so include costs for that. We
1536 : : * choose to use incremental sort if it is enabled and there are
1537 : : * presorted keys; otherwise we use full sort.
1538 : : *
1539 : : * We can use the parent's LIMIT if any, since we certainly won't
1540 : : * pull more than that many tuples from any child.
1541 : : */
1542 [ + - + + ]: 49 : if (enable_incremental_sort && presorted_keys > 0)
1543 : : {
1544 : 3 : cost_incremental_sort(&sort_path,
1545 : 3 : root,
1546 : 3 : pathkeys,
1547 : 3 : presorted_keys,
1548 : 3 : subpath->disabled_nodes,
1549 : 3 : subpath->startup_cost,
1550 : 3 : subpath->total_cost,
1551 : 3 : subpath->rows,
1552 : 3 : subpath->pathtarget->width,
1553 : : 0.0,
1554 : 3 : work_mem,
1555 : 3 : pathnode->limit_tuples);
1556 : 3 : }
1557 : : else
1558 : : {
1559 : 46 : cost_sort(&sort_path,
1560 : 46 : root,
1561 : 46 : pathkeys,
1562 : 46 : subpath->disabled_nodes,
1563 : 46 : subpath->total_cost,
1564 : 46 : subpath->rows,
1565 : 46 : subpath->pathtarget->width,
1566 : : 0.0,
1567 : 46 : work_mem,
1568 : 46 : pathnode->limit_tuples);
1569 : : }
1570 : :
1571 : 49 : subpath = &sort_path;
1572 : 49 : }
1573 : :
1574 : 4335 : input_disabled_nodes += subpath->disabled_nodes;
1575 : 4335 : input_startup_cost += subpath->startup_cost;
1576 : 4335 : input_total_cost += subpath->total_cost;
1577 : 4335 : }
1578 : :
1579 : : /*
1580 : : * Now we can compute total costs of the MergeAppend. If there's exactly
1581 : : * one child path and its parallel awareness matches that of the
1582 : : * MergeAppend, then the MergeAppend is a no-op and will be discarded
1583 : : * later (in setrefs.c); otherwise we do the normal cost calculation.
1584 : : */
1585 [ + + - + ]: 1654 : if (list_length(subpaths) == 1 &&
1586 : 38 : ((Path *) linitial(subpaths))->parallel_aware ==
1587 : 19 : pathnode->path.parallel_aware)
1588 : : {
1589 : 19 : pathnode->path.disabled_nodes = input_disabled_nodes;
1590 : 19 : pathnode->path.startup_cost = input_startup_cost;
1591 : 19 : pathnode->path.total_cost = input_total_cost;
1592 : 19 : }
1593 : : else
1594 : 3270 : cost_merge_append(&pathnode->path, root,
1595 : 1635 : pathkeys, list_length(subpaths),
1596 : 1635 : input_disabled_nodes,
1597 : 1635 : input_startup_cost, input_total_cost,
1598 : 1635 : pathnode->path.rows);
1599 : :
1600 : 3308 : return pathnode;
1601 : 1654 : }
1602 : :
1603 : : /*
1604 : : * create_group_result_path
1605 : : * Creates a path representing a Result-and-nothing-else plan.
1606 : : *
1607 : : * This is only used for degenerate grouping cases, in which we know we
1608 : : * need to produce one result row, possibly filtered by a HAVING qual.
1609 : : */
1610 : : GroupResultPath *
1611 : 17120 : create_group_result_path(PlannerInfo *root, RelOptInfo *rel,
1612 : : PathTarget *target, List *havingqual)
1613 : : {
1614 : 17120 : GroupResultPath *pathnode = makeNode(GroupResultPath);
1615 : :
1616 : 17120 : pathnode->path.pathtype = T_Result;
1617 : 17120 : pathnode->path.parent = rel;
1618 : 17120 : pathnode->path.pathtarget = target;
1619 : 17120 : pathnode->path.param_info = NULL; /* there are no other rels... */
1620 : 17120 : pathnode->path.parallel_aware = false;
1621 : 17120 : pathnode->path.parallel_safe = rel->consider_parallel;
1622 : 17120 : pathnode->path.parallel_workers = 0;
1623 : 17120 : pathnode->path.pathkeys = NIL;
1624 : 17120 : pathnode->quals = havingqual;
1625 : :
1626 : : /*
1627 : : * We can't quite use cost_resultscan() because the quals we want to
1628 : : * account for are not baserestrict quals of the rel. Might as well just
1629 : : * hack it here.
1630 : : */
1631 : 17120 : pathnode->path.rows = 1;
1632 : 17120 : pathnode->path.startup_cost = target->cost.startup;
1633 : 51360 : pathnode->path.total_cost = target->cost.startup +
1634 : 34240 : cpu_tuple_cost + target->cost.per_tuple;
1635 : :
1636 : : /*
1637 : : * Add cost of qual, if any --- but we ignore its selectivity, since our
1638 : : * rowcount estimate should be 1 no matter what the qual is.
1639 : : */
1640 [ + + ]: 17120 : if (havingqual)
1641 : : {
1642 : 88 : QualCost qual_cost;
1643 : :
1644 : 88 : cost_qual_eval(&qual_cost, havingqual, root);
1645 : : /* havingqual is evaluated once at startup */
1646 : 88 : pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1647 : 88 : pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1648 : 88 : }
1649 : :
1650 : 34240 : return pathnode;
1651 : 17120 : }
1652 : :
1653 : : /*
1654 : : * create_material_path
1655 : : * Creates a path corresponding to a Material plan, returning the
1656 : : * pathnode.
1657 : : */
1658 : : MaterialPath *
1659 : 68699 : create_material_path(RelOptInfo *rel, Path *subpath, bool enabled)
1660 : : {
1661 : 68699 : MaterialPath *pathnode = makeNode(MaterialPath);
1662 : :
1663 [ + - ]: 68699 : Assert(subpath->parent == rel);
1664 : :
1665 : 68699 : pathnode->path.pathtype = T_Material;
1666 : 68699 : pathnode->path.parent = rel;
1667 : 68699 : pathnode->path.pathtarget = rel->reltarget;
1668 : 68699 : pathnode->path.param_info = subpath->param_info;
1669 : 68699 : pathnode->path.parallel_aware = false;
1670 [ + + ]: 131124 : pathnode->path.parallel_safe = rel->consider_parallel &&
1671 : 62425 : subpath->parallel_safe;
1672 : 68699 : pathnode->path.parallel_workers = subpath->parallel_workers;
1673 : 68699 : pathnode->path.pathkeys = subpath->pathkeys;
1674 : :
1675 : 68699 : pathnode->subpath = subpath;
1676 : :
1677 : 137398 : cost_material(&pathnode->path,
1678 : 68699 : enabled,
1679 : 68699 : subpath->disabled_nodes,
1680 : 68699 : subpath->startup_cost,
1681 : 68699 : subpath->total_cost,
1682 : 68699 : subpath->rows,
1683 : 68699 : subpath->pathtarget->width);
1684 : :
1685 : 137398 : return pathnode;
1686 : 68699 : }
1687 : :
1688 : : /*
1689 : : * create_memoize_path
1690 : : * Creates a path corresponding to a Memoize plan, returning the pathnode.
1691 : : */
1692 : : MemoizePath *
1693 : 19887 : create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1694 : : List *param_exprs, List *hash_operators,
1695 : : bool singlerow, bool binary_mode, Cardinality est_calls)
1696 : : {
1697 : 19887 : MemoizePath *pathnode = makeNode(MemoizePath);
1698 : :
1699 [ + - ]: 19887 : Assert(subpath->parent == rel);
1700 : :
1701 : 19887 : pathnode->path.pathtype = T_Memoize;
1702 : 19887 : pathnode->path.parent = rel;
1703 : 19887 : pathnode->path.pathtarget = rel->reltarget;
1704 : 19887 : pathnode->path.param_info = subpath->param_info;
1705 : 19887 : pathnode->path.parallel_aware = false;
1706 [ + + ]: 37653 : pathnode->path.parallel_safe = rel->consider_parallel &&
1707 : 17766 : subpath->parallel_safe;
1708 : 19887 : pathnode->path.parallel_workers = subpath->parallel_workers;
1709 : 19887 : pathnode->path.pathkeys = subpath->pathkeys;
1710 : :
1711 : 19887 : pathnode->subpath = subpath;
1712 : 19887 : pathnode->hash_operators = hash_operators;
1713 : 19887 : pathnode->param_exprs = param_exprs;
1714 : 19887 : pathnode->singlerow = singlerow;
1715 : 19887 : pathnode->binary_mode = binary_mode;
1716 : :
1717 : : /*
1718 : : * For now we set est_entries to 0. cost_memoize_rescan() does all the
1719 : : * hard work to determine how many cache entries there are likely to be,
1720 : : * so it seems best to leave it up to that function to fill this field in.
1721 : : * If left at 0, the executor will make a guess at a good value.
1722 : : */
1723 : 19887 : pathnode->est_entries = 0;
1724 : :
1725 : 19887 : pathnode->est_calls = clamp_row_est(est_calls);
1726 : :
1727 : : /* These will also be set later in cost_memoize_rescan() */
1728 : 19887 : pathnode->est_unique_keys = 0.0;
1729 : 19887 : pathnode->est_hit_ratio = 0.0;
1730 : :
1731 : : /*
1732 : : * We should not be asked to generate this path type when memoization is
1733 : : * disabled, so set our count of disabled nodes equal to the subpath's
1734 : : * count.
1735 : : *
1736 : : * It would be nice to also Assert that memoization is enabled, but the
1737 : : * value of enable_memoize is not controlling: what we would need to check
1738 : : * is that the JoinPathExtraData's pgs_mask included PGS_NESTLOOP_MEMOIZE.
1739 : : */
1740 : 19887 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
1741 : :
1742 : : /*
1743 : : * Add a small additional charge for caching the first entry. All the
1744 : : * harder calculations for rescans are performed in cost_memoize_rescan().
1745 : : */
1746 : 19887 : pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1747 : 19887 : pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1748 : 19887 : pathnode->path.rows = subpath->rows;
1749 : :
1750 : 39774 : return pathnode;
1751 : 19887 : }
1752 : :
1753 : : /*
1754 : : * create_gather_merge_path
1755 : : *
1756 : : * Creates a path corresponding to a gather merge scan, returning
1757 : : * the pathnode.
1758 : : */
1759 : : GatherMergePath *
1760 : 2999 : create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1761 : : PathTarget *target, List *pathkeys,
1762 : : Relids required_outer, double *rows)
1763 : : {
1764 : 2999 : GatherMergePath *pathnode = makeNode(GatherMergePath);
1765 : 2999 : int input_disabled_nodes = 0;
1766 : 2999 : Cost input_startup_cost = 0;
1767 : 2999 : Cost input_total_cost = 0;
1768 : :
1769 [ + - ]: 2999 : Assert(subpath->parallel_safe);
1770 [ + - ]: 2999 : Assert(pathkeys);
1771 : :
1772 : : /*
1773 : : * The subpath should guarantee that it is adequately ordered either by
1774 : : * adding an explicit sort node or by using presorted input. We cannot
1775 : : * add an explicit Sort node for the subpath in createplan.c on additional
1776 : : * pathkeys, because we can't guarantee the sort would be safe. For
1777 : : * example, expressions may be volatile or otherwise parallel unsafe.
1778 : : */
1779 [ + - ]: 2999 : if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1780 [ # # # # ]: 0 : elog(ERROR, "gather merge input not sufficiently sorted");
1781 : :
1782 : 2999 : pathnode->path.pathtype = T_GatherMerge;
1783 : 2999 : pathnode->path.parent = rel;
1784 : 5998 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1785 : 2999 : required_outer);
1786 : 2999 : pathnode->path.parallel_aware = false;
1787 : :
1788 : 2999 : pathnode->subpath = subpath;
1789 : 2999 : pathnode->num_workers = subpath->parallel_workers;
1790 : 2999 : pathnode->path.pathkeys = pathkeys;
1791 [ + - ]: 2999 : pathnode->path.pathtarget = target ? target : rel->reltarget;
1792 : :
1793 : 2999 : input_disabled_nodes += subpath->disabled_nodes;
1794 : 2999 : input_startup_cost += subpath->startup_cost;
1795 : 2999 : input_total_cost += subpath->total_cost;
1796 : :
1797 : 5998 : cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1798 : 2999 : input_disabled_nodes, input_startup_cost,
1799 : 2999 : input_total_cost, rows);
1800 : :
1801 : 5998 : return pathnode;
1802 : 2999 : }
1803 : :
1804 : : /*
1805 : : * create_gather_path
1806 : : * Creates a path corresponding to a gather scan, returning the
1807 : : * pathnode.
1808 : : *
1809 : : * 'rows' may optionally be set to override row estimates from other sources.
1810 : : */
1811 : : GatherPath *
1812 : 3645 : create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1813 : : PathTarget *target, Relids required_outer, double *rows)
1814 : : {
1815 : 3645 : GatherPath *pathnode = makeNode(GatherPath);
1816 : :
1817 [ + - ]: 3645 : Assert(subpath->parallel_safe);
1818 : :
1819 : 3645 : pathnode->path.pathtype = T_Gather;
1820 : 3645 : pathnode->path.parent = rel;
1821 : 3645 : pathnode->path.pathtarget = target;
1822 : 7290 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1823 : 3645 : required_outer);
1824 : 3645 : pathnode->path.parallel_aware = false;
1825 : 3645 : pathnode->path.parallel_safe = false;
1826 : 3645 : pathnode->path.parallel_workers = 0;
1827 : 3645 : pathnode->path.pathkeys = NIL; /* Gather has unordered result */
1828 : :
1829 : 3645 : pathnode->subpath = subpath;
1830 : 3645 : pathnode->num_workers = subpath->parallel_workers;
1831 : 3645 : pathnode->single_copy = false;
1832 : :
1833 [ + - ]: 3645 : if (pathnode->num_workers == 0)
1834 : : {
1835 : 0 : pathnode->path.pathkeys = subpath->pathkeys;
1836 : 0 : pathnode->num_workers = 1;
1837 : 0 : pathnode->single_copy = true;
1838 : 0 : }
1839 : :
1840 : 3645 : cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1841 : :
1842 : 7290 : return pathnode;
1843 : 3645 : }
1844 : :
1845 : : /*
1846 : : * create_subqueryscan_path
1847 : : * Creates a path corresponding to a scan of a subquery,
1848 : : * returning the pathnode.
1849 : : *
1850 : : * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
1851 : : * be trivial, ie just a fetch of all the subquery output columns in order.
1852 : : * While we could determine that here, the caller can usually do it more
1853 : : * efficiently (or at least amortize it over multiple calls).
1854 : : */
1855 : : SubqueryScanPath *
1856 : 7026 : create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath,
1857 : : bool trivial_pathtarget,
1858 : : List *pathkeys, Relids required_outer)
1859 : : {
1860 : 7026 : SubqueryScanPath *pathnode = makeNode(SubqueryScanPath);
1861 : :
1862 : 7026 : pathnode->path.pathtype = T_SubqueryScan;
1863 : 7026 : pathnode->path.parent = rel;
1864 : 7026 : pathnode->path.pathtarget = rel->reltarget;
1865 : 14052 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1866 : 7026 : required_outer);
1867 : 7026 : pathnode->path.parallel_aware = false;
1868 [ + + ]: 11935 : pathnode->path.parallel_safe = rel->consider_parallel &&
1869 : 4909 : subpath->parallel_safe;
1870 : 7026 : pathnode->path.parallel_workers = subpath->parallel_workers;
1871 : 7026 : pathnode->path.pathkeys = pathkeys;
1872 : 7026 : pathnode->subpath = subpath;
1873 : :
1874 : 14052 : cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
1875 : 7026 : trivial_pathtarget);
1876 : :
1877 : 14052 : return pathnode;
1878 : 7026 : }
1879 : :
1880 : : /*
1881 : : * create_functionscan_path
1882 : : * Creates a path corresponding to a sequential scan of a function,
1883 : : * returning the pathnode.
1884 : : */
1885 : : Path *
1886 : 3642 : create_functionscan_path(PlannerInfo *root, RelOptInfo *rel,
1887 : : List *pathkeys, Relids required_outer)
1888 : : {
1889 : 3642 : Path *pathnode = makeNode(Path);
1890 : :
1891 : 3642 : pathnode->pathtype = T_FunctionScan;
1892 : 3642 : pathnode->parent = rel;
1893 : 3642 : pathnode->pathtarget = rel->reltarget;
1894 : 7284 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1895 : 3642 : required_outer);
1896 : 3642 : pathnode->parallel_aware = false;
1897 : 3642 : pathnode->parallel_safe = rel->consider_parallel;
1898 : 3642 : pathnode->parallel_workers = 0;
1899 : 3642 : pathnode->pathkeys = pathkeys;
1900 : :
1901 : 3642 : cost_functionscan(pathnode, root, rel, pathnode->param_info);
1902 : :
1903 : 7284 : return pathnode;
1904 : 3642 : }
1905 : :
1906 : : /*
1907 : : * create_tablefuncscan_path
1908 : : * Creates a path corresponding to a sequential scan of a table function,
1909 : : * returning the pathnode.
1910 : : */
1911 : : Path *
1912 : 103 : create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel,
1913 : : Relids required_outer)
1914 : : {
1915 : 103 : Path *pathnode = makeNode(Path);
1916 : :
1917 : 103 : pathnode->pathtype = T_TableFuncScan;
1918 : 103 : pathnode->parent = rel;
1919 : 103 : pathnode->pathtarget = rel->reltarget;
1920 : 206 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1921 : 103 : required_outer);
1922 : 103 : pathnode->parallel_aware = false;
1923 : 103 : pathnode->parallel_safe = rel->consider_parallel;
1924 : 103 : pathnode->parallel_workers = 0;
1925 : 103 : pathnode->pathkeys = NIL; /* result is always unordered */
1926 : :
1927 : 103 : cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1928 : :
1929 : 206 : return pathnode;
1930 : 103 : }
1931 : :
1932 : : /*
1933 : : * create_valuesscan_path
1934 : : * Creates a path corresponding to a scan of a VALUES list,
1935 : : * returning the pathnode.
1936 : : */
1937 : : Path *
1938 : 1114 : create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel,
1939 : : Relids required_outer)
1940 : : {
1941 : 1114 : Path *pathnode = makeNode(Path);
1942 : :
1943 : 1114 : pathnode->pathtype = T_ValuesScan;
1944 : 1114 : pathnode->parent = rel;
1945 : 1114 : pathnode->pathtarget = rel->reltarget;
1946 : 2228 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1947 : 1114 : required_outer);
1948 : 1114 : pathnode->parallel_aware = false;
1949 : 1114 : pathnode->parallel_safe = rel->consider_parallel;
1950 : 1114 : pathnode->parallel_workers = 0;
1951 : 1114 : pathnode->pathkeys = NIL; /* result is always unordered */
1952 : :
1953 : 1114 : cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1954 : :
1955 : 2228 : return pathnode;
1956 : 1114 : }
1957 : :
1958 : : /*
1959 : : * create_ctescan_path
1960 : : * Creates a path corresponding to a scan of a non-self-reference CTE,
1961 : : * returning the pathnode.
1962 : : */
1963 : : Path *
1964 : 212 : create_ctescan_path(PlannerInfo *root, RelOptInfo *rel,
1965 : : List *pathkeys, Relids required_outer)
1966 : : {
1967 : 212 : Path *pathnode = makeNode(Path);
1968 : :
1969 : 212 : pathnode->pathtype = T_CteScan;
1970 : 212 : pathnode->parent = rel;
1971 : 212 : pathnode->pathtarget = rel->reltarget;
1972 : 424 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1973 : 212 : required_outer);
1974 : 212 : pathnode->parallel_aware = false;
1975 : 212 : pathnode->parallel_safe = rel->consider_parallel;
1976 : 212 : pathnode->parallel_workers = 0;
1977 : 212 : pathnode->pathkeys = pathkeys;
1978 : :
1979 : 212 : cost_ctescan(pathnode, root, rel, pathnode->param_info);
1980 : :
1981 : 424 : return pathnode;
1982 : 212 : }
1983 : :
1984 : : /*
1985 : : * create_namedtuplestorescan_path
1986 : : * Creates a path corresponding to a scan of a named tuplestore, returning
1987 : : * the pathnode.
1988 : : */
1989 : : Path *
1990 : 77 : create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel,
1991 : : Relids required_outer)
1992 : : {
1993 : 77 : Path *pathnode = makeNode(Path);
1994 : :
1995 : 77 : pathnode->pathtype = T_NamedTuplestoreScan;
1996 : 77 : pathnode->parent = rel;
1997 : 77 : pathnode->pathtarget = rel->reltarget;
1998 : 154 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
1999 : 77 : required_outer);
2000 : 77 : pathnode->parallel_aware = false;
2001 : 77 : pathnode->parallel_safe = rel->consider_parallel;
2002 : 77 : pathnode->parallel_workers = 0;
2003 : 77 : pathnode->pathkeys = NIL; /* result is always unordered */
2004 : :
2005 : 77 : cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
2006 : :
2007 : 154 : return pathnode;
2008 : 77 : }
2009 : :
2010 : : /*
2011 : : * create_resultscan_path
2012 : : * Creates a path corresponding to a scan of an RTE_RESULT relation,
2013 : : * returning the pathnode.
2014 : : */
2015 : : Path *
2016 : 686 : create_resultscan_path(PlannerInfo *root, RelOptInfo *rel,
2017 : : Relids required_outer)
2018 : : {
2019 : 686 : Path *pathnode = makeNode(Path);
2020 : :
2021 : 686 : pathnode->pathtype = T_Result;
2022 : 686 : pathnode->parent = rel;
2023 : 686 : pathnode->pathtarget = rel->reltarget;
2024 : 1372 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
2025 : 686 : required_outer);
2026 : 686 : pathnode->parallel_aware = false;
2027 : 686 : pathnode->parallel_safe = rel->consider_parallel;
2028 : 686 : pathnode->parallel_workers = 0;
2029 : 686 : pathnode->pathkeys = NIL; /* result is always unordered */
2030 : :
2031 : 686 : cost_resultscan(pathnode, root, rel, pathnode->param_info);
2032 : :
2033 : 1372 : return pathnode;
2034 : 686 : }
2035 : :
2036 : : /*
2037 : : * create_worktablescan_path
2038 : : * Creates a path corresponding to a scan of a self-reference CTE,
2039 : : * returning the pathnode.
2040 : : */
2041 : : Path *
2042 : 74 : create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel,
2043 : : Relids required_outer)
2044 : : {
2045 : 74 : Path *pathnode = makeNode(Path);
2046 : :
2047 : 74 : pathnode->pathtype = T_WorkTableScan;
2048 : 74 : pathnode->parent = rel;
2049 : 74 : pathnode->pathtarget = rel->reltarget;
2050 : 148 : pathnode->param_info = get_baserel_parampathinfo(root, rel,
2051 : 74 : required_outer);
2052 : 74 : pathnode->parallel_aware = false;
2053 : 74 : pathnode->parallel_safe = rel->consider_parallel;
2054 : 74 : pathnode->parallel_workers = 0;
2055 : 74 : pathnode->pathkeys = NIL; /* result is always unordered */
2056 : :
2057 : : /* Cost is the same as for a regular CTE scan */
2058 : 74 : cost_ctescan(pathnode, root, rel, pathnode->param_info);
2059 : :
2060 : 148 : return pathnode;
2061 : 74 : }
2062 : :
2063 : : /*
2064 : : * create_foreignscan_path
2065 : : * Creates a path corresponding to a scan of a foreign base table,
2066 : : * returning the pathnode.
2067 : : *
2068 : : * This function is never called from core Postgres; rather, it's expected
2069 : : * to be called by the GetForeignPaths function of a foreign data wrapper.
2070 : : * We make the FDW supply all fields of the path, since we do not have any way
2071 : : * to calculate them in core. However, there is a usually-sane default for
2072 : : * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2073 : : */
2074 : : ForeignPath *
2075 : 0 : create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel,
2076 : : PathTarget *target,
2077 : : double rows, int disabled_nodes,
2078 : : Cost startup_cost, Cost total_cost,
2079 : : List *pathkeys,
2080 : : Relids required_outer,
2081 : : Path *fdw_outerpath,
2082 : : List *fdw_restrictinfo,
2083 : : List *fdw_private)
2084 : : {
2085 : 0 : ForeignPath *pathnode = makeNode(ForeignPath);
2086 : :
2087 : : /* Historically some FDWs were confused about when to use this */
2088 [ # # # # ]: 0 : Assert(IS_SIMPLE_REL(rel));
2089 : :
2090 : 0 : pathnode->path.pathtype = T_ForeignScan;
2091 : 0 : pathnode->path.parent = rel;
2092 [ # # ]: 0 : pathnode->path.pathtarget = target ? target : rel->reltarget;
2093 : 0 : pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2094 : 0 : required_outer);
2095 : 0 : pathnode->path.parallel_aware = false;
2096 : 0 : pathnode->path.parallel_safe = rel->consider_parallel;
2097 : 0 : pathnode->path.parallel_workers = 0;
2098 : 0 : pathnode->path.rows = rows;
2099 : 0 : pathnode->path.disabled_nodes = disabled_nodes;
2100 : 0 : pathnode->path.startup_cost = startup_cost;
2101 : 0 : pathnode->path.total_cost = total_cost;
2102 : 0 : pathnode->path.pathkeys = pathkeys;
2103 : :
2104 : 0 : pathnode->fdw_outerpath = fdw_outerpath;
2105 : 0 : pathnode->fdw_restrictinfo = fdw_restrictinfo;
2106 : 0 : pathnode->fdw_private = fdw_private;
2107 : :
2108 : 0 : return pathnode;
2109 : 0 : }
2110 : :
2111 : : /*
2112 : : * create_foreign_join_path
2113 : : * Creates a path corresponding to a scan of a foreign join,
2114 : : * returning the pathnode.
2115 : : *
2116 : : * This function is never called from core Postgres; rather, it's expected
2117 : : * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2118 : : * We make the FDW supply all fields of the path, since we do not have any way
2119 : : * to calculate them in core. However, there is a usually-sane default for
2120 : : * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2121 : : */
2122 : : ForeignPath *
2123 : 0 : create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel,
2124 : : PathTarget *target,
2125 : : double rows, int disabled_nodes,
2126 : : Cost startup_cost, Cost total_cost,
2127 : : List *pathkeys,
2128 : : Relids required_outer,
2129 : : Path *fdw_outerpath,
2130 : : List *fdw_restrictinfo,
2131 : : List *fdw_private)
2132 : : {
2133 : 0 : ForeignPath *pathnode = makeNode(ForeignPath);
2134 : :
2135 : : /*
2136 : : * We should use get_joinrel_parampathinfo to handle parameterized paths,
2137 : : * but the API of this function doesn't support it, and existing
2138 : : * extensions aren't yet trying to build such paths anyway. For the
2139 : : * moment just throw an error if someone tries it; eventually we should
2140 : : * revisit this.
2141 : : */
2142 [ # # ]: 0 : if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
2143 [ # # # # ]: 0 : elog(ERROR, "parameterized foreign joins are not supported yet");
2144 : :
2145 : 0 : pathnode->path.pathtype = T_ForeignScan;
2146 : 0 : pathnode->path.parent = rel;
2147 [ # # ]: 0 : pathnode->path.pathtarget = target ? target : rel->reltarget;
2148 : 0 : pathnode->path.param_info = NULL; /* XXX see above */
2149 : 0 : pathnode->path.parallel_aware = false;
2150 : 0 : pathnode->path.parallel_safe = rel->consider_parallel;
2151 : 0 : pathnode->path.parallel_workers = 0;
2152 : 0 : pathnode->path.rows = rows;
2153 : 0 : pathnode->path.disabled_nodes = disabled_nodes;
2154 : 0 : pathnode->path.startup_cost = startup_cost;
2155 : 0 : pathnode->path.total_cost = total_cost;
2156 : 0 : pathnode->path.pathkeys = pathkeys;
2157 : :
2158 : 0 : pathnode->fdw_outerpath = fdw_outerpath;
2159 : 0 : pathnode->fdw_restrictinfo = fdw_restrictinfo;
2160 : 0 : pathnode->fdw_private = fdw_private;
2161 : :
2162 : 0 : return pathnode;
2163 : 0 : }
2164 : :
2165 : : /*
2166 : : * create_foreign_upper_path
2167 : : * Creates a path corresponding to an upper relation that's computed
2168 : : * directly by an FDW, returning the pathnode.
2169 : : *
2170 : : * This function is never called from core Postgres; rather, it's expected to
2171 : : * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2172 : : * We make the FDW supply all fields of the path, since we do not have any way
2173 : : * to calculate them in core. However, there is a usually-sane default for
2174 : : * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2175 : : */
2176 : : ForeignPath *
2177 : 0 : create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel,
2178 : : PathTarget *target,
2179 : : double rows, int disabled_nodes,
2180 : : Cost startup_cost, Cost total_cost,
2181 : : List *pathkeys,
2182 : : Path *fdw_outerpath,
2183 : : List *fdw_restrictinfo,
2184 : : List *fdw_private)
2185 : : {
2186 : 0 : ForeignPath *pathnode = makeNode(ForeignPath);
2187 : :
2188 : : /*
2189 : : * Upper relations should never have any lateral references, since joining
2190 : : * is complete.
2191 : : */
2192 [ # # ]: 0 : Assert(bms_is_empty(rel->lateral_relids));
2193 : :
2194 : 0 : pathnode->path.pathtype = T_ForeignScan;
2195 : 0 : pathnode->path.parent = rel;
2196 [ # # ]: 0 : pathnode->path.pathtarget = target ? target : rel->reltarget;
2197 : 0 : pathnode->path.param_info = NULL;
2198 : 0 : pathnode->path.parallel_aware = false;
2199 : 0 : pathnode->path.parallel_safe = rel->consider_parallel;
2200 : 0 : pathnode->path.parallel_workers = 0;
2201 : 0 : pathnode->path.rows = rows;
2202 : 0 : pathnode->path.disabled_nodes = disabled_nodes;
2203 : 0 : pathnode->path.startup_cost = startup_cost;
2204 : 0 : pathnode->path.total_cost = total_cost;
2205 : 0 : pathnode->path.pathkeys = pathkeys;
2206 : :
2207 : 0 : pathnode->fdw_outerpath = fdw_outerpath;
2208 : 0 : pathnode->fdw_restrictinfo = fdw_restrictinfo;
2209 : 0 : pathnode->fdw_private = fdw_private;
2210 : :
2211 : 0 : return pathnode;
2212 : 0 : }
2213 : :
2214 : : /*
2215 : : * calc_nestloop_required_outer
2216 : : * Compute the required_outer set for a nestloop join path
2217 : : *
2218 : : * Note: when considering a child join, the inputs nonetheless use top-level
2219 : : * parent relids
2220 : : *
2221 : : * Note: result must not share storage with either input
2222 : : */
2223 : : Relids
2224 : 273405 : calc_nestloop_required_outer(Relids outerrelids,
2225 : : Relids outer_paramrels,
2226 : : Relids innerrelids,
2227 : : Relids inner_paramrels)
2228 : : {
2229 : 273405 : Relids required_outer;
2230 : :
2231 : : /* inner_path can require rels from outer path, but not vice versa */
2232 [ + - ]: 273405 : Assert(!bms_overlap(outer_paramrels, innerrelids));
2233 : : /* easy case if inner path is not parameterized */
2234 [ + + ]: 273405 : if (!inner_paramrels)
2235 : 203329 : return bms_copy(outer_paramrels);
2236 : : /* else, form the union ... */
2237 : 70076 : required_outer = bms_union(outer_paramrels, inner_paramrels);
2238 : : /* ... and remove any mention of now-satisfied outer rels */
2239 : 140152 : required_outer = bms_del_members(required_outer,
2240 : 70076 : outerrelids);
2241 : 70076 : return required_outer;
2242 : 273405 : }
2243 : :
2244 : : /*
2245 : : * calc_non_nestloop_required_outer
2246 : : * Compute the required_outer set for a merge or hash join path
2247 : : *
2248 : : * Note: result must not share storage with either input
2249 : : */
2250 : : Relids
2251 : 175328 : calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
2252 : : {
2253 [ + + ]: 175328 : Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2254 [ + + ]: 175328 : Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2255 : 175328 : Relids innerrelids PG_USED_FOR_ASSERTS_ONLY;
2256 : 175328 : Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2257 : 175328 : Relids required_outer;
2258 : :
2259 : : /*
2260 : : * Any parameterization of the input paths refers to topmost parents of
2261 : : * the relevant relations, because reparameterize_path_by_child() hasn't
2262 : : * been called yet. So we must consider topmost parents of the relations
2263 : : * being joined, too, while checking for disallowed parameterization
2264 : : * cases.
2265 : : */
2266 [ + + ]: 175328 : if (inner_path->parent->top_parent_relids)
2267 : 27681 : innerrelids = inner_path->parent->top_parent_relids;
2268 : : else
2269 : 147647 : innerrelids = inner_path->parent->relids;
2270 : :
2271 [ + + ]: 175328 : if (outer_path->parent->top_parent_relids)
2272 : 27681 : outerrelids = outer_path->parent->top_parent_relids;
2273 : : else
2274 : 147647 : outerrelids = outer_path->parent->relids;
2275 : :
2276 : : /* neither path can require rels from the other */
2277 [ + - ]: 175328 : Assert(!bms_overlap(outer_paramrels, innerrelids));
2278 [ + - ]: 175328 : Assert(!bms_overlap(inner_paramrels, outerrelids));
2279 : : /* form the union ... */
2280 : 175328 : required_outer = bms_union(outer_paramrels, inner_paramrels);
2281 : : /* we do not need an explicit test for empty; bms_union gets it right */
2282 : 350656 : return required_outer;
2283 : 175328 : }
2284 : :
2285 : : /*
2286 : : * create_nestloop_path
2287 : : * Creates a pathnode corresponding to a nestloop join between two
2288 : : * relations.
2289 : : *
2290 : : * 'joinrel' is the join relation.
2291 : : * 'jointype' is the type of join required
2292 : : * 'workspace' is the result from initial_cost_nestloop
2293 : : * 'extra' contains various information about the join
2294 : : * 'outer_path' is the outer path
2295 : : * 'inner_path' is the inner path
2296 : : * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2297 : : * 'pathkeys' are the path keys of the new join path
2298 : : * 'required_outer' is the set of required outer rels
2299 : : *
2300 : : * Returns the resulting path node.
2301 : : */
2302 : : NestPath *
2303 : 127517 : create_nestloop_path(PlannerInfo *root,
2304 : : RelOptInfo *joinrel,
2305 : : JoinType jointype,
2306 : : JoinCostWorkspace *workspace,
2307 : : JoinPathExtraData *extra,
2308 : : Path *outer_path,
2309 : : Path *inner_path,
2310 : : List *restrict_clauses,
2311 : : List *pathkeys,
2312 : : Relids required_outer)
2313 : : {
2314 : 127517 : NestPath *pathnode = makeNode(NestPath);
2315 [ + + ]: 127517 : Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2316 : 127517 : Relids outerrelids;
2317 : :
2318 : : /*
2319 : : * Paths are parameterized by top-level parents, so run parameterization
2320 : : * tests on the parent relids.
2321 : : */
2322 [ + + ]: 127517 : if (outer_path->parent->top_parent_relids)
2323 : 12833 : outerrelids = outer_path->parent->top_parent_relids;
2324 : : else
2325 : 114684 : outerrelids = outer_path->parent->relids;
2326 : :
2327 : : /*
2328 : : * If the inner path is parameterized by the outer, we must drop any
2329 : : * restrict_clauses that are due to be moved into the inner path. We have
2330 : : * to do this now, rather than postpone the work till createplan time,
2331 : : * because the restrict_clauses list can affect the size and cost
2332 : : * estimates for this path. We detect such clauses by checking for serial
2333 : : * number match to clauses already enforced in the inner path.
2334 : : */
2335 [ + + ]: 127517 : if (bms_overlap(inner_req_outer, outerrelids))
2336 : : {
2337 : 26331 : Bitmapset *enforced_serials = get_param_path_clause_serials(inner_path);
2338 : 26331 : List *jclauses = NIL;
2339 : 26331 : ListCell *lc;
2340 : :
2341 [ + + + + : 57176 : foreach(lc, restrict_clauses)
+ + ]
2342 : : {
2343 : 30845 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2344 : :
2345 [ + + ]: 30845 : if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
2346 : 4252 : jclauses = lappend(jclauses, rinfo);
2347 : 30845 : }
2348 : 26331 : restrict_clauses = jclauses;
2349 : 26331 : }
2350 : :
2351 : 127517 : pathnode->jpath.path.pathtype = T_NestLoop;
2352 : 127517 : pathnode->jpath.path.parent = joinrel;
2353 : 127517 : pathnode->jpath.path.pathtarget = joinrel->reltarget;
2354 : 127517 : pathnode->jpath.path.param_info =
2355 : 255034 : get_joinrel_parampathinfo(root,
2356 : 127517 : joinrel,
2357 : 127517 : outer_path,
2358 : 127517 : inner_path,
2359 : 127517 : extra->sjinfo,
2360 : 127517 : required_outer,
2361 : : &restrict_clauses);
2362 : 127517 : pathnode->jpath.path.parallel_aware = false;
2363 [ + + ]: 243010 : pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2364 [ + + ]: 115493 : outer_path->parallel_safe && inner_path->parallel_safe;
2365 : : /* This is a foolish way to estimate parallel_workers, but for now... */
2366 : 127517 : pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2367 : 127517 : pathnode->jpath.path.pathkeys = pathkeys;
2368 : 127517 : pathnode->jpath.jointype = jointype;
2369 : 127517 : pathnode->jpath.inner_unique = extra->inner_unique;
2370 : 127517 : pathnode->jpath.outerjoinpath = outer_path;
2371 : 127517 : pathnode->jpath.innerjoinpath = inner_path;
2372 : 127517 : pathnode->jpath.joinrestrictinfo = restrict_clauses;
2373 : :
2374 : 127517 : final_cost_nestloop(root, pathnode, workspace, extra);
2375 : :
2376 : 255034 : return pathnode;
2377 : 127517 : }
2378 : :
2379 : : /*
2380 : : * create_mergejoin_path
2381 : : * Creates a pathnode corresponding to a mergejoin join between
2382 : : * two relations
2383 : : *
2384 : : * 'joinrel' is the join relation
2385 : : * 'jointype' is the type of join required
2386 : : * 'workspace' is the result from initial_cost_mergejoin
2387 : : * 'extra' contains various information about the join
2388 : : * 'outer_path' is the outer path
2389 : : * 'inner_path' is the inner path
2390 : : * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2391 : : * 'pathkeys' are the path keys of the new join path
2392 : : * 'required_outer' is the set of required outer rels
2393 : : * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2394 : : * (this should be a subset of the restrict_clauses list)
2395 : : * 'outersortkeys' are the sort varkeys for the outer relation
2396 : : * 'innersortkeys' are the sort varkeys for the inner relation
2397 : : * 'outer_presorted_keys' is the number of presorted keys of the outer path
2398 : : */
2399 : : MergePath *
2400 : 48719 : create_mergejoin_path(PlannerInfo *root,
2401 : : RelOptInfo *joinrel,
2402 : : JoinType jointype,
2403 : : JoinCostWorkspace *workspace,
2404 : : JoinPathExtraData *extra,
2405 : : Path *outer_path,
2406 : : Path *inner_path,
2407 : : List *restrict_clauses,
2408 : : List *pathkeys,
2409 : : Relids required_outer,
2410 : : List *mergeclauses,
2411 : : List *outersortkeys,
2412 : : List *innersortkeys,
2413 : : int outer_presorted_keys)
2414 : : {
2415 : 48719 : MergePath *pathnode = makeNode(MergePath);
2416 : :
2417 : 48719 : pathnode->jpath.path.pathtype = T_MergeJoin;
2418 : 48719 : pathnode->jpath.path.parent = joinrel;
2419 : 48719 : pathnode->jpath.path.pathtarget = joinrel->reltarget;
2420 : 48719 : pathnode->jpath.path.param_info =
2421 : 97438 : get_joinrel_parampathinfo(root,
2422 : 48719 : joinrel,
2423 : 48719 : outer_path,
2424 : 48719 : inner_path,
2425 : 48719 : extra->sjinfo,
2426 : 48719 : required_outer,
2427 : : &restrict_clauses);
2428 : 48719 : pathnode->jpath.path.parallel_aware = false;
2429 [ + + ]: 94077 : pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2430 [ + + ]: 45358 : outer_path->parallel_safe && inner_path->parallel_safe;
2431 : : /* This is a foolish way to estimate parallel_workers, but for now... */
2432 : 48719 : pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2433 : 48719 : pathnode->jpath.path.pathkeys = pathkeys;
2434 : 48719 : pathnode->jpath.jointype = jointype;
2435 : 48719 : pathnode->jpath.inner_unique = extra->inner_unique;
2436 : 48719 : pathnode->jpath.outerjoinpath = outer_path;
2437 : 48719 : pathnode->jpath.innerjoinpath = inner_path;
2438 : 48719 : pathnode->jpath.joinrestrictinfo = restrict_clauses;
2439 : 48719 : pathnode->path_mergeclauses = mergeclauses;
2440 : 48719 : pathnode->outersortkeys = outersortkeys;
2441 : 48719 : pathnode->innersortkeys = innersortkeys;
2442 : 48719 : pathnode->outer_presorted_keys = outer_presorted_keys;
2443 : : /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2444 : : /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2445 : :
2446 : 48719 : final_cost_mergejoin(root, pathnode, workspace, extra);
2447 : :
2448 : 97438 : return pathnode;
2449 : 48719 : }
2450 : :
2451 : : /*
2452 : : * create_hashjoin_path
2453 : : * Creates a pathnode corresponding to a hash join between two relations.
2454 : : *
2455 : : * 'joinrel' is the join relation
2456 : : * 'jointype' is the type of join required
2457 : : * 'workspace' is the result from initial_cost_hashjoin
2458 : : * 'extra' contains various information about the join
2459 : : * 'outer_path' is the cheapest outer path
2460 : : * 'inner_path' is the cheapest inner path
2461 : : * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2462 : : * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2463 : : * 'required_outer' is the set of required outer rels
2464 : : * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2465 : : * (this should be a subset of the restrict_clauses list)
2466 : : */
2467 : : HashPath *
2468 : 52877 : create_hashjoin_path(PlannerInfo *root,
2469 : : RelOptInfo *joinrel,
2470 : : JoinType jointype,
2471 : : JoinCostWorkspace *workspace,
2472 : : JoinPathExtraData *extra,
2473 : : Path *outer_path,
2474 : : Path *inner_path,
2475 : : bool parallel_hash,
2476 : : List *restrict_clauses,
2477 : : Relids required_outer,
2478 : : List *hashclauses)
2479 : : {
2480 : 52877 : HashPath *pathnode = makeNode(HashPath);
2481 : :
2482 : 52877 : pathnode->jpath.path.pathtype = T_HashJoin;
2483 : 52877 : pathnode->jpath.path.parent = joinrel;
2484 : 52877 : pathnode->jpath.path.pathtarget = joinrel->reltarget;
2485 : 52877 : pathnode->jpath.path.param_info =
2486 : 105754 : get_joinrel_parampathinfo(root,
2487 : 52877 : joinrel,
2488 : 52877 : outer_path,
2489 : 52877 : inner_path,
2490 : 52877 : extra->sjinfo,
2491 : 52877 : required_outer,
2492 : : &restrict_clauses);
2493 : 52877 : pathnode->jpath.path.parallel_aware =
2494 [ + + ]: 52877 : joinrel->consider_parallel && parallel_hash;
2495 [ + + ]: 102705 : pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2496 [ + + ]: 49828 : outer_path->parallel_safe && inner_path->parallel_safe;
2497 : : /* This is a foolish way to estimate parallel_workers, but for now... */
2498 : 52877 : pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2499 : :
2500 : : /*
2501 : : * A hashjoin never has pathkeys, since its output ordering is
2502 : : * unpredictable due to possible batching. XXX If the inner relation is
2503 : : * small enough, we could instruct the executor that it must not batch,
2504 : : * and then we could assume that the output inherits the outer relation's
2505 : : * ordering, which might save a sort step. However there is considerable
2506 : : * downside if our estimate of the inner relation size is badly off. For
2507 : : * the moment we don't risk it. (Note also that if we wanted to take this
2508 : : * seriously, joinpath.c would have to consider many more paths for the
2509 : : * outer rel than it does now.)
2510 : : */
2511 : 52877 : pathnode->jpath.path.pathkeys = NIL;
2512 : 52877 : pathnode->jpath.jointype = jointype;
2513 : 52877 : pathnode->jpath.inner_unique = extra->inner_unique;
2514 : 52877 : pathnode->jpath.outerjoinpath = outer_path;
2515 : 52877 : pathnode->jpath.innerjoinpath = inner_path;
2516 : 52877 : pathnode->jpath.joinrestrictinfo = restrict_clauses;
2517 : 52877 : pathnode->path_hashclauses = hashclauses;
2518 : : /* final_cost_hashjoin will fill in pathnode->num_batches */
2519 : :
2520 : 52877 : final_cost_hashjoin(root, pathnode, workspace, extra);
2521 : :
2522 : 105754 : return pathnode;
2523 : 52877 : }
2524 : :
2525 : : /*
2526 : : * create_projection_path
2527 : : * Creates a pathnode that represents performing a projection.
2528 : : *
2529 : : * 'rel' is the parent relation associated with the result
2530 : : * 'subpath' is the path representing the source of data
2531 : : * 'target' is the PathTarget to be computed
2532 : : */
2533 : : ProjectionPath *
2534 : 44230 : create_projection_path(PlannerInfo *root,
2535 : : RelOptInfo *rel,
2536 : : Path *subpath,
2537 : : PathTarget *target)
2538 : : {
2539 : 44230 : ProjectionPath *pathnode = makeNode(ProjectionPath);
2540 : 44230 : PathTarget *oldtarget;
2541 : :
2542 : : /*
2543 : : * We mustn't put a ProjectionPath directly above another; it's useless
2544 : : * and will confuse create_projection_plan. Rather than making sure all
2545 : : * callers handle that, let's implement it here, by stripping off any
2546 : : * ProjectionPath in what we're given. Given this rule, there won't be
2547 : : * more than one.
2548 : : */
2549 [ + + ]: 44230 : if (IsA(subpath, ProjectionPath))
2550 : : {
2551 : 2 : ProjectionPath *subpp = (ProjectionPath *) subpath;
2552 : :
2553 [ + - ]: 2 : Assert(subpp->path.parent == rel);
2554 : 2 : subpath = subpp->subpath;
2555 [ + - ]: 2 : Assert(!IsA(subpath, ProjectionPath));
2556 : 2 : }
2557 : :
2558 : 44230 : pathnode->path.pathtype = T_Result;
2559 : 44230 : pathnode->path.parent = rel;
2560 : 44230 : pathnode->path.pathtarget = target;
2561 : 44230 : pathnode->path.param_info = subpath->param_info;
2562 : 44230 : pathnode->path.parallel_aware = false;
2563 [ + + ]: 62572 : pathnode->path.parallel_safe = rel->consider_parallel &&
2564 [ + + ]: 18342 : subpath->parallel_safe &&
2565 : 16995 : is_parallel_safe(root, (Node *) target->exprs);
2566 : 44230 : pathnode->path.parallel_workers = subpath->parallel_workers;
2567 : : /* Projection does not change the sort order */
2568 : 44230 : pathnode->path.pathkeys = subpath->pathkeys;
2569 : :
2570 : 44230 : pathnode->subpath = subpath;
2571 : :
2572 : : /*
2573 : : * We might not need a separate Result node. If the input plan node type
2574 : : * can project, we can just tell it to project something else. Or, if it
2575 : : * can't project but the desired target has the same expression list as
2576 : : * what the input will produce anyway, we can still give it the desired
2577 : : * tlist (possibly changing its ressortgroupref labels, but nothing else).
2578 : : * Note: in the latter case, create_projection_plan has to recheck our
2579 : : * conclusion; see comments therein.
2580 : : */
2581 : 44230 : oldtarget = subpath->pathtarget;
2582 [ + + + + ]: 44230 : if (is_projection_capable_path(subpath) ||
2583 : 2604 : equal(oldtarget->exprs, target->exprs))
2584 : : {
2585 : : /* No separate Result node needed */
2586 : 41881 : pathnode->dummypp = true;
2587 : :
2588 : : /*
2589 : : * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2590 : : */
2591 : 41881 : pathnode->path.rows = subpath->rows;
2592 : 41881 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
2593 : 83762 : pathnode->path.startup_cost = subpath->startup_cost +
2594 : 41881 : (target->cost.startup - oldtarget->cost.startup);
2595 : 125643 : pathnode->path.total_cost = subpath->total_cost +
2596 : 83762 : (target->cost.startup - oldtarget->cost.startup) +
2597 : 41881 : (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2598 : 41881 : }
2599 : : else
2600 : : {
2601 : : /* We really do need the Result node */
2602 : 2349 : pathnode->dummypp = false;
2603 : :
2604 : : /*
2605 : : * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2606 : : * evaluating the tlist. There is no qual to worry about.
2607 : : */
2608 : 2349 : pathnode->path.rows = subpath->rows;
2609 : 2349 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
2610 : 4698 : pathnode->path.startup_cost = subpath->startup_cost +
2611 : 2349 : target->cost.startup;
2612 : 7047 : pathnode->path.total_cost = subpath->total_cost +
2613 : 4698 : target->cost.startup +
2614 : 2349 : (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2615 : : }
2616 : :
2617 : 88460 : return pathnode;
2618 : 44230 : }
2619 : :
2620 : : /*
2621 : : * apply_projection_to_path
2622 : : * Add a projection step, or just apply the target directly to given path.
2623 : : *
2624 : : * This has the same net effect as create_projection_path(), except that if
2625 : : * a separate Result plan node isn't needed, we just replace the given path's
2626 : : * pathtarget with the desired one. This must be used only when the caller
2627 : : * knows that the given path isn't referenced elsewhere and so can be modified
2628 : : * in-place.
2629 : : *
2630 : : * If the input path is a GatherPath or GatherMergePath, we try to push the
2631 : : * new target down to its input as well; this is a yet more invasive
2632 : : * modification of the input path, which create_projection_path() can't do.
2633 : : *
2634 : : * Note that we mustn't change the source path's parent link; so when it is
2635 : : * add_path'd to "rel" things will be a bit inconsistent. So far that has
2636 : : * not caused any trouble.
2637 : : *
2638 : : * 'rel' is the parent relation associated with the result
2639 : : * 'path' is the path representing the source of data
2640 : : * 'target' is the PathTarget to be computed
2641 : : */
2642 : : Path *
2643 : 1838 : apply_projection_to_path(PlannerInfo *root,
2644 : : RelOptInfo *rel,
2645 : : Path *path,
2646 : : PathTarget *target)
2647 : : {
2648 : 1838 : QualCost oldcost;
2649 : :
2650 : : /*
2651 : : * If given path can't project, we might need a Result node, so make a
2652 : : * separate ProjectionPath.
2653 : : */
2654 [ + + ]: 1838 : if (!is_projection_capable_path(path))
2655 : 127 : return (Path *) create_projection_path(root, rel, path, target);
2656 : :
2657 : : /*
2658 : : * We can just jam the desired tlist into the existing path, being sure to
2659 : : * update its cost estimates appropriately.
2660 : : */
2661 : 1711 : oldcost = path->pathtarget->cost;
2662 : 1711 : path->pathtarget = target;
2663 : :
2664 : 1711 : path->startup_cost += target->cost.startup - oldcost.startup;
2665 : 3422 : path->total_cost += target->cost.startup - oldcost.startup +
2666 : 1711 : (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2667 : :
2668 : : /*
2669 : : * If the path happens to be a Gather or GatherMerge path, we'd like to
2670 : : * arrange for the subpath to return the required target list so that
2671 : : * workers can help project. But if there is something that is not
2672 : : * parallel-safe in the target expressions, then we can't.
2673 : : */
2674 [ + - + + ]: 1711 : if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2675 : 1711 : is_parallel_safe(root, (Node *) target->exprs))
2676 : : {
2677 : : /*
2678 : : * We always use create_projection_path here, even if the subpath is
2679 : : * projection-capable, so as to avoid modifying the subpath in place.
2680 : : * It seems unlikely at present that there could be any other
2681 : : * references to the subpath, but better safe than sorry.
2682 : : *
2683 : : * Note that we don't change the parallel path's cost estimates; it
2684 : : * might be appropriate to do so, to reflect the fact that the bulk of
2685 : : * the target evaluation will happen in workers.
2686 : : */
2687 [ - + ]: 4 : if (IsA(path, GatherPath))
2688 : : {
2689 : 0 : GatherPath *gpath = (GatherPath *) path;
2690 : :
2691 : 0 : gpath->subpath = (Path *)
2692 : 0 : create_projection_path(root,
2693 : 0 : gpath->subpath->parent,
2694 : 0 : gpath->subpath,
2695 : 0 : target);
2696 : 0 : }
2697 : : else
2698 : : {
2699 : 4 : GatherMergePath *gmpath = (GatherMergePath *) path;
2700 : :
2701 : 4 : gmpath->subpath = (Path *)
2702 : 8 : create_projection_path(root,
2703 : 4 : gmpath->subpath->parent,
2704 : 4 : gmpath->subpath,
2705 : 4 : target);
2706 : 4 : }
2707 : 4 : }
2708 [ + + + + ]: 1707 : else if (path->parallel_safe &&
2709 : 634 : !is_parallel_safe(root, (Node *) target->exprs))
2710 : : {
2711 : : /*
2712 : : * We're inserting a parallel-restricted target list into a path
2713 : : * currently marked parallel-safe, so we have to mark it as no longer
2714 : : * safe.
2715 : : */
2716 : 2 : path->parallel_safe = false;
2717 : 2 : }
2718 : :
2719 : 1711 : return path;
2720 : 1838 : }
2721 : :
2722 : : /*
2723 : : * create_set_projection_path
2724 : : * Creates a pathnode that represents performing a projection that
2725 : : * includes set-returning functions.
2726 : : *
2727 : : * 'rel' is the parent relation associated with the result
2728 : : * 'subpath' is the path representing the source of data
2729 : : * 'target' is the PathTarget to be computed
2730 : : */
2731 : : ProjectSetPath *
2732 : 1664 : create_set_projection_path(PlannerInfo *root,
2733 : : RelOptInfo *rel,
2734 : : Path *subpath,
2735 : : PathTarget *target)
2736 : : {
2737 : 1664 : ProjectSetPath *pathnode = makeNode(ProjectSetPath);
2738 : 1664 : double tlist_rows;
2739 : 1664 : ListCell *lc;
2740 : :
2741 : 1664 : pathnode->path.pathtype = T_ProjectSet;
2742 : 1664 : pathnode->path.parent = rel;
2743 : 1664 : pathnode->path.pathtarget = target;
2744 : : /* For now, assume we are above any joins, so no parameterization */
2745 : 1664 : pathnode->path.param_info = NULL;
2746 : 1664 : pathnode->path.parallel_aware = false;
2747 [ + + ]: 2272 : pathnode->path.parallel_safe = rel->consider_parallel &&
2748 [ + + ]: 608 : subpath->parallel_safe &&
2749 : 602 : is_parallel_safe(root, (Node *) target->exprs);
2750 : 1664 : pathnode->path.parallel_workers = subpath->parallel_workers;
2751 : : /* Projection does not change the sort order XXX? */
2752 : 1664 : pathnode->path.pathkeys = subpath->pathkeys;
2753 : :
2754 : 1664 : pathnode->subpath = subpath;
2755 : :
2756 : : /*
2757 : : * Estimate number of rows produced by SRFs for each row of input; if
2758 : : * there's more than one in this node, use the maximum.
2759 : : */
2760 : 1664 : tlist_rows = 1;
2761 [ + - + + : 3587 : foreach(lc, target->exprs)
+ + ]
2762 : : {
2763 : 1923 : Node *node = (Node *) lfirst(lc);
2764 : 1923 : double itemrows;
2765 : :
2766 : 1923 : itemrows = expression_returns_set_rows(root, node);
2767 [ + + ]: 1923 : if (tlist_rows < itemrows)
2768 : 1595 : tlist_rows = itemrows;
2769 : 1923 : }
2770 : :
2771 : : /*
2772 : : * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2773 : : * per input row, and half of cpu_tuple_cost for each added output row.
2774 : : * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2775 : : * this estimate later.
2776 : : */
2777 : 1664 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
2778 : 1664 : pathnode->path.rows = subpath->rows * tlist_rows;
2779 : 3328 : pathnode->path.startup_cost = subpath->startup_cost +
2780 : 1664 : target->cost.startup;
2781 : 4992 : pathnode->path.total_cost = subpath->total_cost +
2782 : 3328 : target->cost.startup +
2783 : 3328 : (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2784 : 1664 : (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2785 : :
2786 : 3328 : return pathnode;
2787 : 1664 : }
2788 : :
2789 : : /*
2790 : : * create_incremental_sort_path
2791 : : * Creates a pathnode that represents performing an incremental sort.
2792 : : *
2793 : : * 'rel' is the parent relation associated with the result
2794 : : * 'subpath' is the path representing the source of data
2795 : : * 'pathkeys' represents the desired sort order
2796 : : * 'presorted_keys' is the number of keys by which the input path is
2797 : : * already sorted
2798 : : * 'limit_tuples' is the estimated bound on the number of output tuples,
2799 : : * or -1 if no LIMIT or couldn't estimate
2800 : : */
2801 : : IncrementalSortPath *
2802 : 1195 : create_incremental_sort_path(PlannerInfo *root,
2803 : : RelOptInfo *rel,
2804 : : Path *subpath,
2805 : : List *pathkeys,
2806 : : int presorted_keys,
2807 : : double limit_tuples)
2808 : : {
2809 : 1195 : IncrementalSortPath *sort = makeNode(IncrementalSortPath);
2810 : 1195 : SortPath *pathnode = &sort->spath;
2811 : :
2812 : 1195 : pathnode->path.pathtype = T_IncrementalSort;
2813 : 1195 : pathnode->path.parent = rel;
2814 : : /* Sort doesn't project, so use source path's pathtarget */
2815 : 1195 : pathnode->path.pathtarget = subpath->pathtarget;
2816 : 1195 : pathnode->path.param_info = subpath->param_info;
2817 : 1195 : pathnode->path.parallel_aware = false;
2818 [ + + ]: 1709 : pathnode->path.parallel_safe = rel->consider_parallel &&
2819 : 514 : subpath->parallel_safe;
2820 : 1195 : pathnode->path.parallel_workers = subpath->parallel_workers;
2821 : 1195 : pathnode->path.pathkeys = pathkeys;
2822 : :
2823 : 1195 : pathnode->subpath = subpath;
2824 : :
2825 : 2390 : cost_incremental_sort(&pathnode->path,
2826 : 1195 : root, pathkeys, presorted_keys,
2827 : 1195 : subpath->disabled_nodes,
2828 : 1195 : subpath->startup_cost,
2829 : 1195 : subpath->total_cost,
2830 : 1195 : subpath->rows,
2831 : 1195 : subpath->pathtarget->width,
2832 : : 0.0, /* XXX comparison_cost shouldn't be 0? */
2833 : 1195 : work_mem, limit_tuples);
2834 : :
2835 : 1195 : sort->nPresortedCols = presorted_keys;
2836 : :
2837 : 2390 : return sort;
2838 : 1195 : }
2839 : :
2840 : : /*
2841 : : * create_sort_path
2842 : : * Creates a pathnode that represents performing an explicit sort.
2843 : : *
2844 : : * 'rel' is the parent relation associated with the result
2845 : : * 'subpath' is the path representing the source of data
2846 : : * 'pathkeys' represents the desired sort order
2847 : : * 'limit_tuples' is the estimated bound on the number of output tuples,
2848 : : * or -1 if no LIMIT or couldn't estimate
2849 : : */
2850 : : SortPath *
2851 : 15620 : create_sort_path(PlannerInfo *root,
2852 : : RelOptInfo *rel,
2853 : : Path *subpath,
2854 : : List *pathkeys,
2855 : : double limit_tuples)
2856 : : {
2857 : 15620 : SortPath *pathnode = makeNode(SortPath);
2858 : :
2859 : 15620 : pathnode->path.pathtype = T_Sort;
2860 : 15620 : pathnode->path.parent = rel;
2861 : : /* Sort doesn't project, so use source path's pathtarget */
2862 : 15620 : pathnode->path.pathtarget = subpath->pathtarget;
2863 : 15620 : pathnode->path.param_info = subpath->param_info;
2864 : 15620 : pathnode->path.parallel_aware = false;
2865 [ + + ]: 27173 : pathnode->path.parallel_safe = rel->consider_parallel &&
2866 : 11553 : subpath->parallel_safe;
2867 : 15620 : pathnode->path.parallel_workers = subpath->parallel_workers;
2868 : 15620 : pathnode->path.pathkeys = pathkeys;
2869 : :
2870 : 15620 : pathnode->subpath = subpath;
2871 : :
2872 : 31240 : cost_sort(&pathnode->path, root, pathkeys,
2873 : 15620 : subpath->disabled_nodes,
2874 : 15620 : subpath->total_cost,
2875 : 15620 : subpath->rows,
2876 : 15620 : subpath->pathtarget->width,
2877 : : 0.0, /* XXX comparison_cost shouldn't be 0? */
2878 : 15620 : work_mem, limit_tuples);
2879 : :
2880 : 31240 : return pathnode;
2881 : 15620 : }
2882 : :
2883 : : /*
2884 : : * create_group_path
2885 : : * Creates a pathnode that represents performing grouping of presorted input
2886 : : *
2887 : : * 'rel' is the parent relation associated with the result
2888 : : * 'subpath' is the path representing the source of data
2889 : : * 'target' is the PathTarget to be computed
2890 : : * 'groupClause' is a list of SortGroupClause's representing the grouping
2891 : : * 'qual' is the HAVING quals if any
2892 : : * 'numGroups' is the estimated number of groups
2893 : : */
2894 : : GroupPath *
2895 : 192 : create_group_path(PlannerInfo *root,
2896 : : RelOptInfo *rel,
2897 : : Path *subpath,
2898 : : List *groupClause,
2899 : : List *qual,
2900 : : double numGroups)
2901 : : {
2902 : 192 : GroupPath *pathnode = makeNode(GroupPath);
2903 : 192 : PathTarget *target = rel->reltarget;
2904 : :
2905 : 192 : pathnode->path.pathtype = T_Group;
2906 : 192 : pathnode->path.parent = rel;
2907 : 192 : pathnode->path.pathtarget = target;
2908 : : /* For now, assume we are above any joins, so no parameterization */
2909 : 192 : pathnode->path.param_info = NULL;
2910 : 192 : pathnode->path.parallel_aware = false;
2911 [ + + ]: 308 : pathnode->path.parallel_safe = rel->consider_parallel &&
2912 : 116 : subpath->parallel_safe;
2913 : 192 : pathnode->path.parallel_workers = subpath->parallel_workers;
2914 : : /* Group doesn't change sort ordering */
2915 : 192 : pathnode->path.pathkeys = subpath->pathkeys;
2916 : :
2917 : 192 : pathnode->subpath = subpath;
2918 : :
2919 : 192 : pathnode->groupClause = groupClause;
2920 : 192 : pathnode->qual = qual;
2921 : :
2922 : 384 : cost_group(&pathnode->path, root,
2923 : 192 : list_length(groupClause),
2924 : 192 : numGroups,
2925 : 192 : qual,
2926 : 192 : subpath->disabled_nodes,
2927 : 192 : subpath->startup_cost, subpath->total_cost,
2928 : 192 : subpath->rows);
2929 : :
2930 : : /* add tlist eval cost for each output row */
2931 : 192 : pathnode->path.startup_cost += target->cost.startup;
2932 : 384 : pathnode->path.total_cost += target->cost.startup +
2933 : 192 : target->cost.per_tuple * pathnode->path.rows;
2934 : :
2935 : 384 : return pathnode;
2936 : 192 : }
2937 : :
2938 : : /*
2939 : : * create_unique_path
2940 : : * Creates a pathnode that represents performing an explicit Unique step
2941 : : * on presorted input.
2942 : : *
2943 : : * 'rel' is the parent relation associated with the result
2944 : : * 'subpath' is the path representing the source of data
2945 : : * 'numCols' is the number of grouping columns
2946 : : * 'numGroups' is the estimated number of groups
2947 : : *
2948 : : * The input path must be sorted on the grouping columns, plus possibly
2949 : : * additional columns; so the first numCols pathkeys are the grouping columns
2950 : : */
2951 : : UniquePath *
2952 : 2983 : create_unique_path(PlannerInfo *root,
2953 : : RelOptInfo *rel,
2954 : : Path *subpath,
2955 : : int numCols,
2956 : : double numGroups)
2957 : : {
2958 : 2983 : UniquePath *pathnode = makeNode(UniquePath);
2959 : :
2960 : 2983 : pathnode->path.pathtype = T_Unique;
2961 : 2983 : pathnode->path.parent = rel;
2962 : : /* Unique doesn't project, so use source path's pathtarget */
2963 : 2983 : pathnode->path.pathtarget = subpath->pathtarget;
2964 : 2983 : pathnode->path.param_info = subpath->param_info;
2965 : 2983 : pathnode->path.parallel_aware = false;
2966 [ + + ]: 5364 : pathnode->path.parallel_safe = rel->consider_parallel &&
2967 : 2381 : subpath->parallel_safe;
2968 : 2983 : pathnode->path.parallel_workers = subpath->parallel_workers;
2969 : : /* Unique doesn't change the input ordering */
2970 : 2983 : pathnode->path.pathkeys = subpath->pathkeys;
2971 : :
2972 : 2983 : pathnode->subpath = subpath;
2973 : 2983 : pathnode->numkeys = numCols;
2974 : :
2975 : : /*
2976 : : * Charge one cpu_operator_cost per comparison per input tuple. We assume
2977 : : * all columns get compared at most of the tuples. (XXX probably this is
2978 : : * an overestimate.)
2979 : : */
2980 : 2983 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
2981 : 2983 : pathnode->path.startup_cost = subpath->startup_cost;
2982 : 5966 : pathnode->path.total_cost = subpath->total_cost +
2983 : 2983 : cpu_operator_cost * subpath->rows * numCols;
2984 : 2983 : pathnode->path.rows = numGroups;
2985 : :
2986 : 5966 : return pathnode;
2987 : 2983 : }
2988 : :
2989 : : /*
2990 : : * create_agg_path
2991 : : * Creates a pathnode that represents performing aggregation/grouping
2992 : : *
2993 : : * 'rel' is the parent relation associated with the result
2994 : : * 'subpath' is the path representing the source of data
2995 : : * 'target' is the PathTarget to be computed
2996 : : * 'aggstrategy' is the Agg node's basic implementation strategy
2997 : : * 'aggsplit' is the Agg node's aggregate-splitting mode
2998 : : * 'groupClause' is a list of SortGroupClause's representing the grouping
2999 : : * 'qual' is the HAVING quals if any
3000 : : * 'aggcosts' contains cost info about the aggregate functions to be computed
3001 : : * 'numGroups' is the estimated number of groups (1 if not grouping)
3002 : : */
3003 : : AggPath *
3004 : 11320 : create_agg_path(PlannerInfo *root,
3005 : : RelOptInfo *rel,
3006 : : Path *subpath,
3007 : : PathTarget *target,
3008 : : AggStrategy aggstrategy,
3009 : : AggSplit aggsplit,
3010 : : List *groupClause,
3011 : : List *qual,
3012 : : const AggClauseCosts *aggcosts,
3013 : : double numGroups)
3014 : : {
3015 : 11320 : AggPath *pathnode = makeNode(AggPath);
3016 : :
3017 : 11320 : pathnode->path.pathtype = T_Agg;
3018 : 11320 : pathnode->path.parent = rel;
3019 : 11320 : pathnode->path.pathtarget = target;
3020 : 11320 : pathnode->path.param_info = subpath->param_info;
3021 : 11320 : pathnode->path.parallel_aware = false;
3022 [ + + ]: 20130 : pathnode->path.parallel_safe = rel->consider_parallel &&
3023 : 8810 : subpath->parallel_safe;
3024 : 11320 : pathnode->path.parallel_workers = subpath->parallel_workers;
3025 : :
3026 [ + + ]: 11320 : if (aggstrategy == AGG_SORTED)
3027 : : {
3028 : : /*
3029 : : * Attempt to preserve the order of the subpath. Additional pathkeys
3030 : : * may have been added in adjust_group_pathkeys_for_groupagg() to
3031 : : * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3032 : : * belong to columns within the aggregate function, so we must strip
3033 : : * these additional pathkeys off as those columns are unavailable
3034 : : * above the aggregate node.
3035 : : */
3036 [ + + ]: 2283 : if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3037 : 246 : pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3038 : 123 : root->num_groupby_pathkeys);
3039 : : else
3040 : 2160 : pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3041 : 2283 : }
3042 : : else
3043 : 9037 : pathnode->path.pathkeys = NIL; /* output is unordered */
3044 : :
3045 : 11320 : pathnode->subpath = subpath;
3046 : :
3047 : 11320 : pathnode->aggstrategy = aggstrategy;
3048 : 11320 : pathnode->aggsplit = aggsplit;
3049 : 11320 : pathnode->numGroups = numGroups;
3050 [ + + ]: 11320 : pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3051 : 11320 : pathnode->groupClause = groupClause;
3052 : 11320 : pathnode->qual = qual;
3053 : :
3054 : 22640 : cost_agg(&pathnode->path, root,
3055 : 11320 : aggstrategy, aggcosts,
3056 : 11320 : list_length(groupClause), numGroups,
3057 : 11320 : qual,
3058 : 11320 : subpath->disabled_nodes,
3059 : 11320 : subpath->startup_cost, subpath->total_cost,
3060 : 11320 : subpath->rows, subpath->pathtarget->width);
3061 : :
3062 : : /* add tlist eval cost for each output row */
3063 : 11320 : pathnode->path.startup_cost += target->cost.startup;
3064 : 22640 : pathnode->path.total_cost += target->cost.startup +
3065 : 11320 : target->cost.per_tuple * pathnode->path.rows;
3066 : :
3067 : 22640 : return pathnode;
3068 : 11320 : }
3069 : :
3070 : : /*
3071 : : * create_groupingsets_path
3072 : : * Creates a pathnode that represents performing GROUPING SETS aggregation
3073 : : *
3074 : : * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3075 : : * The input path's result must be sorted to match the last entry in
3076 : : * rollup_groupclauses.
3077 : : *
3078 : : * 'rel' is the parent relation associated with the result
3079 : : * 'subpath' is the path representing the source of data
3080 : : * 'target' is the PathTarget to be computed
3081 : : * 'having_qual' is the HAVING quals if any
3082 : : * 'rollups' is a list of RollupData nodes
3083 : : * 'agg_costs' contains cost info about the aggregate functions to be computed
3084 : : */
3085 : : GroupingSetsPath *
3086 : 389 : create_groupingsets_path(PlannerInfo *root,
3087 : : RelOptInfo *rel,
3088 : : Path *subpath,
3089 : : List *having_qual,
3090 : : AggStrategy aggstrategy,
3091 : : List *rollups,
3092 : : const AggClauseCosts *agg_costs)
3093 : : {
3094 : 389 : GroupingSetsPath *pathnode = makeNode(GroupingSetsPath);
3095 : 389 : PathTarget *target = rel->reltarget;
3096 : 389 : ListCell *lc;
3097 : 389 : bool is_first = true;
3098 : 389 : bool is_first_sort = true;
3099 : :
3100 : : /* The topmost generated Plan node will be an Agg */
3101 : 389 : pathnode->path.pathtype = T_Agg;
3102 : 389 : pathnode->path.parent = rel;
3103 : 389 : pathnode->path.pathtarget = target;
3104 : 389 : pathnode->path.param_info = subpath->param_info;
3105 : 389 : pathnode->path.parallel_aware = false;
3106 [ + + ]: 578 : pathnode->path.parallel_safe = rel->consider_parallel &&
3107 : 189 : subpath->parallel_safe;
3108 : 389 : pathnode->path.parallel_workers = subpath->parallel_workers;
3109 : 389 : pathnode->subpath = subpath;
3110 : :
3111 : : /*
3112 : : * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3113 : : * to AGG_HASHED, here if possible.
3114 : : */
3115 [ + + ]: 389 : if (aggstrategy == AGG_SORTED &&
3116 [ + + + + ]: 166 : list_length(rollups) == 1 &&
3117 : 85 : ((RollupData *) linitial(rollups))->groupClause == NIL)
3118 : 10 : aggstrategy = AGG_PLAIN;
3119 : :
3120 [ + + + - ]: 389 : if (aggstrategy == AGG_MIXED &&
3121 : 167 : list_length(rollups) == 1)
3122 : 0 : aggstrategy = AGG_HASHED;
3123 : :
3124 : : /*
3125 : : * Output will be in sorted order by group_pathkeys if, and only if, there
3126 : : * is a single rollup operation on a non-empty list of grouping
3127 : : * expressions.
3128 : : */
3129 [ + + + + ]: 389 : if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3130 : 75 : pathnode->path.pathkeys = root->group_pathkeys;
3131 : : else
3132 : 314 : pathnode->path.pathkeys = NIL;
3133 : :
3134 : 389 : pathnode->aggstrategy = aggstrategy;
3135 : 389 : pathnode->rollups = rollups;
3136 : 389 : pathnode->qual = having_qual;
3137 [ + - ]: 389 : pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3138 : :
3139 [ + - ]: 389 : Assert(rollups != NIL);
3140 [ + + + - ]: 389 : Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3141 [ + + + - ]: 389 : Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3142 : :
3143 [ + - + + : 1334 : foreach(lc, rollups)
+ + ]
3144 : : {
3145 : 945 : RollupData *rollup = lfirst(lc);
3146 : 945 : List *gsets = rollup->gsets;
3147 : 945 : int numGroupCols = list_length(linitial(gsets));
3148 : :
3149 : : /*
3150 : : * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3151 : : * (already-sorted) input, and following ones do their own sort.
3152 : : *
3153 : : * In AGG_HASHED mode, there is one rollup for each grouping set.
3154 : : *
3155 : : * In AGG_MIXED mode, the first rollups are hashed, the first
3156 : : * non-hashed one takes the (already-sorted) input, and following ones
3157 : : * do their own sort.
3158 : : */
3159 [ + + ]: 945 : if (is_first)
3160 : : {
3161 : 778 : cost_agg(&pathnode->path, root,
3162 : 389 : aggstrategy,
3163 : 389 : agg_costs,
3164 : 389 : numGroupCols,
3165 : 389 : rollup->numGroups,
3166 : 389 : having_qual,
3167 : 389 : subpath->disabled_nodes,
3168 : 389 : subpath->startup_cost,
3169 : 389 : subpath->total_cost,
3170 : 389 : subpath->rows,
3171 : 389 : subpath->pathtarget->width);
3172 : 389 : is_first = false;
3173 [ + + ]: 389 : if (!rollup->is_hashed)
3174 : 166 : is_first_sort = false;
3175 : 389 : }
3176 : : else
3177 : : {
3178 : 556 : Path sort_path; /* dummy for result of cost_sort */
3179 : 556 : Path agg_path; /* dummy for result of cost_agg */
3180 : :
3181 [ + + + + ]: 556 : if (rollup->is_hashed || is_first_sort)
3182 : : {
3183 : : /*
3184 : : * Account for cost of aggregation, but don't charge input
3185 : : * cost again
3186 : : */
3187 : 850 : cost_agg(&agg_path, root,
3188 : 425 : rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3189 : 425 : agg_costs,
3190 : 425 : numGroupCols,
3191 : 425 : rollup->numGroups,
3192 : 425 : having_qual,
3193 : : 0, 0.0, 0.0,
3194 : 425 : subpath->rows,
3195 : 425 : subpath->pathtarget->width);
3196 [ + + ]: 425 : if (!rollup->is_hashed)
3197 : 167 : is_first_sort = false;
3198 : 425 : }
3199 : : else
3200 : : {
3201 : : /* Account for cost of sort, but don't charge input cost again */
3202 : 262 : cost_sort(&sort_path, root, NIL, 0,
3203 : : 0.0,
3204 : 131 : subpath->rows,
3205 : 131 : subpath->pathtarget->width,
3206 : : 0.0,
3207 : 131 : work_mem,
3208 : : -1.0);
3209 : :
3210 : : /* Account for cost of aggregation */
3211 : :
3212 : 262 : cost_agg(&agg_path, root,
3213 : : AGG_SORTED,
3214 : 131 : agg_costs,
3215 : 131 : numGroupCols,
3216 : 131 : rollup->numGroups,
3217 : 131 : having_qual,
3218 : 131 : sort_path.disabled_nodes,
3219 : 131 : sort_path.startup_cost,
3220 : 131 : sort_path.total_cost,
3221 : 131 : sort_path.rows,
3222 : 131 : subpath->pathtarget->width);
3223 : : }
3224 : :
3225 : 556 : pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3226 : 556 : pathnode->path.total_cost += agg_path.total_cost;
3227 : 556 : pathnode->path.rows += agg_path.rows;
3228 : 556 : }
3229 : 945 : }
3230 : :
3231 : : /* add tlist eval cost for each output row */
3232 : 389 : pathnode->path.startup_cost += target->cost.startup;
3233 : 778 : pathnode->path.total_cost += target->cost.startup +
3234 : 389 : target->cost.per_tuple * pathnode->path.rows;
3235 : :
3236 : 778 : return pathnode;
3237 : 389 : }
3238 : :
3239 : : /*
3240 : : * create_minmaxagg_path
3241 : : * Creates a pathnode that represents computation of MIN/MAX aggregates
3242 : : *
3243 : : * 'rel' is the parent relation associated with the result
3244 : : * 'target' is the PathTarget to be computed
3245 : : * 'mmaggregates' is a list of MinMaxAggInfo structs
3246 : : * 'quals' is the HAVING quals if any
3247 : : */
3248 : : MinMaxAggPath *
3249 : 58 : create_minmaxagg_path(PlannerInfo *root,
3250 : : RelOptInfo *rel,
3251 : : PathTarget *target,
3252 : : List *mmaggregates,
3253 : : List *quals)
3254 : : {
3255 : 58 : MinMaxAggPath *pathnode = makeNode(MinMaxAggPath);
3256 : 58 : Cost initplan_cost;
3257 : 58 : int initplan_disabled_nodes = 0;
3258 : 58 : ListCell *lc;
3259 : :
3260 : : /* The topmost generated Plan node will be a Result */
3261 : 58 : pathnode->path.pathtype = T_Result;
3262 : 58 : pathnode->path.parent = rel;
3263 : 58 : pathnode->path.pathtarget = target;
3264 : : /* For now, assume we are above any joins, so no parameterization */
3265 : 58 : pathnode->path.param_info = NULL;
3266 : 58 : pathnode->path.parallel_aware = false;
3267 : 58 : pathnode->path.parallel_safe = true; /* might change below */
3268 : 58 : pathnode->path.parallel_workers = 0;
3269 : : /* Result is one unordered row */
3270 : 58 : pathnode->path.rows = 1;
3271 : 58 : pathnode->path.pathkeys = NIL;
3272 : :
3273 : 58 : pathnode->mmaggregates = mmaggregates;
3274 : 58 : pathnode->quals = quals;
3275 : :
3276 : : /* Calculate cost of all the initplans, and check parallel safety */
3277 : 58 : initplan_cost = 0;
3278 [ + - + + : 122 : foreach(lc, mmaggregates)
+ + ]
3279 : : {
3280 : 64 : MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3281 : :
3282 : 64 : initplan_disabled_nodes += mminfo->path->disabled_nodes;
3283 : 64 : initplan_cost += mminfo->pathcost;
3284 [ + + ]: 64 : if (!mminfo->path->parallel_safe)
3285 : 10 : pathnode->path.parallel_safe = false;
3286 : 64 : }
3287 : :
3288 : : /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3289 : 58 : pathnode->path.disabled_nodes = initplan_disabled_nodes;
3290 : 58 : pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3291 : 174 : pathnode->path.total_cost = initplan_cost + target->cost.startup +
3292 : 116 : target->cost.per_tuple + cpu_tuple_cost;
3293 : :
3294 : : /*
3295 : : * Add cost of qual, if any --- but we ignore its selectivity, since our
3296 : : * rowcount estimate should be 1 no matter what the qual is.
3297 : : */
3298 [ + - ]: 58 : if (quals)
3299 : : {
3300 : 0 : QualCost qual_cost;
3301 : :
3302 : 0 : cost_qual_eval(&qual_cost, quals, root);
3303 : 0 : pathnode->path.startup_cost += qual_cost.startup;
3304 : 0 : pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3305 : 0 : }
3306 : :
3307 : : /*
3308 : : * If the initplans were all parallel-safe, also check safety of the
3309 : : * target and quals. (The Result node itself isn't parallelizable, but if
3310 : : * we are in a subquery then it can be useful for the outer query to know
3311 : : * that this one is parallel-safe.)
3312 : : */
3313 [ + + ]: 58 : if (pathnode->path.parallel_safe)
3314 : 48 : pathnode->path.parallel_safe =
3315 [ - + ]: 48 : is_parallel_safe(root, (Node *) target->exprs) &&
3316 : 48 : is_parallel_safe(root, (Node *) quals);
3317 : :
3318 : 116 : return pathnode;
3319 : 58 : }
3320 : :
3321 : : /*
3322 : : * create_windowagg_path
3323 : : * Creates a pathnode that represents computation of window functions
3324 : : *
3325 : : * 'rel' is the parent relation associated with the result
3326 : : * 'subpath' is the path representing the source of data
3327 : : * 'target' is the PathTarget to be computed
3328 : : * 'windowFuncs' is a list of WindowFunc structs
3329 : : * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3330 : : * 'winclause' is a WindowClause that is common to all the WindowFuncs
3331 : : * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3332 : : * Must always be NIL when topwindow == false
3333 : : * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3334 : : * intermediate WindowAggs.
3335 : : *
3336 : : * The input must be sorted according to the WindowClause's PARTITION keys
3337 : : * plus ORDER BY keys.
3338 : : */
3339 : : WindowAggPath *
3340 : 492 : create_windowagg_path(PlannerInfo *root,
3341 : : RelOptInfo *rel,
3342 : : Path *subpath,
3343 : : PathTarget *target,
3344 : : List *windowFuncs,
3345 : : List *runCondition,
3346 : : WindowClause *winclause,
3347 : : List *qual,
3348 : : bool topwindow)
3349 : : {
3350 : 492 : WindowAggPath *pathnode = makeNode(WindowAggPath);
3351 : :
3352 : : /* qual can only be set for the topwindow */
3353 [ + + + - ]: 492 : Assert(qual == NIL || topwindow);
3354 : :
3355 : 492 : pathnode->path.pathtype = T_WindowAgg;
3356 : 492 : pathnode->path.parent = rel;
3357 : 492 : pathnode->path.pathtarget = target;
3358 : : /* For now, assume we are above any joins, so no parameterization */
3359 : 492 : pathnode->path.param_info = NULL;
3360 : 492 : pathnode->path.parallel_aware = false;
3361 [ + - ]: 492 : pathnode->path.parallel_safe = rel->consider_parallel &&
3362 : 0 : subpath->parallel_safe;
3363 : 492 : pathnode->path.parallel_workers = subpath->parallel_workers;
3364 : : /* WindowAgg preserves the input sort order */
3365 : 492 : pathnode->path.pathkeys = subpath->pathkeys;
3366 : :
3367 : 492 : pathnode->subpath = subpath;
3368 : 492 : pathnode->winclause = winclause;
3369 : 492 : pathnode->qual = qual;
3370 : 492 : pathnode->runCondition = runCondition;
3371 : 492 : pathnode->topwindow = topwindow;
3372 : :
3373 : : /*
3374 : : * For costing purposes, assume that there are no redundant partitioning
3375 : : * or ordering columns; it's not worth the trouble to deal with that
3376 : : * corner case here. So we just pass the unmodified list lengths to
3377 : : * cost_windowagg.
3378 : : */
3379 : 984 : cost_windowagg(&pathnode->path, root,
3380 : 492 : windowFuncs,
3381 : 492 : winclause,
3382 : 492 : subpath->disabled_nodes,
3383 : 492 : subpath->startup_cost,
3384 : 492 : subpath->total_cost,
3385 : 492 : subpath->rows);
3386 : :
3387 : : /* add tlist eval cost for each output row */
3388 : 492 : pathnode->path.startup_cost += target->cost.startup;
3389 : 984 : pathnode->path.total_cost += target->cost.startup +
3390 : 492 : target->cost.per_tuple * pathnode->path.rows;
3391 : :
3392 : 984 : return pathnode;
3393 : 492 : }
3394 : :
3395 : : /*
3396 : : * create_setop_path
3397 : : * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3398 : : *
3399 : : * 'rel' is the parent relation associated with the result
3400 : : * 'leftpath' is the path representing the left-hand source of data
3401 : : * 'rightpath' is the path representing the right-hand source of data
3402 : : * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3403 : : * 'strategy' is the implementation strategy (sorted or hashed)
3404 : : * 'groupList' is a list of SortGroupClause's representing the grouping
3405 : : * 'numGroups' is the estimated number of distinct groups in left-hand input
3406 : : * 'outputRows' is the estimated number of output rows
3407 : : *
3408 : : * leftpath and rightpath must produce the same columns. Moreover, if
3409 : : * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
3410 : : * by all the grouping columns.
3411 : : */
3412 : : SetOpPath *
3413 : 210 : create_setop_path(PlannerInfo *root,
3414 : : RelOptInfo *rel,
3415 : : Path *leftpath,
3416 : : Path *rightpath,
3417 : : SetOpCmd cmd,
3418 : : SetOpStrategy strategy,
3419 : : List *groupList,
3420 : : double numGroups,
3421 : : double outputRows)
3422 : : {
3423 : 210 : SetOpPath *pathnode = makeNode(SetOpPath);
3424 : :
3425 : 210 : pathnode->path.pathtype = T_SetOp;
3426 : 210 : pathnode->path.parent = rel;
3427 : 210 : pathnode->path.pathtarget = rel->reltarget;
3428 : : /* For now, assume we are above any joins, so no parameterization */
3429 : 210 : pathnode->path.param_info = NULL;
3430 : 210 : pathnode->path.parallel_aware = false;
3431 [ - + ]: 210 : pathnode->path.parallel_safe = rel->consider_parallel &&
3432 [ # # ]: 0 : leftpath->parallel_safe && rightpath->parallel_safe;
3433 : 210 : pathnode->path.parallel_workers =
3434 : 210 : leftpath->parallel_workers + rightpath->parallel_workers;
3435 : : /* SetOp preserves the input sort order if in sort mode */
3436 : 210 : pathnode->path.pathkeys =
3437 [ + + ]: 210 : (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
3438 : :
3439 : 210 : pathnode->leftpath = leftpath;
3440 : 210 : pathnode->rightpath = rightpath;
3441 : 210 : pathnode->cmd = cmd;
3442 : 210 : pathnode->strategy = strategy;
3443 : 210 : pathnode->groupList = groupList;
3444 : 210 : pathnode->numGroups = numGroups;
3445 : :
3446 : : /*
3447 : : * Compute cost estimates. As things stand, we end up with the same total
3448 : : * cost in this node for sort and hash methods, but different startup
3449 : : * costs. This could be refined perhaps, but it'll do for now.
3450 : : */
3451 : 210 : pathnode->path.disabled_nodes =
3452 : 210 : leftpath->disabled_nodes + rightpath->disabled_nodes;
3453 [ + + ]: 210 : if (strategy == SETOP_SORTED)
3454 : : {
3455 : : /*
3456 : : * In sorted mode, we can emit output incrementally. Charge one
3457 : : * cpu_operator_cost per comparison per input tuple. Like cost_group,
3458 : : * we assume all columns get compared at most of the tuples.
3459 : : */
3460 : 110 : pathnode->path.startup_cost =
3461 : 110 : leftpath->startup_cost + rightpath->startup_cost;
3462 : 110 : pathnode->path.total_cost =
3463 : 220 : leftpath->total_cost + rightpath->total_cost +
3464 : 110 : cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3465 : :
3466 : : /*
3467 : : * Also charge a small amount per extracted tuple. Like cost_sort,
3468 : : * charge only operator cost not cpu_tuple_cost, since SetOp does no
3469 : : * qual-checking or projection.
3470 : : */
3471 : 110 : pathnode->path.total_cost += cpu_operator_cost * outputRows;
3472 : 110 : }
3473 : : else
3474 : : {
3475 : 100 : Size hashtablesize;
3476 : :
3477 : : /*
3478 : : * In hashed mode, we must read all the input before we can emit
3479 : : * anything. Also charge comparison costs to represent the cost of
3480 : : * hash table lookups.
3481 : : */
3482 : 100 : pathnode->path.startup_cost =
3483 : 200 : leftpath->total_cost + rightpath->total_cost +
3484 : 100 : cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3485 : 100 : pathnode->path.total_cost = pathnode->path.startup_cost;
3486 : :
3487 : : /*
3488 : : * Also charge a small amount per extracted tuple. Like cost_sort,
3489 : : * charge only operator cost not cpu_tuple_cost, since SetOp does no
3490 : : * qual-checking or projection.
3491 : : */
3492 : 100 : pathnode->path.total_cost += cpu_operator_cost * outputRows;
3493 : :
3494 : : /*
3495 : : * Mark the path as disabled if enable_hashagg is off. While this
3496 : : * isn't exactly a HashAgg node, it seems close enough to justify
3497 : : * letting that switch control it.
3498 : : */
3499 [ + + ]: 100 : if (!enable_hashagg)
3500 : 19 : pathnode->path.disabled_nodes++;
3501 : :
3502 : : /*
3503 : : * Also disable if it doesn't look like the hashtable will fit into
3504 : : * hash_mem. (Note: reject on equality, to ensure that an estimate of
3505 : : * SIZE_MAX disables hashing regardless of the hash_mem limit.)
3506 : : */
3507 : 200 : hashtablesize = EstimateSetOpHashTableSpace(numGroups,
3508 : 100 : leftpath->pathtarget->width);
3509 [ + - ]: 100 : if (hashtablesize >= get_hash_memory_limit())
3510 : 0 : pathnode->path.disabled_nodes++;
3511 : 100 : }
3512 : 210 : pathnode->path.rows = outputRows;
3513 : :
3514 : 420 : return pathnode;
3515 : 210 : }
3516 : :
3517 : : /*
3518 : : * create_recursiveunion_path
3519 : : * Creates a pathnode that represents a recursive UNION node
3520 : : *
3521 : : * 'rel' is the parent relation associated with the result
3522 : : * 'leftpath' is the source of data for the non-recursive term
3523 : : * 'rightpath' is the source of data for the recursive term
3524 : : * 'target' is the PathTarget to be computed
3525 : : * 'distinctList' is a list of SortGroupClause's representing the grouping
3526 : : * 'wtParam' is the ID of Param representing work table
3527 : : * 'numGroups' is the estimated number of groups
3528 : : *
3529 : : * For recursive UNION ALL, distinctList is empty and numGroups is zero
3530 : : */
3531 : : RecursiveUnionPath *
3532 : 73 : create_recursiveunion_path(PlannerInfo *root,
3533 : : RelOptInfo *rel,
3534 : : Path *leftpath,
3535 : : Path *rightpath,
3536 : : PathTarget *target,
3537 : : List *distinctList,
3538 : : int wtParam,
3539 : : double numGroups)
3540 : : {
3541 : 73 : RecursiveUnionPath *pathnode = makeNode(RecursiveUnionPath);
3542 : :
3543 : 73 : pathnode->path.pathtype = T_RecursiveUnion;
3544 : 73 : pathnode->path.parent = rel;
3545 : 73 : pathnode->path.pathtarget = target;
3546 : : /* For now, assume we are above any joins, so no parameterization */
3547 : 73 : pathnode->path.param_info = NULL;
3548 : 73 : pathnode->path.parallel_aware = false;
3549 [ - + ]: 73 : pathnode->path.parallel_safe = rel->consider_parallel &&
3550 [ # # ]: 0 : leftpath->parallel_safe && rightpath->parallel_safe;
3551 : : /* Foolish, but we'll do it like joins for now: */
3552 : 73 : pathnode->path.parallel_workers = leftpath->parallel_workers;
3553 : : /* RecursiveUnion result is always unsorted */
3554 : 73 : pathnode->path.pathkeys = NIL;
3555 : :
3556 : 73 : pathnode->leftpath = leftpath;
3557 : 73 : pathnode->rightpath = rightpath;
3558 : 73 : pathnode->distinctList = distinctList;
3559 : 73 : pathnode->wtParam = wtParam;
3560 : 73 : pathnode->numGroups = numGroups;
3561 : :
3562 : 73 : cost_recursive_union(&pathnode->path, leftpath, rightpath);
3563 : :
3564 : 146 : return pathnode;
3565 : 73 : }
3566 : :
3567 : : /*
3568 : : * create_lockrows_path
3569 : : * Creates a pathnode that represents acquiring row locks
3570 : : *
3571 : : * 'rel' is the parent relation associated with the result
3572 : : * 'subpath' is the path representing the source of data
3573 : : * 'rowMarks' is a list of PlanRowMark's
3574 : : * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3575 : : */
3576 : : LockRowsPath *
3577 : 805 : create_lockrows_path(PlannerInfo *root, RelOptInfo *rel,
3578 : : Path *subpath, List *rowMarks, int epqParam)
3579 : : {
3580 : 805 : LockRowsPath *pathnode = makeNode(LockRowsPath);
3581 : :
3582 : 805 : pathnode->path.pathtype = T_LockRows;
3583 : 805 : pathnode->path.parent = rel;
3584 : : /* LockRows doesn't project, so use source path's pathtarget */
3585 : 805 : pathnode->path.pathtarget = subpath->pathtarget;
3586 : : /* For now, assume we are above any joins, so no parameterization */
3587 : 805 : pathnode->path.param_info = NULL;
3588 : 805 : pathnode->path.parallel_aware = false;
3589 : 805 : pathnode->path.parallel_safe = false;
3590 : 805 : pathnode->path.parallel_workers = 0;
3591 : 805 : pathnode->path.rows = subpath->rows;
3592 : :
3593 : : /*
3594 : : * The result cannot be assumed sorted, since locking might cause the sort
3595 : : * key columns to be replaced with new values.
3596 : : */
3597 : 805 : pathnode->path.pathkeys = NIL;
3598 : :
3599 : 805 : pathnode->subpath = subpath;
3600 : 805 : pathnode->rowMarks = rowMarks;
3601 : 805 : pathnode->epqParam = epqParam;
3602 : :
3603 : : /*
3604 : : * We should charge something extra for the costs of row locking and
3605 : : * possible refetches, but it's hard to say how much. For now, use
3606 : : * cpu_tuple_cost per row.
3607 : : */
3608 : 805 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
3609 : 805 : pathnode->path.startup_cost = subpath->startup_cost;
3610 : 1610 : pathnode->path.total_cost = subpath->total_cost +
3611 : 805 : cpu_tuple_cost * subpath->rows;
3612 : :
3613 : 1610 : return pathnode;
3614 : 805 : }
3615 : :
3616 : : /*
3617 : : * create_modifytable_path
3618 : : * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3619 : : * mods
3620 : : *
3621 : : * 'rel' is the parent relation associated with the result
3622 : : * 'subpath' is a Path producing source data
3623 : : * 'operation' is the operation type
3624 : : * 'canSetTag' is true if we set the command tag/es_processed
3625 : : * 'nominalRelation' is the parent RT index for use of EXPLAIN
3626 : : * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3627 : : * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3628 : : * 'updateColnosLists' is a list of UPDATE target column number lists
3629 : : * (one sublist per rel); or NIL if not an UPDATE
3630 : : * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3631 : : * 'returningLists' is a list of RETURNING tlists (one per rel)
3632 : : * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3633 : : * 'onconflict' is the ON CONFLICT clause, or NULL
3634 : : * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3635 : : * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3636 : : * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3637 : : */
3638 : : ModifyTablePath *
3639 : 7234 : create_modifytable_path(PlannerInfo *root, RelOptInfo *rel,
3640 : : Path *subpath,
3641 : : CmdType operation, bool canSetTag,
3642 : : Index nominalRelation, Index rootRelation,
3643 : : List *resultRelations,
3644 : : List *updateColnosLists,
3645 : : List *withCheckOptionLists, List *returningLists,
3646 : : List *rowMarks, OnConflictExpr *onconflict,
3647 : : List *mergeActionLists, List *mergeJoinConditions,
3648 : : int epqParam)
3649 : : {
3650 : 7234 : ModifyTablePath *pathnode = makeNode(ModifyTablePath);
3651 : :
3652 [ + + + + : 7234 : Assert(operation == CMD_MERGE ||
+ - ]
3653 : : (operation == CMD_UPDATE ?
3654 : : list_length(resultRelations) == list_length(updateColnosLists) :
3655 : : updateColnosLists == NIL));
3656 [ + + + - ]: 7234 : Assert(withCheckOptionLists == NIL ||
3657 : : list_length(resultRelations) == list_length(withCheckOptionLists));
3658 [ + + + - ]: 7234 : Assert(returningLists == NIL ||
3659 : : list_length(resultRelations) == list_length(returningLists));
3660 : :
3661 : 7234 : pathnode->path.pathtype = T_ModifyTable;
3662 : 7234 : pathnode->path.parent = rel;
3663 : : /* pathtarget is not interesting, just make it minimally valid */
3664 : 7234 : pathnode->path.pathtarget = rel->reltarget;
3665 : : /* For now, assume we are above any joins, so no parameterization */
3666 : 7234 : pathnode->path.param_info = NULL;
3667 : 7234 : pathnode->path.parallel_aware = false;
3668 : 7234 : pathnode->path.parallel_safe = false;
3669 : 7234 : pathnode->path.parallel_workers = 0;
3670 : 7234 : pathnode->path.pathkeys = NIL;
3671 : :
3672 : : /*
3673 : : * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3674 : : *
3675 : : * Currently, we don't charge anything extra for the actual table
3676 : : * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3677 : : * expressions if any. It would only be window dressing, since
3678 : : * ModifyTable is always a top-level node and there is no way for the
3679 : : * costs to change any higher-level planning choices. But we might want
3680 : : * to make it look better sometime.
3681 : : */
3682 : 7234 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
3683 : 7234 : pathnode->path.startup_cost = subpath->startup_cost;
3684 : 7234 : pathnode->path.total_cost = subpath->total_cost;
3685 [ + + ]: 7234 : if (returningLists != NIL)
3686 : : {
3687 : 337 : pathnode->path.rows = subpath->rows;
3688 : :
3689 : : /*
3690 : : * Set width to match the subpath output. XXX this is totally wrong:
3691 : : * we should return an average of the RETURNING tlist widths. But
3692 : : * it's what happened historically, and improving it is a task for
3693 : : * another day. (Again, it's mostly window dressing.)
3694 : : */
3695 : 337 : pathnode->path.pathtarget->width = subpath->pathtarget->width;
3696 : 337 : }
3697 : : else
3698 : : {
3699 : 6897 : pathnode->path.rows = 0;
3700 : 6897 : pathnode->path.pathtarget->width = 0;
3701 : : }
3702 : :
3703 : 7234 : pathnode->subpath = subpath;
3704 : 7234 : pathnode->operation = operation;
3705 : 7234 : pathnode->canSetTag = canSetTag;
3706 : 7234 : pathnode->nominalRelation = nominalRelation;
3707 : 7234 : pathnode->rootRelation = rootRelation;
3708 : 7234 : pathnode->resultRelations = resultRelations;
3709 : 7234 : pathnode->updateColnosLists = updateColnosLists;
3710 : 7234 : pathnode->withCheckOptionLists = withCheckOptionLists;
3711 : 7234 : pathnode->returningLists = returningLists;
3712 : 7234 : pathnode->rowMarks = rowMarks;
3713 : 7234 : pathnode->onconflict = onconflict;
3714 : 7234 : pathnode->epqParam = epqParam;
3715 : 7234 : pathnode->mergeActionLists = mergeActionLists;
3716 : 7234 : pathnode->mergeJoinConditions = mergeJoinConditions;
3717 : :
3718 : 14468 : return pathnode;
3719 : 7234 : }
3720 : :
3721 : : /*
3722 : : * create_limit_path
3723 : : * Creates a pathnode that represents performing LIMIT/OFFSET
3724 : : *
3725 : : * In addition to providing the actual OFFSET and LIMIT expressions,
3726 : : * the caller must provide estimates of their values for costing purposes.
3727 : : * The estimates are as computed by preprocess_limit(), ie, 0 represents
3728 : : * the clause not being present, and -1 means it's present but we could
3729 : : * not estimate its value.
3730 : : *
3731 : : * 'rel' is the parent relation associated with the result
3732 : : * 'subpath' is the path representing the source of data
3733 : : * 'limitOffset' is the actual OFFSET expression, or NULL
3734 : : * 'limitCount' is the actual LIMIT expression, or NULL
3735 : : * 'offset_est' is the estimated value of the OFFSET expression
3736 : : * 'count_est' is the estimated value of the LIMIT expression
3737 : : */
3738 : : LimitPath *
3739 : 555 : create_limit_path(PlannerInfo *root, RelOptInfo *rel,
3740 : : Path *subpath,
3741 : : Node *limitOffset, Node *limitCount,
3742 : : LimitOption limitOption,
3743 : : int64 offset_est, int64 count_est)
3744 : : {
3745 : 555 : LimitPath *pathnode = makeNode(LimitPath);
3746 : :
3747 : 555 : pathnode->path.pathtype = T_Limit;
3748 : 555 : pathnode->path.parent = rel;
3749 : : /* Limit doesn't project, so use source path's pathtarget */
3750 : 555 : pathnode->path.pathtarget = subpath->pathtarget;
3751 : : /* For now, assume we are above any joins, so no parameterization */
3752 : 555 : pathnode->path.param_info = NULL;
3753 : 555 : pathnode->path.parallel_aware = false;
3754 [ + + ]: 770 : pathnode->path.parallel_safe = rel->consider_parallel &&
3755 : 215 : subpath->parallel_safe;
3756 : 555 : pathnode->path.parallel_workers = subpath->parallel_workers;
3757 : 555 : pathnode->path.rows = subpath->rows;
3758 : 555 : pathnode->path.disabled_nodes = subpath->disabled_nodes;
3759 : 555 : pathnode->path.startup_cost = subpath->startup_cost;
3760 : 555 : pathnode->path.total_cost = subpath->total_cost;
3761 : 555 : pathnode->path.pathkeys = subpath->pathkeys;
3762 : 555 : pathnode->subpath = subpath;
3763 : 555 : pathnode->limitOffset = limitOffset;
3764 : 555 : pathnode->limitCount = limitCount;
3765 : 555 : pathnode->limitOption = limitOption;
3766 : :
3767 : : /*
3768 : : * Adjust the output rows count and costs according to the offset/limit.
3769 : : */
3770 : 1110 : adjust_limit_rows_costs(&pathnode->path.rows,
3771 : 555 : &pathnode->path.startup_cost,
3772 : 555 : &pathnode->path.total_cost,
3773 : 555 : offset_est, count_est);
3774 : :
3775 : 1110 : return pathnode;
3776 : 555 : }
3777 : :
3778 : : /*
3779 : : * adjust_limit_rows_costs
3780 : : * Adjust the size and cost estimates for a LimitPath node according to the
3781 : : * offset/limit.
3782 : : *
3783 : : * This is only a cosmetic issue if we are at top level, but if we are
3784 : : * building a subquery then it's important to report correct info to the outer
3785 : : * planner.
3786 : : *
3787 : : * When the offset or count couldn't be estimated, use 10% of the estimated
3788 : : * number of rows emitted from the subpath.
3789 : : *
3790 : : * XXX we don't bother to add eval costs of the offset/limit expressions
3791 : : * themselves to the path costs. In theory we should, but in most cases those
3792 : : * expressions are trivial and it's just not worth the trouble.
3793 : : */
3794 : : void
3795 : 555 : adjust_limit_rows_costs(double *rows, /* in/out parameter */
3796 : : Cost *startup_cost, /* in/out parameter */
3797 : : Cost *total_cost, /* in/out parameter */
3798 : : int64 offset_est,
3799 : : int64 count_est)
3800 : : {
3801 : 555 : double input_rows = *rows;
3802 : 555 : Cost input_startup_cost = *startup_cost;
3803 : 555 : Cost input_total_cost = *total_cost;
3804 : :
3805 [ + + ]: 555 : if (offset_est != 0)
3806 : : {
3807 : 26 : double offset_rows;
3808 : :
3809 [ + + ]: 26 : if (offset_est > 0)
3810 : 22 : offset_rows = (double) offset_est;
3811 : : else
3812 : 4 : offset_rows = clamp_row_est(input_rows * 0.10);
3813 [ + + ]: 26 : if (offset_rows > *rows)
3814 : 1 : offset_rows = *rows;
3815 [ - + ]: 26 : if (input_rows > 0)
3816 : 26 : *startup_cost +=
3817 : 26 : (input_total_cost - input_startup_cost)
3818 : 26 : * offset_rows / input_rows;
3819 : 26 : *rows -= offset_rows;
3820 [ + + ]: 26 : if (*rows < 1)
3821 : 1 : *rows = 1;
3822 : 26 : }
3823 : :
3824 [ + + ]: 555 : if (count_est != 0)
3825 : : {
3826 : 546 : double count_rows;
3827 : :
3828 [ + + ]: 546 : if (count_est > 0)
3829 : 545 : count_rows = (double) count_est;
3830 : : else
3831 : 1 : count_rows = clamp_row_est(input_rows * 0.10);
3832 [ + + ]: 546 : if (count_rows > *rows)
3833 : 2 : count_rows = *rows;
3834 [ - + ]: 546 : if (input_rows > 0)
3835 : 1092 : *total_cost = *startup_cost +
3836 : 546 : (input_total_cost - input_startup_cost)
3837 : 546 : * count_rows / input_rows;
3838 : 546 : *rows = count_rows;
3839 [ + - ]: 546 : if (*rows < 1)
3840 : 0 : *rows = 1;
3841 : 546 : }
3842 : 555 : }
3843 : :
3844 : :
3845 : : /*
3846 : : * reparameterize_path
3847 : : * Attempt to modify a Path to have greater parameterization
3848 : : *
3849 : : * We use this to attempt to bring all child paths of an appendrel to the
3850 : : * same parameterization level, ensuring that they all enforce the same set
3851 : : * of join quals (and thus that that parameterization can be attributed to
3852 : : * an append path built from such paths). Currently, only a few path types
3853 : : * are supported here, though more could be added at need. We return NULL
3854 : : * if we can't reparameterize the given path.
3855 : : *
3856 : : * Note: we intentionally do not pass created paths to add_path(); it would
3857 : : * possibly try to delete them on the grounds of being cost-inferior to the
3858 : : * paths they were made from, and we don't want that. Paths made here are
3859 : : * not necessarily of general-purpose usefulness, but they can be useful
3860 : : * as members of an append path.
3861 : : */
3862 : : Path *
3863 : 53 : reparameterize_path(PlannerInfo *root, Path *path,
3864 : : Relids required_outer,
3865 : : double loop_count)
3866 : : {
3867 : 53 : RelOptInfo *rel = path->parent;
3868 : :
3869 : : /* Can only increase, not decrease, path's parameterization */
3870 [ - + - + ]: 53 : if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
3871 : 0 : return NULL;
3872 [ + - - - : 53 : switch (path->pathtype)
- - + - -
- ]
3873 : : {
3874 : : case T_SeqScan:
3875 : 43 : return create_seqscan_path(root, rel, required_outer, 0);
3876 : : case T_SampleScan:
3877 : 0 : return create_samplescan_path(root, rel, required_outer);
3878 : : case T_IndexScan:
3879 : : case T_IndexOnlyScan:
3880 : : {
3881 : 0 : IndexPath *ipath = (IndexPath *) path;
3882 : 0 : IndexPath *newpath = makeNode(IndexPath);
3883 : :
3884 : : /*
3885 : : * We can't use create_index_path directly, and would not want
3886 : : * to because it would re-compute the indexqual conditions
3887 : : * which is wasted effort. Instead we hack things a bit:
3888 : : * flat-copy the path node, revise its param_info, and redo
3889 : : * the cost estimate.
3890 : : */
3891 : 0 : memcpy(newpath, ipath, sizeof(IndexPath));
3892 : 0 : newpath->path.param_info =
3893 : 0 : get_baserel_parampathinfo(root, rel, required_outer);
3894 : 0 : cost_index(newpath, root, loop_count, false);
3895 : 0 : return (Path *) newpath;
3896 : 0 : }
3897 : : case T_BitmapHeapScan:
3898 : : {
3899 : 0 : BitmapHeapPath *bpath = (BitmapHeapPath *) path;
3900 : :
3901 : 0 : return (Path *) create_bitmap_heap_path(root,
3902 : 0 : rel,
3903 : 0 : bpath->bitmapqual,
3904 : 0 : required_outer,
3905 : 0 : loop_count, 0);
3906 : 0 : }
3907 : : case T_SubqueryScan:
3908 : : {
3909 : 0 : SubqueryScanPath *spath = (SubqueryScanPath *) path;
3910 : 0 : Path *subpath = spath->subpath;
3911 : 0 : bool trivial_pathtarget;
3912 : :
3913 : : /*
3914 : : * If existing node has zero extra cost, we must have decided
3915 : : * its target is trivial. (The converse is not true, because
3916 : : * it might have a trivial target but quals to enforce; but in
3917 : : * that case the new node will too, so it doesn't matter
3918 : : * whether we get the right answer here.)
3919 : : */
3920 : 0 : trivial_pathtarget =
3921 : 0 : (subpath->total_cost == spath->path.total_cost);
3922 : :
3923 : 0 : return (Path *) create_subqueryscan_path(root,
3924 : 0 : rel,
3925 : 0 : subpath,
3926 : 0 : trivial_pathtarget,
3927 : 0 : spath->path.pathkeys,
3928 : 0 : required_outer);
3929 : 0 : }
3930 : : case T_Result:
3931 : : /* Supported only for RTE_RESULT scan paths */
3932 [ + - ]: 10 : if (IsA(path, Path))
3933 : 10 : return create_resultscan_path(root, rel, required_outer);
3934 : 0 : break;
3935 : : case T_Append:
3936 : : {
3937 : 0 : AppendPath *apath = (AppendPath *) path;
3938 : 0 : AppendPathInput new_append = {0};
3939 : 0 : int i;
3940 : 0 : ListCell *lc;
3941 : :
3942 : 0 : new_append.child_append_relid_sets = apath->child_append_relid_sets;
3943 : :
3944 : : /* Reparameterize the children */
3945 : 0 : i = 0;
3946 [ # # # # : 0 : foreach(lc, apath->subpaths)
# # # # ]
3947 : : {
3948 : 0 : Path *spath = (Path *) lfirst(lc);
3949 : :
3950 : 0 : spath = reparameterize_path(root, spath,
3951 : 0 : required_outer,
3952 : 0 : loop_count);
3953 [ # # ]: 0 : if (spath == NULL)
3954 : 0 : return NULL;
3955 : : /* We have to re-split the regular and partial paths */
3956 [ # # ]: 0 : if (i < apath->first_partial_path)
3957 : 0 : new_append.subpaths = lappend(new_append.subpaths, spath);
3958 : : else
3959 : 0 : new_append.partial_subpaths = lappend(new_append.partial_subpaths, spath);
3960 : 0 : i++;
3961 [ # # ]: 0 : }
3962 : 0 : return (Path *)
3963 : 0 : create_append_path(root, rel, new_append,
3964 : 0 : apath->path.pathkeys, required_outer,
3965 : 0 : apath->path.parallel_workers,
3966 : 0 : apath->path.parallel_aware,
3967 : : -1);
3968 : 0 : }
3969 : : case T_Material:
3970 : : {
3971 : 0 : MaterialPath *mpath = (MaterialPath *) path;
3972 : 0 : Path *spath = mpath->subpath;
3973 : 0 : bool enabled;
3974 : :
3975 : 0 : spath = reparameterize_path(root, spath,
3976 : 0 : required_outer,
3977 : 0 : loop_count);
3978 : 0 : enabled =
3979 : 0 : (mpath->path.disabled_nodes <= spath->disabled_nodes);
3980 [ # # ]: 0 : if (spath == NULL)
3981 : 0 : return NULL;
3982 : 0 : return (Path *) create_material_path(rel, spath, enabled);
3983 : 0 : }
3984 : : case T_Memoize:
3985 : : {
3986 : 0 : MemoizePath *mpath = (MemoizePath *) path;
3987 : 0 : Path *spath = mpath->subpath;
3988 : :
3989 : 0 : spath = reparameterize_path(root, spath,
3990 : 0 : required_outer,
3991 : 0 : loop_count);
3992 [ # # ]: 0 : if (spath == NULL)
3993 : 0 : return NULL;
3994 : 0 : return (Path *) create_memoize_path(root, rel,
3995 : 0 : spath,
3996 : 0 : mpath->param_exprs,
3997 : 0 : mpath->hash_operators,
3998 : 0 : mpath->singlerow,
3999 : 0 : mpath->binary_mode,
4000 : 0 : mpath->est_calls);
4001 : 0 : }
4002 : : default:
4003 : 0 : break;
4004 : : }
4005 : 0 : return NULL;
4006 : 53 : }
4007 : :
4008 : : /*
4009 : : * reparameterize_path_by_child
4010 : : * Given a path parameterized by the parent of the given child relation,
4011 : : * translate the path to be parameterized by the given child relation.
4012 : : *
4013 : : * Most fields in the path are not changed, but any expressions must be
4014 : : * adjusted to refer to the correct varnos, and any subpaths must be
4015 : : * recursively reparameterized. Other fields that refer to specific relids
4016 : : * also need adjustment.
4017 : : *
4018 : : * The cost, number of rows, width and parallel path properties depend upon
4019 : : * path->parent, which does not change during the translation. So we need
4020 : : * not change those.
4021 : : *
4022 : : * Currently, only a few path types are supported here, though more could be
4023 : : * added at need. We return NULL if we can't reparameterize the given path.
4024 : : *
4025 : : * Note that this function can change referenced RangeTblEntries, RelOptInfos
4026 : : * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4027 : : * to call during create_plan(), when we have made a final choice of which Path
4028 : : * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4029 : : *
4030 : : * Keep this code in sync with path_is_reparameterizable_by_child()!
4031 : : */
4032 : : Path *
4033 : 9211 : reparameterize_path_by_child(PlannerInfo *root, Path *path,
4034 : : RelOptInfo *child_rel)
4035 : : {
4036 : 9211 : Path *new_path;
4037 : 9211 : ParamPathInfo *new_ppi;
4038 : 9211 : ParamPathInfo *old_ppi;
4039 : 9211 : Relids required_outer;
4040 : :
4041 : : #define ADJUST_CHILD_ATTRS(node) \
4042 : : ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4043 : : (Node *) (node), \
4044 : : child_rel, \
4045 : : child_rel->top_parent))
4046 : :
4047 : : #define REPARAMETERIZE_CHILD_PATH(path) \
4048 : : do { \
4049 : : (path) = reparameterize_path_by_child(root, (path), child_rel); \
4050 : : if ((path) == NULL) \
4051 : : return NULL; \
4052 : : } while(0)
4053 : :
4054 : : #define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4055 : : do { \
4056 : : if ((pathlist) != NIL) \
4057 : : { \
4058 : : (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4059 : : child_rel); \
4060 : : if ((pathlist) == NIL) \
4061 : : return NULL; \
4062 : : } \
4063 : : } while(0)
4064 : :
4065 : : /*
4066 : : * If the path is not parameterized by the parent of the given relation,
4067 : : * it doesn't need reparameterization.
4068 : : */
4069 [ + + + + ]: 13176 : if (!path->param_info ||
4070 [ + - ]: 3965 : !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4071 : 9032 : return path;
4072 : :
4073 : : /*
4074 : : * If possible, reparameterize the given path.
4075 : : *
4076 : : * This function is currently only applied to the inner side of a nestloop
4077 : : * join that is being partitioned by the partitionwise-join code. Hence,
4078 : : * we need only support path types that plausibly arise in that context.
4079 : : * (In particular, supporting sorted path types would be a waste of code
4080 : : * and cycles: even if we translated them here, they'd just lose in
4081 : : * subsequent cost comparisons.) If we do see an unsupported path type,
4082 : : * that just means we won't be able to generate a partitionwise-join plan
4083 : : * using that path type.
4084 : : */
4085 [ - + + + : 179 : switch (nodeTag(path))
+ + - - +
- + + - +
- ]
4086 : : {
4087 : : case T_Path:
4088 : 38 : new_path = path;
4089 : 38 : ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4090 [ + + ]: 38 : if (path->pathtype == T_SampleScan)
4091 : : {
4092 : 8 : Index scan_relid = path->parent->relid;
4093 : 8 : RangeTblEntry *rte;
4094 : :
4095 : : /* it should be a base rel with a tablesample clause... */
4096 [ + - ]: 8 : Assert(scan_relid > 0);
4097 [ + - ]: 8 : rte = planner_rt_fetch(scan_relid, root);
4098 [ + - ]: 8 : Assert(rte->rtekind == RTE_RELATION);
4099 [ + - ]: 8 : Assert(rte->tablesample != NULL);
4100 : :
4101 : 8 : ADJUST_CHILD_ATTRS(rte->tablesample);
4102 : 8 : }
4103 : 38 : break;
4104 : :
4105 : : case T_IndexPath:
4106 : : {
4107 : 99 : IndexPath *ipath = (IndexPath *) path;
4108 : :
4109 : 99 : ADJUST_CHILD_ATTRS(ipath->indexinfo->indrestrictinfo);
4110 : 99 : ADJUST_CHILD_ATTRS(ipath->indexclauses);
4111 : 99 : new_path = (Path *) ipath;
4112 : 99 : }
4113 : 99 : break;
4114 : :
4115 : : case T_BitmapHeapPath:
4116 : : {
4117 : 8 : BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4118 : :
4119 : 8 : ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4120 [ + - ]: 8 : REPARAMETERIZE_CHILD_PATH(bhpath->bitmapqual);
4121 : 8 : new_path = (Path *) bhpath;
4122 [ - + ]: 8 : }
4123 : 8 : break;
4124 : :
4125 : : case T_BitmapAndPath:
4126 : : {
4127 : 4 : BitmapAndPath *bapath = (BitmapAndPath *) path;
4128 : :
4129 [ - + + - ]: 4 : REPARAMETERIZE_CHILD_PATH_LIST(bapath->bitmapquals);
4130 : 4 : new_path = (Path *) bapath;
4131 [ - + ]: 4 : }
4132 : 4 : break;
4133 : :
4134 : : case T_BitmapOrPath:
4135 : : {
4136 : 4 : BitmapOrPath *bopath = (BitmapOrPath *) path;
4137 : :
4138 [ - + + - ]: 4 : REPARAMETERIZE_CHILD_PATH_LIST(bopath->bitmapquals);
4139 : 4 : new_path = (Path *) bopath;
4140 [ - + ]: 4 : }
4141 : 4 : break;
4142 : :
4143 : : case T_ForeignPath:
4144 : : {
4145 : 0 : ForeignPath *fpath = (ForeignPath *) path;
4146 : 0 : ReparameterizeForeignPathByChild_function rfpc_func;
4147 : :
4148 : 0 : ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4149 [ # # ]: 0 : if (fpath->fdw_outerpath)
4150 [ # # ]: 0 : REPARAMETERIZE_CHILD_PATH(fpath->fdw_outerpath);
4151 [ # # ]: 0 : if (fpath->fdw_restrictinfo)
4152 : 0 : ADJUST_CHILD_ATTRS(fpath->fdw_restrictinfo);
4153 : :
4154 : : /* Hand over to FDW if needed. */
4155 : 0 : rfpc_func =
4156 : 0 : path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4157 [ # # ]: 0 : if (rfpc_func)
4158 : 0 : fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4159 : 0 : child_rel);
4160 : 0 : new_path = (Path *) fpath;
4161 [ # # ]: 0 : }
4162 : 0 : break;
4163 : :
4164 : : case T_CustomPath:
4165 : : {
4166 : 0 : CustomPath *cpath = (CustomPath *) path;
4167 : :
4168 : 0 : ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4169 [ # # # # ]: 0 : REPARAMETERIZE_CHILD_PATH_LIST(cpath->custom_paths);
4170 [ # # ]: 0 : if (cpath->custom_restrictinfo)
4171 : 0 : ADJUST_CHILD_ATTRS(cpath->custom_restrictinfo);
4172 [ # # # # ]: 0 : if (cpath->methods &&
4173 : 0 : cpath->methods->ReparameterizeCustomPathByChild)
4174 : 0 : cpath->custom_private =
4175 : 0 : cpath->methods->ReparameterizeCustomPathByChild(root,
4176 : 0 : cpath->custom_private,
4177 : 0 : child_rel);
4178 : 0 : new_path = (Path *) cpath;
4179 [ # # ]: 0 : }
4180 : 0 : break;
4181 : :
4182 : : case T_NestPath:
4183 : : {
4184 : 6 : NestPath *npath = (NestPath *) path;
4185 : 6 : JoinPath *jpath = (JoinPath *) npath;
4186 : :
4187 [ + - ]: 6 : REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
4188 [ + - ]: 6 : REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
4189 : 6 : ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
4190 : 6 : new_path = (Path *) npath;
4191 [ - + ]: 6 : }
4192 : 6 : break;
4193 : :
4194 : : case T_MergePath:
4195 : : {
4196 : 0 : MergePath *mpath = (MergePath *) path;
4197 : 0 : JoinPath *jpath = (JoinPath *) mpath;
4198 : :
4199 [ # # ]: 0 : REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
4200 [ # # ]: 0 : REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
4201 : 0 : ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
4202 : 0 : ADJUST_CHILD_ATTRS(mpath->path_mergeclauses);
4203 : 0 : new_path = (Path *) mpath;
4204 [ # # ]: 0 : }
4205 : 0 : break;
4206 : :
4207 : : case T_HashPath:
4208 : : {
4209 : 8 : HashPath *hpath = (HashPath *) path;
4210 : 8 : JoinPath *jpath = (JoinPath *) hpath;
4211 : :
4212 [ + - ]: 8 : REPARAMETERIZE_CHILD_PATH(jpath->outerjoinpath);
4213 [ + - ]: 8 : REPARAMETERIZE_CHILD_PATH(jpath->innerjoinpath);
4214 : 8 : ADJUST_CHILD_ATTRS(jpath->joinrestrictinfo);
4215 : 8 : ADJUST_CHILD_ATTRS(hpath->path_hashclauses);
4216 : 8 : new_path = (Path *) hpath;
4217 [ - + ]: 8 : }
4218 : 8 : break;
4219 : :
4220 : : case T_AppendPath:
4221 : : {
4222 : 4 : AppendPath *apath = (AppendPath *) path;
4223 : :
4224 [ - + + - ]: 4 : REPARAMETERIZE_CHILD_PATH_LIST(apath->subpaths);
4225 : 4 : new_path = (Path *) apath;
4226 [ - + ]: 4 : }
4227 : 4 : break;
4228 : :
4229 : : case T_MaterialPath:
4230 : : {
4231 : 0 : MaterialPath *mpath = (MaterialPath *) path;
4232 : :
4233 [ # # ]: 0 : REPARAMETERIZE_CHILD_PATH(mpath->subpath);
4234 : 0 : new_path = (Path *) mpath;
4235 [ # # ]: 0 : }
4236 : 0 : break;
4237 : :
4238 : : case T_MemoizePath:
4239 : : {
4240 : 8 : MemoizePath *mpath = (MemoizePath *) path;
4241 : :
4242 [ - + ]: 8 : REPARAMETERIZE_CHILD_PATH(mpath->subpath);
4243 : 8 : ADJUST_CHILD_ATTRS(mpath->param_exprs);
4244 : 8 : new_path = (Path *) mpath;
4245 [ - + ]: 8 : }
4246 : 8 : break;
4247 : :
4248 : : case T_GatherPath:
4249 : : {
4250 : 0 : GatherPath *gpath = (GatherPath *) path;
4251 : :
4252 [ # # ]: 0 : REPARAMETERIZE_CHILD_PATH(gpath->subpath);
4253 : 0 : new_path = (Path *) gpath;
4254 [ # # ]: 0 : }
4255 : 0 : break;
4256 : :
4257 : : default:
4258 : : /* We don't know how to reparameterize this path. */
4259 : 0 : return NULL;
4260 : : }
4261 : :
4262 : : /*
4263 : : * Adjust the parameterization information, which refers to the topmost
4264 : : * parent. The topmost parent can be multiple levels away from the given
4265 : : * child, hence use multi-level expression adjustment routines.
4266 : : */
4267 : 179 : old_ppi = new_path->param_info;
4268 : 179 : required_outer =
4269 : 358 : adjust_child_relids_multilevel(root, old_ppi->ppi_req_outer,
4270 : 179 : child_rel,
4271 : 179 : child_rel->top_parent);
4272 : :
4273 : : /* If we already have a PPI for this parameterization, just return it */
4274 : 179 : new_ppi = find_param_path_info(new_path->parent, required_outer);
4275 : :
4276 : : /*
4277 : : * If not, build a new one and link it to the list of PPIs. For the same
4278 : : * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4279 : : * context the given RelOptInfo is in.
4280 : : */
4281 [ + + ]: 179 : if (new_ppi == NULL)
4282 : : {
4283 : 155 : MemoryContext oldcontext;
4284 : 155 : RelOptInfo *rel = path->parent;
4285 : :
4286 : 155 : oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
4287 : :
4288 : 155 : new_ppi = makeNode(ParamPathInfo);
4289 : 155 : new_ppi->ppi_req_outer = bms_copy(required_outer);
4290 : 155 : new_ppi->ppi_rows = old_ppi->ppi_rows;
4291 : 155 : new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4292 : 155 : ADJUST_CHILD_ATTRS(new_ppi->ppi_clauses);
4293 : 155 : new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4294 : 155 : rel->ppilist = lappend(rel->ppilist, new_ppi);
4295 : :
4296 : 155 : MemoryContextSwitchTo(oldcontext);
4297 : 155 : }
4298 : 179 : bms_free(required_outer);
4299 : :
4300 : 179 : new_path->param_info = new_ppi;
4301 : :
4302 : : /*
4303 : : * Adjust the path target if the parent of the outer relation is
4304 : : * referenced in the targetlist. This can happen when only the parent of
4305 : : * outer relation is laterally referenced in this relation.
4306 : : */
4307 [ + + + + ]: 358 : if (bms_overlap(path->parent->lateral_relids,
4308 : 179 : child_rel->top_parent_relids))
4309 : : {
4310 : 80 : new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4311 : 80 : ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4312 : 80 : }
4313 : :
4314 : 179 : return new_path;
4315 : 9211 : }
4316 : :
4317 : : /*
4318 : : * path_is_reparameterizable_by_child
4319 : : * Given a path parameterized by the parent of the given child relation,
4320 : : * see if it can be translated to be parameterized by the child relation.
4321 : : *
4322 : : * This must return true if and only if reparameterize_path_by_child()
4323 : : * would succeed on this path. Currently it's sufficient to verify that
4324 : : * the path and all of its subpaths (if any) are of the types handled by
4325 : : * that function. However, subpaths that are not parameterized can be
4326 : : * disregarded since they won't require translation.
4327 : : */
4328 : : bool
4329 : 7222 : path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
4330 : : {
4331 : : #define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4332 : : do { \
4333 : : if (!path_is_reparameterizable_by_child(path, child_rel)) \
4334 : : return false; \
4335 : : } while(0)
4336 : :
4337 : : #define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4338 : : do { \
4339 : : if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4340 : : return false; \
4341 : : } while(0)
4342 : :
4343 : : /*
4344 : : * If the path is not parameterized by the parent of the given relation,
4345 : : * it doesn't need reparameterization.
4346 : : */
4347 [ + + + + ]: 14376 : if (!path->param_info ||
4348 [ + - ]: 7154 : !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4349 : 164 : return true;
4350 : :
4351 : : /*
4352 : : * Check that the path type is one that reparameterize_path_by_child() can
4353 : : * handle, and recursively check subpaths.
4354 : : */
4355 [ + + - + : 7058 : switch (nodeTag(path))
+ + - - +
- + - ]
4356 : : {
4357 : : case T_Path:
4358 : : case T_IndexPath:
4359 : 4792 : break;
4360 : :
4361 : : case T_BitmapHeapPath:
4362 : : {
4363 : 8 : BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4364 : :
4365 [ + - ]: 8 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(bhpath->bitmapqual);
4366 [ - + ]: 8 : }
4367 : 8 : break;
4368 : :
4369 : : case T_BitmapAndPath:
4370 : : {
4371 : 4 : BitmapAndPath *bapath = (BitmapAndPath *) path;
4372 : :
4373 [ + - ]: 4 : REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bapath->bitmapquals);
4374 [ - + ]: 4 : }
4375 : 4 : break;
4376 : :
4377 : : case T_BitmapOrPath:
4378 : : {
4379 : 4 : BitmapOrPath *bopath = (BitmapOrPath *) path;
4380 : :
4381 [ + - ]: 4 : REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(bopath->bitmapquals);
4382 [ - + ]: 4 : }
4383 : 4 : break;
4384 : :
4385 : : case T_ForeignPath:
4386 : : {
4387 : 0 : ForeignPath *fpath = (ForeignPath *) path;
4388 : :
4389 [ # # ]: 0 : if (fpath->fdw_outerpath)
4390 [ # # ]: 0 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(fpath->fdw_outerpath);
4391 [ # # ]: 0 : }
4392 : 0 : break;
4393 : :
4394 : : case T_CustomPath:
4395 : : {
4396 : 0 : CustomPath *cpath = (CustomPath *) path;
4397 : :
4398 [ # # ]: 0 : REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(cpath->custom_paths);
4399 [ # # ]: 0 : }
4400 : 0 : break;
4401 : :
4402 : : case T_NestPath:
4403 : : case T_MergePath:
4404 : : case T_HashPath:
4405 : : {
4406 : 208 : JoinPath *jpath = (JoinPath *) path;
4407 : :
4408 [ + - ]: 208 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->outerjoinpath);
4409 [ + - ]: 208 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(jpath->innerjoinpath);
4410 [ - + ]: 208 : }
4411 : 208 : break;
4412 : :
4413 : : case T_AppendPath:
4414 : : {
4415 : 32 : AppendPath *apath = (AppendPath *) path;
4416 : :
4417 [ + - ]: 32 : REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(apath->subpaths);
4418 [ - + ]: 32 : }
4419 : 32 : break;
4420 : :
4421 : : case T_MaterialPath:
4422 : : {
4423 : 0 : MaterialPath *mpath = (MaterialPath *) path;
4424 : :
4425 [ # # ]: 0 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
4426 [ # # ]: 0 : }
4427 : 0 : break;
4428 : :
4429 : : case T_MemoizePath:
4430 : : {
4431 : 2010 : MemoizePath *mpath = (MemoizePath *) path;
4432 : :
4433 [ + - ]: 2010 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(mpath->subpath);
4434 [ - + ]: 2010 : }
4435 : 2010 : break;
4436 : :
4437 : : case T_GatherPath:
4438 : : {
4439 : 0 : GatherPath *gpath = (GatherPath *) path;
4440 : :
4441 [ # # ]: 0 : REJECT_IF_PATH_NOT_REPARAMETERIZABLE(gpath->subpath);
4442 [ # # ]: 0 : }
4443 : 0 : break;
4444 : :
4445 : : default:
4446 : : /* We don't know how to reparameterize this path. */
4447 : 0 : return false;
4448 : : }
4449 : :
4450 : 7058 : return true;
4451 : 7222 : }
4452 : :
4453 : : /*
4454 : : * reparameterize_pathlist_by_child
4455 : : * Helper function to reparameterize a list of paths by given child rel.
4456 : : *
4457 : : * Returns NIL to indicate failure, so pathlist had better not be NIL.
4458 : : */
4459 : : static List *
4460 : 12 : reparameterize_pathlist_by_child(PlannerInfo *root,
4461 : : List *pathlist,
4462 : : RelOptInfo *child_rel)
4463 : : {
4464 : 12 : ListCell *lc;
4465 : 12 : List *result = NIL;
4466 : :
4467 [ + - + + : 36 : foreach(lc, pathlist)
+ + - + ]
4468 : : {
4469 : 48 : Path *path = reparameterize_path_by_child(root, lfirst(lc),
4470 : 24 : child_rel);
4471 : :
4472 [ + - ]: 24 : if (path == NULL)
4473 : : {
4474 : 0 : list_free(result);
4475 : 0 : return NIL;
4476 : : }
4477 : :
4478 : 24 : result = lappend(result, path);
4479 [ - + ]: 24 : }
4480 : :
4481 : 12 : return result;
4482 : 12 : }
4483 : :
4484 : : /*
4485 : : * pathlist_is_reparameterizable_by_child
4486 : : * Helper function to check if a list of paths can be reparameterized.
4487 : : */
4488 : : static bool
4489 : 40 : pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
4490 : : {
4491 : 40 : ListCell *lc;
4492 : :
4493 [ + - + + : 120 : foreach(lc, pathlist)
+ + - + ]
4494 : : {
4495 : 80 : Path *path = (Path *) lfirst(lc);
4496 : :
4497 [ + - ]: 80 : if (!path_is_reparameterizable_by_child(path, child_rel))
4498 : 0 : return false;
4499 [ - + ]: 80 : }
4500 : :
4501 : 40 : return true;
4502 : 40 : }
|