Branch data Line data Source code
1 : : /*-------------------------------------------------------------------------
2 : : *
3 : : * plancat.c
4 : : * routines for accessing the system catalogs
5 : : *
6 : : *
7 : : * Portions Copyright (c) 1996-2026, PostgreSQL Global Development Group
8 : : * Portions Copyright (c) 1994, Regents of the University of California
9 : : *
10 : : *
11 : : * IDENTIFICATION
12 : : * src/backend/optimizer/util/plancat.c
13 : : *
14 : : *-------------------------------------------------------------------------
15 : : */
16 : : #include "postgres.h"
17 : :
18 : : #include <math.h>
19 : :
20 : : #include "access/genam.h"
21 : : #include "access/htup_details.h"
22 : : #include "access/nbtree.h"
23 : : #include "access/sysattr.h"
24 : : #include "access/table.h"
25 : : #include "access/tableam.h"
26 : : #include "access/transam.h"
27 : : #include "access/xlog.h"
28 : : #include "catalog/catalog.h"
29 : : #include "catalog/heap.h"
30 : : #include "catalog/pg_am.h"
31 : : #include "catalog/pg_proc.h"
32 : : #include "catalog/pg_statistic_ext.h"
33 : : #include "catalog/pg_statistic_ext_data.h"
34 : : #include "foreign/fdwapi.h"
35 : : #include "miscadmin.h"
36 : : #include "nodes/makefuncs.h"
37 : : #include "nodes/nodeFuncs.h"
38 : : #include "nodes/supportnodes.h"
39 : : #include "optimizer/cost.h"
40 : : #include "optimizer/optimizer.h"
41 : : #include "optimizer/plancat.h"
42 : : #include "parser/parse_relation.h"
43 : : #include "parser/parsetree.h"
44 : : #include "partitioning/partdesc.h"
45 : : #include "rewrite/rewriteHandler.h"
46 : : #include "rewrite/rewriteManip.h"
47 : : #include "statistics/statistics.h"
48 : : #include "storage/bufmgr.h"
49 : : #include "tcop/tcopprot.h"
50 : : #include "utils/builtins.h"
51 : : #include "utils/lsyscache.h"
52 : : #include "utils/partcache.h"
53 : : #include "utils/rel.h"
54 : : #include "utils/snapmgr.h"
55 : : #include "utils/syscache.h"
56 : :
57 : : /* GUC parameter */
58 : : int constraint_exclusion = CONSTRAINT_EXCLUSION_PARTITION;
59 : :
60 : : /* Hook for plugins to get control in get_relation_info() */
61 : : get_relation_info_hook_type get_relation_info_hook = NULL;
62 : :
63 : : typedef struct NotnullHashEntry
64 : : {
65 : : Oid relid; /* OID of the relation */
66 : : Bitmapset *notnullattnums; /* attnums of NOT NULL columns */
67 : : } NotnullHashEntry;
68 : :
69 : :
70 : : static void get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
71 : : Relation relation, bool inhparent);
72 : : static bool infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
73 : : List *idxExprs);
74 : : static List *get_relation_constraints(PlannerInfo *root,
75 : : Oid relationObjectId, RelOptInfo *rel,
76 : : bool include_noinherit,
77 : : bool include_notnull,
78 : : bool include_partition);
79 : : static List *build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
80 : : Relation heapRelation);
81 : : static List *get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
82 : : Relation relation);
83 : : static void set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
84 : : Relation relation);
85 : : static PartitionScheme find_partition_scheme(PlannerInfo *root,
86 : : Relation relation);
87 : : static void set_baserel_partition_key_exprs(Relation relation,
88 : : RelOptInfo *rel);
89 : : static void set_baserel_partition_constraint(Relation relation,
90 : : RelOptInfo *rel);
91 : :
92 : :
93 : : /*
94 : : * get_relation_info -
95 : : * Retrieves catalog information for a given relation.
96 : : *
97 : : * Given the Oid of the relation, return the following info into fields
98 : : * of the RelOptInfo struct:
99 : : *
100 : : * min_attr lowest valid AttrNumber
101 : : * max_attr highest valid AttrNumber
102 : : * indexlist list of IndexOptInfos for relation's indexes
103 : : * statlist list of StatisticExtInfo for relation's statistic objects
104 : : * serverid if it's a foreign table, the server OID
105 : : * fdwroutine if it's a foreign table, the FDW function pointers
106 : : * pages number of pages
107 : : * tuples number of tuples
108 : : * rel_parallel_workers user-defined number of parallel workers
109 : : *
110 : : * Also, add information about the relation's foreign keys to root->fkey_list.
111 : : *
112 : : * Also, initialize the attr_needed[] and attr_widths[] arrays. In most
113 : : * cases these are left as zeroes, but sometimes we need to compute attr
114 : : * widths here, and we may as well cache the results for costsize.c.
115 : : *
116 : : * If inhparent is true, all we need to do is set up the attr arrays:
117 : : * the RelOptInfo actually represents the appendrel formed by an inheritance
118 : : * tree, and so the parent rel's physical size and index information isn't
119 : : * important for it, however, for partitioned tables, we do populate the
120 : : * indexlist as the planner uses unique indexes as unique proofs for certain
121 : : * optimizations.
122 : : */
123 : : void
124 : 50915 : get_relation_info(PlannerInfo *root, Oid relationObjectId, bool inhparent,
125 : : RelOptInfo *rel)
126 : : {
127 : 50915 : Index varno = rel->relid;
128 : 50915 : Relation relation;
129 : 50915 : bool hasindex;
130 : 50915 : List *indexinfos = NIL;
131 : :
132 : : /*
133 : : * We need not lock the relation since it was already locked, either by
134 : : * the rewriter or when expand_inherited_rtentry() added it to the query's
135 : : * rangetable.
136 : : */
137 : 50915 : relation = table_open(relationObjectId, NoLock);
138 : :
139 : : /*
140 : : * Relations without a table AM can be used in a query only if they are of
141 : : * special-cased relkinds. This check prevents us from crashing later if,
142 : : * for example, a view's ON SELECT rule has gone missing. Note that
143 : : * table_open() already rejected indexes and composite types; spell the
144 : : * error the same way it does.
145 : : */
146 [ + + ]: 50915 : if (!relation->rd_tableam)
147 : : {
148 [ + + + - ]: 2361 : if (!(relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE ||
149 : 2359 : relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE))
150 [ # # # # ]: 0 : ereport(ERROR,
151 : : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
152 : : errmsg("cannot open relation \"%s\"",
153 : : RelationGetRelationName(relation)),
154 : : errdetail_relkind_not_supported(relation->rd_rel->relkind)));
155 : 2361 : }
156 : :
157 : : /* Temporary and unlogged relations are inaccessible during recovery. */
158 [ + + + - ]: 50915 : if (!RelationIsPermanent(relation) && RecoveryInProgress())
159 [ # # # # ]: 0 : ereport(ERROR,
160 : : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
161 : : errmsg("cannot access temporary or unlogged relations during recovery")));
162 : :
163 : 50915 : rel->min_attr = FirstLowInvalidHeapAttributeNumber + 1;
164 : 50915 : rel->max_attr = RelationGetNumberOfAttributes(relation);
165 : 50915 : rel->reltablespace = RelationGetForm(relation)->reltablespace;
166 : :
167 [ + - ]: 50915 : Assert(rel->max_attr >= rel->min_attr);
168 : 50915 : rel->attr_needed = (Relids *)
169 : 50915 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
170 : 50915 : rel->attr_widths = (int32 *)
171 : 50915 : palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
172 : :
173 : : /*
174 : : * Record which columns are defined as NOT NULL. We leave this
175 : : * unpopulated for non-partitioned inheritance parent relations as it's
176 : : * ambiguous as to what it means. Some child tables may have a NOT NULL
177 : : * constraint for a column while others may not. We could work harder and
178 : : * build a unioned set of all child relations notnullattnums, but there's
179 : : * currently no need. The RelOptInfo corresponding to the !inh
180 : : * RangeTblEntry does get populated.
181 : : */
182 [ + + + + ]: 50915 : if (!inhparent || relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
183 : 46936 : rel->notnullattnums = find_relation_notnullatts(root, relationObjectId);
184 : :
185 : : /*
186 : : * Estimate relation size --- unless it's an inheritance parent, in which
187 : : * case the size we want is not the rel's own size but the size of its
188 : : * inheritance tree. That will be computed in set_append_rel_size().
189 : : */
190 [ + + ]: 50915 : if (!inhparent)
191 : 89160 : estimate_rel_size(relation, rel->attr_widths - rel->min_attr,
192 : 44580 : &rel->pages, &rel->tuples, &rel->allvisfrac);
193 : :
194 : : /* Retrieve the parallel_workers reloption, or -1 if not set. */
195 [ + + ]: 50915 : rel->rel_parallel_workers = RelationGetParallelWorkers(relation, -1);
196 : :
197 : : /*
198 : : * Make list of indexes. Ignore indexes on system catalogs if told to.
199 : : * Don't bother with indexes from traditional inheritance parents. For
200 : : * partitioned tables, we need a list of at least unique indexes as these
201 : : * serve as unique proofs for certain planner optimizations. However,
202 : : * let's not discriminate here and just record all partitioned indexes
203 : : * whether they're unique indexes or not.
204 : : */
205 [ + + ]: 50915 : if ((inhparent && relation->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
206 [ + + - + ]: 50915 : || (IgnoreSystemIndexes && IsSystemRelation(relation)))
207 : 3979 : hasindex = false;
208 : : else
209 : 46936 : hasindex = relation->rd_rel->relhasindex;
210 : :
211 [ + + ]: 50915 : if (hasindex)
212 : : {
213 : 34596 : List *indexoidlist;
214 : 34596 : LOCKMODE lmode;
215 : 34596 : ListCell *l;
216 : :
217 : 34596 : indexoidlist = RelationGetIndexList(relation);
218 : :
219 : : /*
220 : : * For each index, we get the same type of lock that the executor will
221 : : * need, and do not release it. This saves a couple of trips to the
222 : : * shared lock manager while not creating any real loss of
223 : : * concurrency, because no schema changes could be happening on the
224 : : * index while we hold lock on the parent rel, and no lock type used
225 : : * for queries blocks any other kind of index operation.
226 : : */
227 : 34596 : lmode = root->simple_rte_array[varno]->rellockmode;
228 : :
229 [ + + + + : 107572 : foreach(l, indexoidlist)
+ + ]
230 : : {
231 : 72976 : Oid indexoid = lfirst_oid(l);
232 : 72976 : Relation indexRelation;
233 : 72976 : Form_pg_index index;
234 : 72976 : const IndexAmRoutine *amroutine = NULL;
235 : 72976 : IndexOptInfo *info;
236 : 72976 : int ncolumns,
237 : : nkeycolumns;
238 : 72976 : int i;
239 : :
240 : : /*
241 : : * Extract info from the relation descriptor for the index.
242 : : */
243 : 72976 : indexRelation = index_open(indexoid, lmode);
244 : 72976 : index = indexRelation->rd_index;
245 : :
246 : : /*
247 : : * Ignore invalid indexes, since they can't safely be used for
248 : : * queries. Note that this is OK because the data structure we
249 : : * are constructing is only used by the planner --- the executor
250 : : * still needs to insert into "invalid" indexes, if they're marked
251 : : * indisready.
252 : : */
253 [ + + ]: 72976 : if (!index->indisvalid)
254 : : {
255 : 2 : index_close(indexRelation, NoLock);
256 : 2 : continue;
257 : : }
258 : :
259 : : /*
260 : : * If the index is valid, but cannot yet be used, ignore it; but
261 : : * mark the plan we are generating as transient. See
262 : : * src/backend/access/heap/README.HOT for discussion.
263 : : */
264 [ + + - + ]: 72974 : if (index->indcheckxmin &&
265 : 98 : !TransactionIdPrecedes(HeapTupleHeaderGetXmin(indexRelation->rd_indextuple->t_data),
266 : 49 : TransactionXmin))
267 : : {
268 : 49 : root->glob->transientPlan = true;
269 : 49 : index_close(indexRelation, NoLock);
270 : 49 : continue;
271 : : }
272 : :
273 : 72925 : info = makeNode(IndexOptInfo);
274 : :
275 : 72925 : info->indexoid = index->indexrelid;
276 : 72925 : info->reltablespace =
277 : 72925 : RelationGetForm(indexRelation)->reltablespace;
278 : 72925 : info->rel = rel;
279 : 72925 : info->ncolumns = ncolumns = index->indnatts;
280 : 72925 : info->nkeycolumns = nkeycolumns = index->indnkeyatts;
281 : :
282 : 72925 : info->indexkeys = palloc_array(int, ncolumns);
283 : 72925 : info->indexcollations = palloc_array(Oid, nkeycolumns);
284 : 72925 : info->opfamily = palloc_array(Oid, nkeycolumns);
285 : 72925 : info->opcintype = palloc_array(Oid, nkeycolumns);
286 : 72925 : info->canreturn = palloc_array(bool, ncolumns);
287 : :
288 [ + + ]: 220972 : for (i = 0; i < ncolumns; i++)
289 : : {
290 : 148047 : info->indexkeys[i] = index->indkey.values[i];
291 : 148047 : info->canreturn[i] = index_can_return(indexRelation, i + 1);
292 : 148047 : }
293 : :
294 [ + + ]: 220929 : for (i = 0; i < nkeycolumns; i++)
295 : : {
296 : 148004 : info->opfamily[i] = indexRelation->rd_opfamily[i];
297 : 148004 : info->opcintype[i] = indexRelation->rd_opcintype[i];
298 : 148004 : info->indexcollations[i] = indexRelation->rd_indcollation[i];
299 : 148004 : }
300 : :
301 : 72925 : info->relam = indexRelation->rd_rel->relam;
302 : :
303 : : /*
304 : : * We don't have an AM for partitioned indexes, so we'll just
305 : : * NULLify the AM related fields for those.
306 : : */
307 [ + + ]: 72925 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
308 : : {
309 : : /* We copy just the fields we need, not all of rd_indam */
310 : 72308 : amroutine = indexRelation->rd_indam;
311 : 72308 : info->amcanorderbyop = amroutine->amcanorderbyop;
312 : 72308 : info->amoptionalkey = amroutine->amoptionalkey;
313 : 72308 : info->amsearcharray = amroutine->amsearcharray;
314 : 72308 : info->amsearchnulls = amroutine->amsearchnulls;
315 : 72308 : info->amcanparallel = amroutine->amcanparallel;
316 : 72308 : info->amhasgettuple = (amroutine->amgettuple != NULL);
317 [ - + ]: 144616 : info->amhasgetbitmap = amroutine->amgetbitmap != NULL &&
318 : 72308 : relation->rd_tableam->scan_bitmap_next_tuple != NULL;
319 [ + + ]: 141436 : info->amcanmarkpos = (amroutine->ammarkpos != NULL &&
320 : 69128 : amroutine->amrestrpos != NULL);
321 : 72308 : info->amcostestimate = amroutine->amcostestimate;
322 [ - + ]: 72308 : Assert(info->amcostestimate != NULL);
323 : :
324 : : /* Fetch index opclass options */
325 : 72308 : info->opclassoptions = RelationGetIndexAttOptions(indexRelation, true);
326 : :
327 : : /*
328 : : * Fetch the ordering information for the index, if any.
329 : : */
330 [ + + ]: 72308 : if (info->relam == BTREE_AM_OID)
331 : : {
332 : : /*
333 : : * If it's a btree index, we can use its opfamily OIDs
334 : : * directly as the sort ordering opfamily OIDs.
335 : : */
336 [ - + ]: 69128 : Assert(amroutine->amcanorder);
337 : :
338 : 69128 : info->sortopfamily = info->opfamily;
339 : 69128 : info->reverse_sort = palloc_array(bool, nkeycolumns);
340 : 69128 : info->nulls_first = palloc_array(bool, nkeycolumns);
341 : :
342 [ + + ]: 170041 : for (i = 0; i < nkeycolumns; i++)
343 : : {
344 : 100913 : int16 opt = indexRelation->rd_indoption[i];
345 : :
346 : 100913 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
347 : 100913 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
348 : 100913 : }
349 : 69128 : }
350 [ - + ]: 3180 : else if (amroutine->amcanorder)
351 : : {
352 : : /*
353 : : * Otherwise, identify the corresponding btree opfamilies
354 : : * by trying to map this index's "<" operators into btree.
355 : : * Since "<" uniquely defines the behavior of a sort
356 : : * order, this is a sufficient test.
357 : : *
358 : : * XXX This method is rather slow and complicated. It'd
359 : : * be better to have a way to explicitly declare the
360 : : * corresponding btree opfamily for each opfamily of the
361 : : * other index type.
362 : : */
363 : 0 : info->sortopfamily = palloc_array(Oid, nkeycolumns);
364 : 0 : info->reverse_sort = palloc_array(bool, nkeycolumns);
365 : 0 : info->nulls_first = palloc_array(bool, nkeycolumns);
366 : :
367 [ # # ]: 0 : for (i = 0; i < nkeycolumns; i++)
368 : : {
369 : 0 : int16 opt = indexRelation->rd_indoption[i];
370 : 0 : Oid ltopr;
371 : 0 : Oid opfamily;
372 : 0 : Oid opcintype;
373 : 0 : CompareType cmptype;
374 : :
375 : 0 : info->reverse_sort[i] = (opt & INDOPTION_DESC) != 0;
376 : 0 : info->nulls_first[i] = (opt & INDOPTION_NULLS_FIRST) != 0;
377 : :
378 : 0 : ltopr = get_opfamily_member_for_cmptype(info->opfamily[i],
379 : 0 : info->opcintype[i],
380 : 0 : info->opcintype[i],
381 : : COMPARE_LT);
382 [ # # ]: 0 : if (OidIsValid(ltopr) &&
383 : 0 : get_ordering_op_properties(ltopr,
384 : : &opfamily,
385 : : &opcintype,
386 [ # # ]: 0 : &cmptype) &&
387 [ # # # # ]: 0 : opcintype == info->opcintype[i] &&
388 : 0 : cmptype == COMPARE_LT)
389 : : {
390 : : /* Successful mapping */
391 : 0 : info->sortopfamily[i] = opfamily;
392 : 0 : }
393 : : else
394 : : {
395 : : /* Fail ... quietly treat index as unordered */
396 : 0 : info->sortopfamily = NULL;
397 : 0 : info->reverse_sort = NULL;
398 : 0 : info->nulls_first = NULL;
399 : 0 : break;
400 : : }
401 [ # # ]: 0 : }
402 : 0 : }
403 : : else
404 : : {
405 : 3180 : info->sortopfamily = NULL;
406 : 3180 : info->reverse_sort = NULL;
407 : 3180 : info->nulls_first = NULL;
408 : : }
409 : 72308 : }
410 : : else
411 : : {
412 : 617 : info->amcanorderbyop = false;
413 : 617 : info->amoptionalkey = false;
414 : 617 : info->amsearcharray = false;
415 : 617 : info->amsearchnulls = false;
416 : 617 : info->amcanparallel = false;
417 : 617 : info->amhasgettuple = false;
418 : 617 : info->amhasgetbitmap = false;
419 : 617 : info->amcanmarkpos = false;
420 : 617 : info->amcostestimate = NULL;
421 : :
422 : 617 : info->sortopfamily = NULL;
423 : 617 : info->reverse_sort = NULL;
424 : 617 : info->nulls_first = NULL;
425 : : }
426 : :
427 : : /*
428 : : * Fetch the index expressions and predicate, if any. We must
429 : : * modify the copies we obtain from the relcache to have the
430 : : * correct varno for the parent relation, so that they match up
431 : : * correctly against qual clauses.
432 : : *
433 : : * After fixing the varnos, we need to run the index expressions
434 : : * and predicate through const-simplification again, using a valid
435 : : * "root". This ensures that NullTest quals for Vars can be
436 : : * properly reduced.
437 : : */
438 : 72925 : info->indexprs = RelationGetIndexExpressions(indexRelation);
439 : 72925 : info->indpred = RelationGetIndexPredicate(indexRelation);
440 [ + + ]: 72925 : if (info->indexprs)
441 : : {
442 [ + + ]: 490 : if (varno != 1)
443 : 323 : ChangeVarNodes((Node *) info->indexprs, 1, varno, 0);
444 : :
445 : 490 : info->indexprs = (List *)
446 : 490 : eval_const_expressions(root, (Node *) info->indexprs);
447 : 490 : }
448 [ + + ]: 72925 : if (info->indpred)
449 : : {
450 [ + + ]: 147 : if (varno != 1)
451 : 21 : ChangeVarNodes((Node *) info->indpred, 1, varno, 0);
452 : :
453 : 147 : info->indpred = (List *)
454 : 294 : eval_const_expressions(root,
455 : 147 : (Node *) make_ands_explicit(info->indpred));
456 : 147 : info->indpred = make_ands_implicit((Expr *) info->indpred);
457 : 147 : }
458 : :
459 : : /* Build targetlist using the completed indexprs data */
460 : 72925 : info->indextlist = build_index_tlist(root, info, relation);
461 : :
462 : 72925 : info->indrestrictinfo = NIL; /* set later, in indxpath.c */
463 : 72925 : info->predOK = false; /* set later, in indxpath.c */
464 : 72925 : info->unique = index->indisunique;
465 : 72925 : info->nullsnotdistinct = index->indnullsnotdistinct;
466 : 72925 : info->immediate = index->indimmediate;
467 : 72925 : info->hypothetical = false;
468 : :
469 : : /*
470 : : * Estimate the index size. If it's not a partial index, we lock
471 : : * the number-of-tuples estimate to equal the parent table; if it
472 : : * is partial then we have to use the same methods as we would for
473 : : * a table, except we can be sure that the index is not larger
474 : : * than the table. We must ignore partitioned indexes here as
475 : : * there are not physical indexes.
476 : : */
477 [ + + ]: 72925 : if (indexRelation->rd_rel->relkind != RELKIND_PARTITIONED_INDEX)
478 : : {
479 [ + + ]: 72308 : if (info->indpred == NIL)
480 : : {
481 : 72165 : info->pages = RelationGetNumberOfBlocks(indexRelation);
482 : 72165 : info->tuples = rel->tuples;
483 : 72165 : }
484 : : else
485 : : {
486 : 143 : double allvisfrac; /* dummy */
487 : :
488 : 286 : estimate_rel_size(indexRelation, NULL,
489 : 143 : &info->pages, &info->tuples, &allvisfrac);
490 [ + + ]: 143 : if (info->tuples > rel->tuples)
491 : 3 : info->tuples = rel->tuples;
492 : 143 : }
493 : :
494 : : /*
495 : : * Get tree height while we have the index open
496 : : */
497 [ + + ]: 72308 : if (amroutine->amgettreeheight)
498 : : {
499 : 69128 : info->tree_height = amroutine->amgettreeheight(indexRelation);
500 : 69128 : }
501 : : else
502 : : {
503 : : /* For other index types, just set it to "unknown" for now */
504 : 3180 : info->tree_height = -1;
505 : : }
506 : 72308 : }
507 : : else
508 : : {
509 : : /* Zero these out for partitioned indexes */
510 : 617 : info->pages = 0;
511 : 617 : info->tuples = 0.0;
512 : 617 : info->tree_height = -1;
513 : : }
514 : :
515 : 72925 : index_close(indexRelation, NoLock);
516 : :
517 : : /*
518 : : * We've historically used lcons() here. It'd make more sense to
519 : : * use lappend(), but that causes the planner to change behavior
520 : : * in cases where two indexes seem equally attractive. For now,
521 : : * stick with lcons() --- few tables should have so many indexes
522 : : * that the O(N^2) behavior of lcons() is really a problem.
523 : : */
524 : 72925 : indexinfos = lcons(info, indexinfos);
525 [ + + ]: 72976 : }
526 : :
527 : 34596 : list_free(indexoidlist);
528 : 34596 : }
529 : :
530 : 50915 : rel->indexlist = indexinfos;
531 : :
532 : 50915 : rel->statlist = get_relation_statistics(root, rel, relation);
533 : :
534 : : /* Grab foreign-table info using the relcache, while we have it */
535 [ + + ]: 50915 : if (relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
536 : : {
537 : : /* Check if the access to foreign tables is restricted */
538 [ + - ]: 2 : if (unlikely((restrict_nonsystem_relation_kind & RESTRICT_RELKIND_FOREIGN_TABLE) != 0))
539 : : {
540 : : /* there must not be built-in foreign tables */
541 [ # # ]: 0 : Assert(RelationGetRelid(relation) >= FirstNormalObjectId);
542 : :
543 [ # # # # ]: 0 : ereport(ERROR,
544 : : (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
545 : : errmsg("access to non-system foreign table is restricted")));
546 : 0 : }
547 : :
548 : 2 : rel->serverid = GetForeignServerIdByRelId(RelationGetRelid(relation));
549 : 2 : rel->fdwroutine = GetFdwRoutineForRelation(relation, true);
550 : 2 : }
551 : : else
552 : : {
553 : 50913 : rel->serverid = InvalidOid;
554 : 50913 : rel->fdwroutine = NULL;
555 : : }
556 : :
557 : : /* Collect info about relation's foreign keys, if relevant */
558 : 50915 : get_relation_foreign_keys(root, rel, relation, inhparent);
559 : :
560 : : /* Collect info about functions implemented by the rel's table AM. */
561 [ + + ]: 50915 : if (relation->rd_tableam &&
562 [ + - + - ]: 48554 : relation->rd_tableam->scan_set_tidrange != NULL &&
563 : 48554 : relation->rd_tableam->scan_getnextslot_tidrange != NULL)
564 : 48554 : rel->amflags |= AMFLAG_HAS_TID_RANGE;
565 : :
566 : : /*
567 : : * Collect info about relation's partitioning scheme, if any. Only
568 : : * inheritance parents may be partitioned.
569 : : */
570 [ + + + + ]: 50915 : if (inhparent && relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
571 : 2356 : set_relation_partition_info(root, rel, relation);
572 : :
573 : 50915 : table_close(relation, NoLock);
574 : :
575 : : /*
576 : : * Allow a plugin to editorialize on the info we obtained from the
577 : : * catalogs. Actions might include altering the assumed relation size,
578 : : * removing an index, or adding a hypothetical index to the indexlist.
579 : : *
580 : : * An extension can also modify rel->pgs_mask here to control path
581 : : * generation.
582 : : */
583 [ + + ]: 50915 : if (get_relation_info_hook)
584 : 50880 : (*get_relation_info_hook) (root, relationObjectId, inhparent, rel);
585 : 50915 : }
586 : :
587 : : /*
588 : : * get_relation_foreign_keys -
589 : : * Retrieves foreign key information for a given relation.
590 : : *
591 : : * ForeignKeyOptInfos for relevant foreign keys are created and added to
592 : : * root->fkey_list. We do this now while we have the relcache entry open.
593 : : * We could sometimes avoid making useless ForeignKeyOptInfos if we waited
594 : : * until all RelOptInfos have been built, but the cost of re-opening the
595 : : * relcache entries would probably exceed any savings.
596 : : */
597 : : static void
598 : 50913 : get_relation_foreign_keys(PlannerInfo *root, RelOptInfo *rel,
599 : : Relation relation, bool inhparent)
600 : : {
601 : 50913 : List *rtable = root->parse->rtable;
602 : 50913 : List *cachedfkeys;
603 : 50913 : ListCell *lc;
604 : :
605 : : /*
606 : : * If it's not a baserel, we don't care about its FKs. Also, if the query
607 : : * references only a single relation, we can skip the lookup since no FKs
608 : : * could satisfy the requirements below.
609 : : */
610 [ + + + + ]: 50913 : if (rel->reloptkind != RELOPT_BASEREL ||
611 : 44356 : list_length(rtable) < 2)
612 : 28466 : return;
613 : :
614 : : /*
615 : : * If it's the parent of an inheritance tree, ignore its FKs. We could
616 : : * make useful FK-based deductions if we found that all members of the
617 : : * inheritance tree have equivalent FK constraints, but detecting that
618 : : * would require code that hasn't been written.
619 : : */
620 [ + + ]: 22447 : if (inhparent)
621 : 961 : return;
622 : :
623 : : /*
624 : : * Extract data about relation's FKs from the relcache. Note that this
625 : : * list belongs to the relcache and might disappear in a cache flush, so
626 : : * we must not do any further catalog access within this function.
627 : : */
628 : 21486 : cachedfkeys = RelationGetFKeyList(relation);
629 : :
630 : : /*
631 : : * Figure out which FKs are of interest for this query, and create
632 : : * ForeignKeyOptInfos for them. We want only FKs that reference some
633 : : * other RTE of the current query. In queries containing self-joins,
634 : : * there might be more than one other RTE for a referenced table, and we
635 : : * should make a ForeignKeyOptInfo for each occurrence.
636 : : *
637 : : * Ideally, we would ignore RTEs that correspond to non-baserels, but it's
638 : : * too hard to identify those here, so we might end up making some useless
639 : : * ForeignKeyOptInfos. If so, match_foreign_keys_to_quals() will remove
640 : : * them again.
641 : : */
642 [ + + + + : 21883 : foreach(lc, cachedfkeys)
+ + ]
643 : : {
644 : 397 : ForeignKeyCacheInfo *cachedfk = (ForeignKeyCacheInfo *) lfirst(lc);
645 : 397 : Index rti;
646 : 397 : ListCell *lc2;
647 : :
648 : : /* conrelid should always be that of the table we're considering */
649 [ + - ]: 397 : Assert(cachedfk->conrelid == RelationGetRelid(relation));
650 : :
651 : : /* skip constraints currently not enforced */
652 [ + + ]: 397 : if (!cachedfk->conenforced)
653 : 3 : continue;
654 : :
655 : : /* Scan to find other RTEs matching confrelid */
656 : 394 : rti = 0;
657 [ + - + + : 1822 : foreach(lc2, rtable)
+ + ]
658 : : {
659 : 1428 : RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
660 : 1428 : ForeignKeyOptInfo *info;
661 : :
662 : 1428 : rti++;
663 : : /* Ignore if not the correct table */
664 [ + + + + ]: 1428 : if (rte->rtekind != RTE_RELATION ||
665 : 877 : rte->relid != cachedfk->confrelid)
666 : 1081 : continue;
667 : : /* Ignore if it's an inheritance parent; doesn't really match */
668 [ + + ]: 347 : if (rte->inh)
669 : 36 : continue;
670 : : /* Ignore self-referential FKs; we only care about joins */
671 [ + + ]: 311 : if (rti == rel->relid)
672 : 22 : continue;
673 : :
674 : : /* OK, let's make an entry */
675 : 289 : info = makeNode(ForeignKeyOptInfo);
676 : 289 : info->con_relid = rel->relid;
677 : 289 : info->ref_relid = rti;
678 : 289 : info->nkeys = cachedfk->nkeys;
679 : 289 : memcpy(info->conkey, cachedfk->conkey, sizeof(info->conkey));
680 : 289 : memcpy(info->confkey, cachedfk->confkey, sizeof(info->confkey));
681 : 289 : memcpy(info->conpfeqop, cachedfk->conpfeqop, sizeof(info->conpfeqop));
682 : : /* zero out fields to be filled by match_foreign_keys_to_quals */
683 : 289 : info->nmatched_ec = 0;
684 : 289 : info->nconst_ec = 0;
685 : 289 : info->nmatched_rcols = 0;
686 : 289 : info->nmatched_ri = 0;
687 : 289 : memset(info->eclass, 0, sizeof(info->eclass));
688 : 289 : memset(info->fk_eclass_member, 0, sizeof(info->fk_eclass_member));
689 : 289 : memset(info->rinfos, 0, sizeof(info->rinfos));
690 : :
691 : 289 : root->fkey_list = lappend(root->fkey_list, info);
692 [ + + ]: 1428 : }
693 [ + + ]: 397 : }
694 : 50913 : }
695 : :
696 : : /*
697 : : * get_relation_notnullatts -
698 : : * Retrieves column not-null constraint information for a given relation.
699 : : *
700 : : * We do this while we have the relcache entry open, and store the column
701 : : * not-null constraint information in a hash table based on the relation OID.
702 : : */
703 : : void
704 : 53612 : get_relation_notnullatts(PlannerInfo *root, Relation relation)
705 : : {
706 : 53612 : Oid relid = RelationGetRelid(relation);
707 : 53612 : NotnullHashEntry *hentry;
708 : 53612 : bool found;
709 : 53612 : Bitmapset *notnullattnums = NULL;
710 : :
711 : : /* bail out if the relation has no not-null constraints */
712 [ + + + + ]: 53612 : if (relation->rd_att->constr == NULL ||
713 : 31374 : !relation->rd_att->constr->has_not_null)
714 : 23052 : return;
715 : :
716 : : /* create the hash table if it hasn't been created yet */
717 [ + + ]: 30560 : if (root->glob->rel_notnullatts_hash == NULL)
718 : : {
719 : 15070 : HTAB *hashtab;
720 : 15070 : HASHCTL hash_ctl;
721 : :
722 : 15070 : hash_ctl.keysize = sizeof(Oid);
723 : 15070 : hash_ctl.entrysize = sizeof(NotnullHashEntry);
724 : 15070 : hash_ctl.hcxt = CurrentMemoryContext;
725 : :
726 : 15070 : hashtab = hash_create("Relation NOT NULL attnums",
727 : : 64L, /* arbitrary initial size */
728 : : &hash_ctl,
729 : : HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
730 : :
731 : 15070 : root->glob->rel_notnullatts_hash = hashtab;
732 : 15070 : }
733 : :
734 : : /*
735 : : * Create a hash entry for this relation OID, if we don't have one
736 : : * already.
737 : : */
738 : 30560 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
739 : : &relid,
740 : : HASH_ENTER,
741 : : &found);
742 : :
743 : : /* bail out if a hash entry already exists for this relation OID */
744 [ + + ]: 30560 : if (found)
745 : 3692 : return;
746 : :
747 : : /* collect the column not-null constraint information for this relation */
748 [ + + ]: 384006 : for (int i = 0; i < relation->rd_att->natts; i++)
749 : : {
750 : 357138 : CompactAttribute *attr = TupleDescCompactAttr(relation->rd_att, i);
751 : :
752 [ - + ]: 357138 : Assert(attr->attnullability != ATTNULLABLE_UNKNOWN);
753 : :
754 [ + + ]: 357138 : if (attr->attnullability == ATTNULLABLE_VALID)
755 : : {
756 : 297520 : notnullattnums = bms_add_member(notnullattnums, i + 1);
757 : :
758 : : /*
759 : : * Per RemoveAttributeById(), dropped columns will have their
760 : : * attnotnull unset, so we needn't check for dropped columns in
761 : : * the above condition.
762 : : */
763 [ - + ]: 297520 : Assert(!attr->attisdropped);
764 : 297520 : }
765 : 357138 : }
766 : :
767 : : /* ... and initialize the new hash entry */
768 : 26868 : hentry->notnullattnums = notnullattnums;
769 [ - + ]: 53612 : }
770 : :
771 : : /*
772 : : * find_relation_notnullatts -
773 : : * Searches the hash table and returns the column not-null constraint
774 : : * information for a given relation.
775 : : */
776 : : Bitmapset *
777 : 48856 : find_relation_notnullatts(PlannerInfo *root, Oid relid)
778 : : {
779 : 48856 : NotnullHashEntry *hentry;
780 : 48856 : bool found;
781 : :
782 [ + + ]: 48856 : if (root->glob->rel_notnullatts_hash == NULL)
783 : 18159 : return NULL;
784 : :
785 : 30697 : hentry = (NotnullHashEntry *) hash_search(root->glob->rel_notnullatts_hash,
786 : : &relid,
787 : : HASH_FIND,
788 : : &found);
789 [ + + ]: 30697 : if (!found)
790 : 561 : return NULL;
791 : :
792 : 30136 : return hentry->notnullattnums;
793 : 48856 : }
794 : :
795 : : /*
796 : : * infer_arbiter_indexes -
797 : : * Determine the unique indexes used to arbitrate speculative insertion.
798 : : *
799 : : * Uses user-supplied inference clause expressions and predicate to match a
800 : : * unique index from those defined and ready on the heap relation (target).
801 : : * An exact match is required on columns/expressions (although they can appear
802 : : * in any order). However, the predicate given by the user need only restrict
803 : : * insertion to a subset of some part of the table covered by some particular
804 : : * unique index (in particular, a partial unique index) in order to be
805 : : * inferred.
806 : : *
807 : : * The implementation does not consider which B-Tree operator class any
808 : : * particular available unique index attribute uses, unless one was specified
809 : : * in the inference specification. The same is true of collations. In
810 : : * particular, there is no system dependency on the default operator class for
811 : : * the purposes of inference. If no opclass (or collation) is specified, then
812 : : * all matching indexes (that may or may not match the default in terms of
813 : : * each attribute opclass/collation) are used for inference.
814 : : */
815 : : List *
816 : 284 : infer_arbiter_indexes(PlannerInfo *root)
817 : : {
818 : 284 : OnConflictExpr *onconflict = root->parse->onConflict;
819 : :
820 : : /* Iteration state */
821 : 284 : Index varno;
822 : 284 : RangeTblEntry *rte;
823 : 284 : Relation relation;
824 : 284 : Oid indexOidFromConstraint = InvalidOid;
825 : 284 : List *indexList;
826 : 284 : List *indexRelList = NIL;
827 : :
828 : : /*
829 : : * Required attributes and expressions used to match indexes to the clause
830 : : * given by the user. In the ON CONFLICT ON CONSTRAINT case, we compute
831 : : * these from that constraint's index to match all other indexes, to
832 : : * account for the case where that index is being concurrently reindexed.
833 : : */
834 : 284 : List *inferIndexExprs = (List *) onconflict->arbiterWhere;
835 : 284 : Bitmapset *inferAttrs = NULL;
836 : 284 : List *inferElems = NIL;
837 : :
838 : : /* Results */
839 : 284 : List *results = NIL;
840 : 284 : bool foundValid = false;
841 : :
842 : : /*
843 : : * Quickly return NIL for ON CONFLICT DO NOTHING without an inference
844 : : * specification or named constraint. ON CONFLICT DO UPDATE statements
845 : : * must always provide one or the other (but parser ought to have caught
846 : : * that already).
847 : : */
848 [ + + + + ]: 284 : if (onconflict->arbiterElems == NIL &&
849 : 55 : onconflict->constraint == InvalidOid)
850 : 23 : return NIL;
851 : :
852 : : /*
853 : : * We need not lock the relation since it was already locked, either by
854 : : * the rewriter or when expand_inherited_rtentry() added it to the query's
855 : : * rangetable.
856 : : */
857 : 261 : varno = root->parse->resultRelation;
858 : 261 : rte = rt_fetch(varno, root->parse->rtable);
859 : :
860 : 261 : relation = table_open(rte->relid, NoLock);
861 : :
862 : : /*
863 : : * Build normalized/BMS representation of plain indexed attributes, as
864 : : * well as a separate list of expression items. This simplifies matching
865 : : * the cataloged definition of indexes.
866 : : */
867 [ + + + + : 826 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
+ + + + ]
868 : : {
869 : 304 : Var *var;
870 : 304 : int attno;
871 : :
872 : : /* we cannot also have a constraint name, per grammar */
873 [ - + ]: 304 : Assert(!OidIsValid(onconflict->constraint));
874 : :
875 [ + + ]: 304 : if (!IsA(elem->expr, Var))
876 : : {
877 : : /* If not a plain Var, just shove it in inferElems for now */
878 : 25 : inferElems = lappend(inferElems, elem->expr);
879 : 25 : continue;
880 : : }
881 : :
882 : 279 : var = (Var *) elem->expr;
883 : 279 : attno = var->varattno;
884 : :
885 [ + - ]: 279 : if (attno == 0)
886 [ # # # # ]: 0 : ereport(ERROR,
887 : : (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
888 : : errmsg("whole row unique index inference specifications are not supported")));
889 : :
890 : 558 : inferAttrs = bms_add_member(inferAttrs,
891 : 279 : attno - FirstLowInvalidHeapAttributeNumber);
892 [ + + ]: 565 : }
893 : :
894 : : /*
895 : : * Next, open all the indexes. We need this list for two things: first,
896 : : * if an ON CONSTRAINT clause was given, and that constraint's index is
897 : : * undergoing REINDEX CONCURRENTLY, then we need to consider all matches
898 : : * for that index. Second, if an attribute list was specified in the ON
899 : : * CONFLICT clause, we use the list to find the indexes whose attributes
900 : : * match that list.
901 : : */
902 : 261 : indexList = RelationGetIndexList(relation);
903 [ + + + - : 857 : foreach_oid(indexoid, indexList)
+ + + + ]
904 : : {
905 : 335 : Relation idxRel;
906 : :
907 : : /* obtain the same lock type that the executor will ultimately use */
908 : 335 : idxRel = index_open(indexoid, rte->rellockmode);
909 : 335 : indexRelList = lappend(indexRelList, idxRel);
910 : 596 : }
911 : :
912 : : /*
913 : : * If a constraint was named in the command, look up its index. We don't
914 : : * return it immediately because we need some additional sanity checks,
915 : : * and also because we need to include other indexes as arbiters to
916 : : * account for REINDEX CONCURRENTLY processing it.
917 : : */
918 [ + + ]: 261 : if (onconflict->constraint != InvalidOid)
919 : : {
920 : : /* we cannot also have an explicit list of elements, per grammar */
921 [ + - ]: 32 : Assert(onconflict->arbiterElems == NIL);
922 : :
923 : 32 : indexOidFromConstraint = get_constraint_index(onconflict->constraint);
924 [ + - ]: 32 : if (indexOidFromConstraint == InvalidOid)
925 [ # # # # ]: 0 : ereport(ERROR,
926 : : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
927 : : errmsg("constraint in ON CONFLICT clause has no associated index")));
928 : :
929 : : /*
930 : : * Find the named constraint index to extract its attributes and
931 : : * predicates.
932 : : */
933 [ + + + - : 99 : foreach_ptr(RelationData, idxRel, indexRelList)
- + + - ]
934 : : {
935 : 35 : Form_pg_index idxForm = idxRel->rd_index;
936 : :
937 [ + + ]: 35 : if (indexOidFromConstraint == idxForm->indexrelid)
938 : : {
939 : : /* Found it. */
940 [ - + ]: 32 : Assert(idxForm->indisready);
941 : :
942 : : /*
943 : : * Set up inferElems and inferIndexExprs to match the
944 : : * constraint index, so that we can match them in the loop
945 : : * below.
946 : : */
947 [ + + ]: 90 : for (int natt = 0; natt < idxForm->indnkeyatts; natt++)
948 : : {
949 : 58 : int attno;
950 : :
951 : 58 : attno = idxRel->rd_index->indkey.values[natt];
952 [ + + ]: 58 : if (attno != InvalidAttrNumber)
953 : 56 : inferAttrs =
954 : 112 : bms_add_member(inferAttrs,
955 : 56 : attno - FirstLowInvalidHeapAttributeNumber);
956 : 58 : }
957 : :
958 : 32 : inferElems = RelationGetIndexExpressions(idxRel);
959 : 32 : inferIndexExprs = RelationGetIndexPredicate(idxRel);
960 : 32 : break;
961 : : }
962 [ + + ]: 67 : }
963 : 32 : }
964 : :
965 : : /*
966 : : * Using that representation, iterate through the list of indexes on the
967 : : * target relation to find matches.
968 : : */
969 [ + + + - : 831 : foreach_ptr(RelationData, idxRel, indexRelList)
+ + + + ]
970 : : {
971 : 335 : Form_pg_index idxForm;
972 : 335 : Bitmapset *indexedAttrs;
973 : 335 : List *idxExprs;
974 : 335 : List *predExprs;
975 : 335 : AttrNumber natt;
976 : 335 : bool match;
977 : :
978 : : /*
979 : : * Extract info from the relation descriptor for the index.
980 : : *
981 : : * Let executor complain about !indimmediate case directly, because
982 : : * enforcement needs to occur there anyway when an inference clause is
983 : : * omitted.
984 : : */
985 : 335 : idxForm = idxRel->rd_index;
986 : :
987 : : /*
988 : : * Ignore indexes that aren't indisready, because we cannot trust
989 : : * their catalog structure yet. However, if any indexes are marked
990 : : * indisready but not yet indisvalid, we still consider them, because
991 : : * they might turn valid while we're running. Doing it this way
992 : : * allows a concurrent transaction with a slightly later catalog
993 : : * snapshot infer the same set of indexes, which is critical to
994 : : * prevent spurious 'duplicate key' errors.
995 : : *
996 : : * However, another critical aspect is that a unique index that isn't
997 : : * yet marked indisvalid=true might not be complete yet, meaning it
998 : : * wouldn't detect possible duplicate rows. In order to prevent false
999 : : * negatives, we require that we include in the set of inferred
1000 : : * indexes at least one index that is marked valid.
1001 : : */
1002 [ + - ]: 335 : if (!idxForm->indisready)
1003 : 0 : continue;
1004 : :
1005 : : /*
1006 : : * Ignore invalid indexes for partitioned tables. It's possible that
1007 : : * some partitions don't have the index (yet), and then we would not
1008 : : * find a match during ExecInitPartitionInfo.
1009 : : */
1010 [ + + + + ]: 335 : if (relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
1011 : 24 : !idxForm->indisvalid)
1012 : 2 : continue;
1013 : :
1014 : : /*
1015 : : * Note that we do not perform a check against indcheckxmin (like e.g.
1016 : : * get_relation_info()) here to eliminate candidates, because
1017 : : * uniqueness checking only cares about the most recently committed
1018 : : * tuple versions.
1019 : : */
1020 : :
1021 : : /*
1022 : : * Look for match for "ON constraint_name" variant, which may not be a
1023 : : * unique constraint. This can only be a constraint name.
1024 : : */
1025 [ + + ]: 333 : if (indexOidFromConstraint == idxForm->indexrelid)
1026 : : {
1027 [ + + + + ]: 32 : if (idxForm->indisexclusion && onconflict->action == ONCONFLICT_UPDATE)
1028 [ + - + - ]: 13 : ereport(ERROR,
1029 : : (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1030 : : errmsg("ON CONFLICT DO UPDATE not supported with exclusion constraints")));
1031 : :
1032 : : /* Consider this one a match already */
1033 : 19 : results = lappend_oid(results, idxForm->indexrelid);
1034 : 19 : foundValid |= idxForm->indisvalid;
1035 : 19 : continue;
1036 : : }
1037 [ + + ]: 301 : else if (indexOidFromConstraint != InvalidOid)
1038 : : {
1039 : : /*
1040 : : * In the case of "ON constraint_name DO UPDATE" we need to skip
1041 : : * non-unique candidates.
1042 : : */
1043 [ + + + - ]: 4 : if (!idxForm->indisunique && onconflict->action == ONCONFLICT_UPDATE)
1044 : 0 : continue;
1045 : 4 : }
1046 : : else
1047 : : {
1048 : : /*
1049 : : * Only considering conventional inference at this point (not
1050 : : * named constraints), so index under consideration can be
1051 : : * immediately skipped if it's not unique.
1052 : : */
1053 [ + - ]: 297 : if (!idxForm->indisunique)
1054 : 0 : continue;
1055 : : }
1056 : :
1057 : : /*
1058 : : * So-called unique constraints with WITHOUT OVERLAPS are really
1059 : : * exclusion constraints, so skip those too.
1060 : : */
1061 [ + + ]: 301 : if (idxForm->indisexclusion)
1062 : 25 : continue;
1063 : :
1064 : : /* Build BMS representation of plain (non expression) index attrs */
1065 : 276 : indexedAttrs = NULL;
1066 [ + + ]: 646 : for (natt = 0; natt < idxForm->indnkeyatts; natt++)
1067 : : {
1068 : 370 : int attno = idxRel->rd_index->indkey.values[natt];
1069 : :
1070 [ + + ]: 370 : if (attno != 0)
1071 : 644 : indexedAttrs = bms_add_member(indexedAttrs,
1072 : 322 : attno - FirstLowInvalidHeapAttributeNumber);
1073 : 370 : }
1074 : :
1075 : : /* Non-expression attributes (if any) must match */
1076 [ + + ]: 276 : if (!bms_equal(indexedAttrs, inferAttrs))
1077 : 66 : continue;
1078 : :
1079 : : /* Expression attributes (if any) must match */
1080 : 210 : idxExprs = RelationGetIndexExpressions(idxRel);
1081 [ + + ]: 210 : if (idxExprs)
1082 : : {
1083 [ + + ]: 25 : if (varno != 1)
1084 : 1 : ChangeVarNodes((Node *) idxExprs, 1, varno, 0);
1085 : :
1086 : 25 : idxExprs = (List *) eval_const_expressions(root, (Node *) idxExprs);
1087 : 25 : }
1088 : :
1089 : : /*
1090 : : * If arbiterElems are present, check them. (Note that if a
1091 : : * constraint name was given in the command line, this list is NIL.)
1092 : : */
1093 : 210 : match = true;
1094 [ + + + - : 698 : foreach_ptr(InferenceElem, elem, onconflict->arbiterElems)
+ + + + ]
1095 : : {
1096 : : /*
1097 : : * Ensure that collation/opclass aspects of inference expression
1098 : : * element match. Even though this loop is primarily concerned
1099 : : * with matching expressions, it is a convenient point to check
1100 : : * this for both expressions and ordinary (non-expression)
1101 : : * attributes appearing as inference elements.
1102 : : */
1103 [ + + ]: 278 : if (!infer_collation_opclass_match(elem, idxRel, idxExprs))
1104 : : {
1105 : 6 : match = false;
1106 : 6 : break;
1107 : : }
1108 : :
1109 : : /*
1110 : : * Plain Vars don't factor into count of expression elements, and
1111 : : * the question of whether or not they satisfy the index
1112 : : * definition has already been considered (they must).
1113 : : */
1114 [ + + ]: 272 : if (IsA(elem->expr, Var))
1115 : 247 : continue;
1116 : :
1117 : : /*
1118 : : * Might as well avoid redundant check in the rare cases where
1119 : : * infer_collation_opclass_match() is required to do real work.
1120 : : * Otherwise, check that element expression appears in cataloged
1121 : : * index definition.
1122 : : */
1123 [ + + ]: 25 : if (elem->infercollid != InvalidOid ||
1124 [ + + + + ]: 22 : elem->inferopclass != InvalidOid ||
1125 : 21 : list_member(idxExprs, elem->expr))
1126 : 23 : continue;
1127 : :
1128 : 2 : match = false;
1129 : 2 : break;
1130 : 210 : }
1131 [ + + ]: 210 : if (!match)
1132 : 8 : continue;
1133 : :
1134 : : /*
1135 : : * In case of inference from an attribute list, ensure that the
1136 : : * expression elements from inference clause are not missing any
1137 : : * cataloged expressions. This does the right thing when unique
1138 : : * indexes redundantly repeat the same attribute, or if attributes
1139 : : * redundantly appear multiple times within an inference clause.
1140 : : *
1141 : : * In case a constraint was named, ensure the candidate has an equal
1142 : : * set of expressions as the named constraint's index.
1143 : : */
1144 [ + + ]: 202 : if (list_difference(idxExprs, inferElems) != NIL)
1145 : 9 : continue;
1146 : :
1147 : 193 : predExprs = RelationGetIndexPredicate(idxRel);
1148 [ + + ]: 193 : if (predExprs)
1149 : : {
1150 [ + + ]: 11 : if (varno != 1)
1151 : 1 : ChangeVarNodes((Node *) predExprs, 1, varno, 0);
1152 : :
1153 : 11 : predExprs = (List *)
1154 : 22 : eval_const_expressions(root,
1155 : 11 : (Node *) make_ands_explicit(predExprs));
1156 : 11 : predExprs = make_ands_implicit((Expr *) predExprs);
1157 : 11 : }
1158 : :
1159 : : /*
1160 : : * Partial indexes affect each form of ON CONFLICT differently: if a
1161 : : * constraint was named, then the predicates must be identical. In
1162 : : * conventional inference, the index's predicate must be implied by
1163 : : * the WHERE clause.
1164 : : */
1165 [ - + ]: 193 : if (OidIsValid(indexOidFromConstraint))
1166 : : {
1167 [ # # ]: 0 : if (list_difference(predExprs, inferIndexExprs) != NIL)
1168 : 0 : continue;
1169 : 0 : }
1170 : : else
1171 : : {
1172 [ + + ]: 193 : if (!predicate_implied_by(predExprs, inferIndexExprs, false))
1173 : 6 : continue;
1174 : : }
1175 : :
1176 : : /* All good -- consider this index a match */
1177 : 187 : results = lappend_oid(results, idxForm->indexrelid);
1178 : 187 : foundValid |= idxForm->indisvalid;
1179 [ + + ]: 570 : }
1180 : :
1181 : : /* Close all indexes */
1182 [ + + + - : 818 : foreach_ptr(RelationData, idxRel, indexRelList)
+ + + + ]
1183 : : {
1184 : 322 : index_close(idxRel, NoLock);
1185 : 570 : }
1186 : :
1187 : 248 : list_free(indexList);
1188 : 248 : list_free(indexRelList);
1189 : 248 : table_close(relation, NoLock);
1190 : :
1191 : : /* We require at least one indisvalid index */
1192 [ + + ]: 248 : if (results == NIL || !foundValid)
1193 [ + - + - ]: 51 : ereport(ERROR,
1194 : : (errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
1195 : : errmsg("there is no unique or exclusion constraint matching the ON CONFLICT specification")));
1196 : :
1197 : 197 : return results;
1198 : 220 : }
1199 : :
1200 : : /*
1201 : : * infer_collation_opclass_match - ensure infer element opclass/collation match
1202 : : *
1203 : : * Given unique index inference element from inference specification, if
1204 : : * collation was specified, or if opclass was specified, verify that there is
1205 : : * at least one matching indexed attribute (occasionally, there may be more).
1206 : : * Skip this in the common case where inference specification does not include
1207 : : * collation or opclass (instead matching everything, regardless of cataloged
1208 : : * collation/opclass of indexed attribute).
1209 : : *
1210 : : * At least historically, Postgres has not offered collations or opclasses
1211 : : * with alternative-to-default notions of equality, so these additional
1212 : : * criteria should only be required infrequently.
1213 : : *
1214 : : * Don't give up immediately when an inference element matches some attribute
1215 : : * cataloged as indexed but not matching additional opclass/collation
1216 : : * criteria. This is done so that the implementation is as forgiving as
1217 : : * possible of redundancy within cataloged index attributes (or, less
1218 : : * usefully, within inference specification elements). If collations actually
1219 : : * differ between apparently redundantly indexed attributes (redundant within
1220 : : * or across indexes), then there really is no redundancy as such.
1221 : : *
1222 : : * Note that if an inference element specifies an opclass and a collation at
1223 : : * once, both must match in at least one particular attribute within index
1224 : : * catalog definition in order for that inference element to be considered
1225 : : * inferred/satisfied.
1226 : : */
1227 : : static bool
1228 : 278 : infer_collation_opclass_match(InferenceElem *elem, Relation idxRel,
1229 : : List *idxExprs)
1230 : : {
1231 : 278 : AttrNumber natt;
1232 : 278 : Oid inferopfamily = InvalidOid; /* OID of opclass opfamily */
1233 : 278 : Oid inferopcinputtype = InvalidOid; /* OID of opclass input type */
1234 : 278 : int nplain = 0; /* # plain attrs observed */
1235 : :
1236 : : /*
1237 : : * If inference specification element lacks collation/opclass, then no
1238 : : * need to check for exact match.
1239 : : */
1240 [ + + + + ]: 278 : if (elem->infercollid == InvalidOid && elem->inferopclass == InvalidOid)
1241 : 259 : return true;
1242 : :
1243 : : /*
1244 : : * Lookup opfamily and input type, for matching indexes
1245 : : */
1246 [ + + ]: 19 : if (elem->inferopclass)
1247 : : {
1248 : 14 : inferopfamily = get_opclass_family(elem->inferopclass);
1249 : 14 : inferopcinputtype = get_opclass_input_type(elem->inferopclass);
1250 : 14 : }
1251 : :
1252 [ + + ]: 41 : for (natt = 1; natt <= idxRel->rd_att->natts; natt++)
1253 : : {
1254 : 35 : Oid opfamily = idxRel->rd_opfamily[natt - 1];
1255 : 35 : Oid opcinputtype = idxRel->rd_opcintype[natt - 1];
1256 : 35 : Oid collation = idxRel->rd_indcollation[natt - 1];
1257 : 35 : int attno = idxRel->rd_index->indkey.values[natt - 1];
1258 : :
1259 [ + + ]: 35 : if (attno != 0)
1260 : 28 : nplain++;
1261 : :
1262 [ + + - + ]: 46 : if (elem->inferopclass != InvalidOid &&
1263 [ + + ]: 26 : (inferopfamily != opfamily || inferopcinputtype != opcinputtype))
1264 : : {
1265 : : /* Attribute needed to match opclass, but didn't */
1266 : 15 : continue;
1267 : : }
1268 : :
1269 [ + + + + ]: 20 : if (elem->infercollid != InvalidOid &&
1270 : 14 : elem->infercollid != collation)
1271 : : {
1272 : : /* Attribute needed to match collation, but didn't */
1273 : 6 : continue;
1274 : : }
1275 : :
1276 : : /* If one matching index att found, good enough -- return true */
1277 [ + + ]: 14 : if (IsA(elem->expr, Var))
1278 : : {
1279 [ + - ]: 9 : if (((Var *) elem->expr)->varattno == attno)
1280 : 9 : return true;
1281 : 0 : }
1282 [ - + ]: 5 : else if (attno == 0)
1283 : : {
1284 : 5 : Node *nattExpr = list_nth(idxExprs, (natt - 1) - nplain);
1285 : :
1286 : : /*
1287 : : * Note that unlike routines like match_index_to_operand() we
1288 : : * don't need to care about RelabelType. Neither the index
1289 : : * definition nor the inference clause should contain them.
1290 : : */
1291 [ + + ]: 5 : if (equal(elem->expr, nattExpr))
1292 : 4 : return true;
1293 [ + + ]: 5 : }
1294 [ + + + ]: 35 : }
1295 : :
1296 : 6 : return false;
1297 : 278 : }
1298 : :
1299 : : /*
1300 : : * estimate_rel_size - estimate # pages and # tuples in a table or index
1301 : : *
1302 : : * We also estimate the fraction of the pages that are marked all-visible in
1303 : : * the visibility map, for use in estimation of index-only scans.
1304 : : *
1305 : : * If attr_widths isn't NULL, it points to the zero-index entry of the
1306 : : * relation's attr_widths[] cache; we fill this in if we have need to compute
1307 : : * the attribute widths for estimation purposes.
1308 : : */
1309 : : void
1310 : 47951 : estimate_rel_size(Relation rel, int32 *attr_widths,
1311 : : BlockNumber *pages, double *tuples, double *allvisfrac)
1312 : : {
1313 : 47951 : BlockNumber curpages;
1314 : 47951 : BlockNumber relpages;
1315 : 47951 : double reltuples;
1316 : 47951 : BlockNumber relallvisible;
1317 : 47951 : double density;
1318 : :
1319 [ + + + + : 47951 : if (RELKIND_HAS_TABLE_AM(rel->rd_rel->relkind))
+ + ]
1320 : : {
1321 : 95602 : table_relation_estimate_size(rel, attr_widths, pages, tuples,
1322 : 47801 : allvisfrac);
1323 : 47801 : }
1324 [ + + ]: 150 : else if (rel->rd_rel->relkind == RELKIND_INDEX)
1325 : : {
1326 : : /*
1327 : : * XXX: It'd probably be good to move this into a callback, individual
1328 : : * index types e.g. know if they have a metapage.
1329 : : */
1330 : :
1331 : : /* it has storage, ok to call the smgr */
1332 : 143 : curpages = RelationGetNumberOfBlocks(rel);
1333 : :
1334 : : /* report estimated # pages */
1335 : 143 : *pages = curpages;
1336 : : /* quick exit if rel is clearly empty */
1337 [ + - ]: 143 : if (curpages == 0)
1338 : : {
1339 : 0 : *tuples = 0;
1340 : 0 : *allvisfrac = 0;
1341 : 0 : return;
1342 : : }
1343 : :
1344 : : /* coerce values in pg_class to more desirable types */
1345 : 143 : relpages = (BlockNumber) rel->rd_rel->relpages;
1346 : 143 : reltuples = (double) rel->rd_rel->reltuples;
1347 : 143 : relallvisible = (BlockNumber) rel->rd_rel->relallvisible;
1348 : :
1349 : : /*
1350 : : * Discount the metapage while estimating the number of tuples. This
1351 : : * is a kluge because it assumes more than it ought to about index
1352 : : * structure. Currently it's OK for btree, hash, and GIN indexes but
1353 : : * suspect for GiST indexes.
1354 : : */
1355 [ + + ]: 143 : if (relpages > 0)
1356 : : {
1357 : 140 : curpages--;
1358 : 140 : relpages--;
1359 : 140 : }
1360 : :
1361 : : /* estimate number of tuples from previous tuple density */
1362 [ + + + + ]: 143 : if (reltuples >= 0 && relpages > 0)
1363 : 119 : density = reltuples / (double) relpages;
1364 : : else
1365 : : {
1366 : : /*
1367 : : * If we have no data because the relation was never vacuumed,
1368 : : * estimate tuple width from attribute datatypes. We assume here
1369 : : * that the pages are completely full, which is OK for tables
1370 : : * (since they've presumably not been VACUUMed yet) but is
1371 : : * probably an overestimate for indexes. Fortunately
1372 : : * get_relation_info() can clamp the overestimate to the parent
1373 : : * table's size.
1374 : : *
1375 : : * Note: this code intentionally disregards alignment
1376 : : * considerations, because (a) that would be gilding the lily
1377 : : * considering how crude the estimate is, and (b) it creates
1378 : : * platform dependencies in the default plans which are kind of a
1379 : : * headache for regression testing.
1380 : : *
1381 : : * XXX: Should this logic be more index specific?
1382 : : */
1383 : 24 : int32 tuple_width;
1384 : :
1385 : 24 : tuple_width = get_rel_data_width(rel, attr_widths);
1386 : 24 : tuple_width += MAXALIGN(SizeofHeapTupleHeader);
1387 : 24 : tuple_width += sizeof(ItemIdData);
1388 : : /* note: integer division is intentional here */
1389 : 24 : density = (BLCKSZ - SizeOfPageHeaderData) / tuple_width;
1390 : 24 : }
1391 : 143 : *tuples = rint(density * (double) curpages);
1392 : :
1393 : : /*
1394 : : * We use relallvisible as-is, rather than scaling it up like we do
1395 : : * for the pages and tuples counts, on the theory that any pages added
1396 : : * since the last VACUUM are most likely not marked all-visible. But
1397 : : * costsize.c wants it converted to a fraction.
1398 : : */
1399 [ - + # # ]: 143 : if (relallvisible == 0 || curpages <= 0)
1400 : 143 : *allvisfrac = 0;
1401 [ # # ]: 0 : else if ((double) relallvisible >= curpages)
1402 : 0 : *allvisfrac = 1;
1403 : : else
1404 : 0 : *allvisfrac = (double) relallvisible / curpages;
1405 : 143 : }
1406 : : else
1407 : : {
1408 : : /*
1409 : : * Just use whatever's in pg_class. This covers foreign tables,
1410 : : * sequences, and also relkinds without storage (shouldn't get here?);
1411 : : * see initializations in AddNewRelationTuple(). Note that FDW must
1412 : : * cope if reltuples is -1!
1413 : : */
1414 : 7 : *pages = rel->rd_rel->relpages;
1415 : 7 : *tuples = rel->rd_rel->reltuples;
1416 : 7 : *allvisfrac = 0;
1417 : : }
1418 [ - + ]: 47951 : }
1419 : :
1420 : :
1421 : : /*
1422 : : * get_rel_data_width
1423 : : *
1424 : : * Estimate the average width of (the data part of) the relation's tuples.
1425 : : *
1426 : : * If attr_widths isn't NULL, it points to the zero-index entry of the
1427 : : * relation's attr_widths[] cache; use and update that cache as appropriate.
1428 : : *
1429 : : * Currently we ignore dropped columns. Ideally those should be included
1430 : : * in the result, but we haven't got any way to get info about them; and
1431 : : * since they might be mostly NULLs, treating them as zero-width is not
1432 : : * necessarily the wrong thing anyway.
1433 : : */
1434 : : int32
1435 : 21230 : get_rel_data_width(Relation rel, int32 *attr_widths)
1436 : : {
1437 : 21230 : int64 tuple_width = 0;
1438 : 21230 : int i;
1439 : :
1440 [ + + ]: 119813 : for (i = 1; i <= RelationGetNumberOfAttributes(rel); i++)
1441 : : {
1442 : 98583 : Form_pg_attribute att = TupleDescAttr(rel->rd_att, i - 1);
1443 : 98583 : int32 item_width;
1444 : :
1445 [ + + ]: 98583 : if (att->attisdropped)
1446 : 388 : continue;
1447 : :
1448 : : /* use previously cached data, if any */
1449 [ + + + + ]: 98195 : if (attr_widths != NULL && attr_widths[i] > 0)
1450 : : {
1451 : 263 : tuple_width += attr_widths[i];
1452 : 263 : continue;
1453 : : }
1454 : :
1455 : : /* This should match set_rel_width() in costsize.c */
1456 : 97932 : item_width = get_attavgwidth(RelationGetRelid(rel), i);
1457 [ + + ]: 97932 : if (item_width <= 0)
1458 : : {
1459 : 97822 : item_width = get_typavgwidth(att->atttypid, att->atttypmod);
1460 [ - + ]: 97822 : Assert(item_width > 0);
1461 : 97822 : }
1462 [ + + ]: 97932 : if (attr_widths != NULL)
1463 : 89914 : attr_widths[i] = item_width;
1464 : 97932 : tuple_width += item_width;
1465 [ - + + ]: 98583 : }
1466 : :
1467 : 42460 : return clamp_width_est(tuple_width);
1468 : 21230 : }
1469 : :
1470 : : /*
1471 : : * get_relation_data_width
1472 : : *
1473 : : * External API for get_rel_data_width: same behavior except we have to
1474 : : * open the relcache entry.
1475 : : */
1476 : : int32
1477 : 209 : get_relation_data_width(Oid relid, int32 *attr_widths)
1478 : : {
1479 : 209 : int32 result;
1480 : 209 : Relation relation;
1481 : :
1482 : : /* As above, assume relation is already locked */
1483 : 209 : relation = table_open(relid, NoLock);
1484 : :
1485 : 209 : result = get_rel_data_width(relation, attr_widths);
1486 : :
1487 : 209 : table_close(relation, NoLock);
1488 : :
1489 : 418 : return result;
1490 : 209 : }
1491 : :
1492 : :
1493 : : /*
1494 : : * get_relation_constraints
1495 : : *
1496 : : * Retrieve the applicable constraint expressions of the given relation.
1497 : : * Only constraints that have been validated are considered.
1498 : : *
1499 : : * Returns a List (possibly empty) of constraint expressions. Each one
1500 : : * has been canonicalized, and its Vars are changed to have the varno
1501 : : * indicated by rel->relid. This allows the expressions to be easily
1502 : : * compared to expressions taken from WHERE.
1503 : : *
1504 : : * If include_noinherit is true, it's okay to include constraints that
1505 : : * are marked NO INHERIT.
1506 : : *
1507 : : * If include_notnull is true, "col IS NOT NULL" expressions are generated
1508 : : * and added to the result for each column that's marked attnotnull.
1509 : : *
1510 : : * If include_partition is true, and the relation is a partition,
1511 : : * also include the partitioning constraints.
1512 : : *
1513 : : * Note: at present this is invoked at most once per relation per planner
1514 : : * run, and in many cases it won't be invoked at all, so there seems no
1515 : : * point in caching the data in RelOptInfo.
1516 : : */
1517 : : static List *
1518 : 3043 : get_relation_constraints(PlannerInfo *root,
1519 : : Oid relationObjectId, RelOptInfo *rel,
1520 : : bool include_noinherit,
1521 : : bool include_notnull,
1522 : : bool include_partition)
1523 : : {
1524 : 3043 : List *result = NIL;
1525 : 3043 : Index varno = rel->relid;
1526 : 3043 : Relation relation;
1527 : 3043 : TupleConstr *constr;
1528 : :
1529 : : /*
1530 : : * We assume the relation has already been safely locked.
1531 : : */
1532 : 3043 : relation = table_open(relationObjectId, NoLock);
1533 : :
1534 : 3043 : constr = relation->rd_att->constr;
1535 [ + + ]: 3043 : if (constr != NULL)
1536 : : {
1537 : 940 : int num_check = constr->num_check;
1538 : 940 : int i;
1539 : :
1540 [ + + ]: 1040 : for (i = 0; i < num_check; i++)
1541 : : {
1542 : 100 : Node *cexpr;
1543 : :
1544 : : /*
1545 : : * If this constraint hasn't been fully validated yet, we must
1546 : : * ignore it here.
1547 : : */
1548 [ + + ]: 100 : if (!constr->check[i].ccvalid)
1549 : 9 : continue;
1550 : :
1551 : : /*
1552 : : * NOT ENFORCED constraints are always marked as invalid, which
1553 : : * should have been ignored.
1554 : : */
1555 [ - + ]: 91 : Assert(constr->check[i].ccenforced);
1556 : :
1557 : : /*
1558 : : * Also ignore if NO INHERIT and we weren't told that that's safe.
1559 : : */
1560 [ + + + - ]: 91 : if (constr->check[i].ccnoinherit && !include_noinherit)
1561 : 0 : continue;
1562 : :
1563 : 91 : cexpr = stringToNode(constr->check[i].ccbin);
1564 : :
1565 : : /*
1566 : : * Fix Vars to have the desired varno. This must be done before
1567 : : * const-simplification because eval_const_expressions reduces
1568 : : * NullTest for Vars based on varno.
1569 : : */
1570 [ + + ]: 91 : if (varno != 1)
1571 : 89 : ChangeVarNodes(cexpr, 1, varno, 0);
1572 : :
1573 : : /*
1574 : : * Run each expression through const-simplification and
1575 : : * canonicalization. This is not just an optimization, but is
1576 : : * necessary, because we will be comparing it to
1577 : : * similarly-processed qual clauses, and may fail to detect valid
1578 : : * matches without this. This must match the processing done to
1579 : : * qual clauses in preprocess_expression()! (We can skip the
1580 : : * stuff involving subqueries, however, since we don't allow any
1581 : : * in check constraints.)
1582 : : */
1583 : 91 : cexpr = eval_const_expressions(root, cexpr);
1584 : :
1585 : 91 : cexpr = (Node *) canonicalize_qual((Expr *) cexpr, true);
1586 : :
1587 : : /*
1588 : : * Finally, convert to implicit-AND format (that is, a List) and
1589 : : * append the resulting item(s) to our output list.
1590 : : */
1591 : 182 : result = list_concat(result,
1592 : 91 : make_ands_implicit((Expr *) cexpr));
1593 [ - + + ]: 100 : }
1594 : :
1595 : : /* Add NOT NULL constraints in expression form, if requested */
1596 [ + + + + ]: 940 : if (include_notnull && constr->has_not_null)
1597 : : {
1598 : 868 : int natts = relation->rd_att->natts;
1599 : :
1600 [ + + ]: 3139 : for (i = 1; i <= natts; i++)
1601 : : {
1602 : 2271 : CompactAttribute *att = TupleDescCompactAttr(relation->rd_att, i - 1);
1603 : :
1604 [ + + - + ]: 2271 : if (att->attnullability == ATTNULLABLE_VALID && !att->attisdropped)
1605 : : {
1606 : 1179 : Form_pg_attribute wholeatt = TupleDescAttr(relation->rd_att, i - 1);
1607 : 1179 : NullTest *ntest = makeNode(NullTest);
1608 : :
1609 : 2358 : ntest->arg = (Expr *) makeVar(varno,
1610 : 1179 : i,
1611 : 1179 : wholeatt->atttypid,
1612 : 1179 : wholeatt->atttypmod,
1613 : 1179 : wholeatt->attcollation,
1614 : : 0);
1615 : 1179 : ntest->nulltesttype = IS_NOT_NULL;
1616 : :
1617 : : /*
1618 : : * argisrow=false is correct even for a composite column,
1619 : : * because attnotnull does not represent a SQL-spec IS NOT
1620 : : * NULL test in such a case, just IS DISTINCT FROM NULL.
1621 : : */
1622 : 1179 : ntest->argisrow = false;
1623 : 1179 : ntest->location = -1;
1624 : 1179 : result = lappend(result, ntest);
1625 : 1179 : }
1626 : 2271 : }
1627 : 868 : }
1628 : 940 : }
1629 : :
1630 : : /*
1631 : : * Add partitioning constraints, if requested.
1632 : : */
1633 [ + + + + ]: 3043 : if (include_partition && relation->rd_rel->relispartition)
1634 : : {
1635 : : /* make sure rel->partition_qual is set */
1636 : 2 : set_baserel_partition_constraint(relation, rel);
1637 : 2 : result = list_concat(result, rel->partition_qual);
1638 : 2 : }
1639 : :
1640 : : /*
1641 : : * Expand virtual generated columns in the constraint expressions.
1642 : : */
1643 [ + + ]: 3043 : if (result)
1644 : 1802 : result = (List *) expand_generated_columns_in_expr((Node *) result,
1645 : 901 : relation,
1646 : 901 : varno);
1647 : :
1648 : 3043 : table_close(relation, NoLock);
1649 : :
1650 : 6086 : return result;
1651 : 3043 : }
1652 : :
1653 : : /*
1654 : : * Try loading data for the statistics object.
1655 : : *
1656 : : * We don't know if the data (specified by statOid and inh value) exist.
1657 : : * The result is stored in stainfos list.
1658 : : */
1659 : : static void
1660 : 670 : get_relation_statistics_worker(List **stainfos, RelOptInfo *rel,
1661 : : Oid statOid, bool inh,
1662 : : Bitmapset *keys, List *exprs)
1663 : : {
1664 : 670 : Form_pg_statistic_ext_data dataForm;
1665 : 670 : HeapTuple dtup;
1666 : :
1667 : 670 : dtup = SearchSysCache2(STATEXTDATASTXOID,
1668 : 670 : ObjectIdGetDatum(statOid), BoolGetDatum(inh));
1669 [ + + ]: 670 : if (!HeapTupleIsValid(dtup))
1670 : 336 : return;
1671 : :
1672 : 334 : dataForm = (Form_pg_statistic_ext_data) GETSTRUCT(dtup);
1673 : :
1674 : : /* add one StatisticExtInfo for each kind built */
1675 [ + + ]: 334 : if (statext_is_kind_built(dtup, STATS_EXT_NDISTINCT))
1676 : : {
1677 : 119 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1678 : :
1679 : 119 : info->statOid = statOid;
1680 : 119 : info->inherit = dataForm->stxdinherit;
1681 : 119 : info->rel = rel;
1682 : 119 : info->kind = STATS_EXT_NDISTINCT;
1683 : 119 : info->keys = bms_copy(keys);
1684 : 119 : info->exprs = exprs;
1685 : :
1686 : 119 : *stainfos = lappend(*stainfos, info);
1687 : 119 : }
1688 : :
1689 [ + + ]: 334 : if (statext_is_kind_built(dtup, STATS_EXT_DEPENDENCIES))
1690 : : {
1691 : 88 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1692 : :
1693 : 88 : info->statOid = statOid;
1694 : 88 : info->inherit = dataForm->stxdinherit;
1695 : 88 : info->rel = rel;
1696 : 88 : info->kind = STATS_EXT_DEPENDENCIES;
1697 : 88 : info->keys = bms_copy(keys);
1698 : 88 : info->exprs = exprs;
1699 : :
1700 : 88 : *stainfos = lappend(*stainfos, info);
1701 : 88 : }
1702 : :
1703 [ + + ]: 334 : if (statext_is_kind_built(dtup, STATS_EXT_MCV))
1704 : : {
1705 : 147 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1706 : :
1707 : 147 : info->statOid = statOid;
1708 : 147 : info->inherit = dataForm->stxdinherit;
1709 : 147 : info->rel = rel;
1710 : 147 : info->kind = STATS_EXT_MCV;
1711 : 147 : info->keys = bms_copy(keys);
1712 : 147 : info->exprs = exprs;
1713 : :
1714 : 147 : *stainfos = lappend(*stainfos, info);
1715 : 147 : }
1716 : :
1717 [ + + ]: 334 : if (statext_is_kind_built(dtup, STATS_EXT_EXPRESSIONS))
1718 : : {
1719 : 135 : StatisticExtInfo *info = makeNode(StatisticExtInfo);
1720 : :
1721 : 135 : info->statOid = statOid;
1722 : 135 : info->inherit = dataForm->stxdinherit;
1723 : 135 : info->rel = rel;
1724 : 135 : info->kind = STATS_EXT_EXPRESSIONS;
1725 : 135 : info->keys = bms_copy(keys);
1726 : 135 : info->exprs = exprs;
1727 : :
1728 : 135 : *stainfos = lappend(*stainfos, info);
1729 : 135 : }
1730 : :
1731 : 334 : ReleaseSysCache(dtup);
1732 [ - + ]: 670 : }
1733 : :
1734 : : /*
1735 : : * get_relation_statistics
1736 : : * Retrieve extended statistics defined on the table.
1737 : : *
1738 : : * Returns a List (possibly empty) of StatisticExtInfo objects describing
1739 : : * the statistics. Note that this doesn't load the actual statistics data,
1740 : : * just the identifying metadata. Only stats actually built are considered.
1741 : : */
1742 : : static List *
1743 : 50915 : get_relation_statistics(PlannerInfo *root, RelOptInfo *rel,
1744 : : Relation relation)
1745 : : {
1746 : 50915 : Index varno = rel->relid;
1747 : 50915 : List *statoidlist;
1748 : 50915 : List *stainfos = NIL;
1749 : 50915 : ListCell *l;
1750 : :
1751 : 50915 : statoidlist = RelationGetStatExtList(relation);
1752 : :
1753 [ + + + + : 51250 : foreach(l, statoidlist)
+ + ]
1754 : : {
1755 : 335 : Oid statOid = lfirst_oid(l);
1756 : 335 : Form_pg_statistic_ext staForm;
1757 : 335 : HeapTuple htup;
1758 : 335 : Bitmapset *keys = NULL;
1759 : 335 : List *exprs = NIL;
1760 : 335 : int i;
1761 : :
1762 : 335 : htup = SearchSysCache1(STATEXTOID, ObjectIdGetDatum(statOid));
1763 [ + - ]: 335 : if (!HeapTupleIsValid(htup))
1764 [ # # # # ]: 0 : elog(ERROR, "cache lookup failed for statistics object %u", statOid);
1765 : 335 : staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
1766 : :
1767 : : /*
1768 : : * First, build the array of columns covered. This is ultimately
1769 : : * wasted if no stats within the object have actually been built, but
1770 : : * it doesn't seem worth troubling over that case.
1771 : : */
1772 [ + + ]: 952 : for (i = 0; i < staForm->stxkeys.dim1; i++)
1773 : 617 : keys = bms_add_member(keys, staForm->stxkeys.values[i]);
1774 : :
1775 : : /*
1776 : : * Preprocess expressions (if any). We read the expressions, fix the
1777 : : * varnos, and run them through eval_const_expressions.
1778 : : *
1779 : : * XXX We don't know yet if there are any data for this stats object,
1780 : : * with either stxdinherit value. But it's reasonable to assume there
1781 : : * is at least one of those, possibly both. So it's better to process
1782 : : * keys and expressions here.
1783 : : */
1784 : : {
1785 : 335 : bool isnull;
1786 : 335 : Datum datum;
1787 : :
1788 : : /* decode expression (if any) */
1789 : 335 : datum = SysCacheGetAttr(STATEXTOID, htup,
1790 : : Anum_pg_statistic_ext_stxexprs, &isnull);
1791 : :
1792 [ + + ]: 335 : if (!isnull)
1793 : : {
1794 : 136 : char *exprsString;
1795 : :
1796 : 136 : exprsString = TextDatumGetCString(datum);
1797 : 136 : exprs = (List *) stringToNode(exprsString);
1798 : 136 : pfree(exprsString);
1799 : :
1800 : : /*
1801 : : * Modify the copies we obtain from the relcache to have the
1802 : : * correct varno for the parent relation, so that they match
1803 : : * up correctly against qual clauses.
1804 : : *
1805 : : * This must be done before const-simplification because
1806 : : * eval_const_expressions reduces NullTest for Vars based on
1807 : : * varno.
1808 : : */
1809 [ + - ]: 136 : if (varno != 1)
1810 : 0 : ChangeVarNodes((Node *) exprs, 1, varno, 0);
1811 : :
1812 : : /*
1813 : : * Run the expressions through eval_const_expressions. This is
1814 : : * not just an optimization, but is necessary, because the
1815 : : * planner will be comparing them to similarly-processed qual
1816 : : * clauses, and may fail to detect valid matches without this.
1817 : : * We must not use canonicalize_qual, however, since these
1818 : : * aren't qual expressions.
1819 : : */
1820 : 136 : exprs = (List *) eval_const_expressions(root, (Node *) exprs);
1821 : :
1822 : : /* May as well fix opfuncids too */
1823 : 136 : fix_opfuncids((Node *) exprs);
1824 : 136 : }
1825 : 335 : }
1826 : :
1827 : : /* extract statistics for possible values of stxdinherit flag */
1828 : :
1829 : 335 : get_relation_statistics_worker(&stainfos, rel, statOid, true, keys, exprs);
1830 : :
1831 : 335 : get_relation_statistics_worker(&stainfos, rel, statOid, false, keys, exprs);
1832 : :
1833 : 335 : ReleaseSysCache(htup);
1834 : 335 : bms_free(keys);
1835 : 335 : }
1836 : :
1837 : 50915 : list_free(statoidlist);
1838 : :
1839 : 101830 : return stainfos;
1840 : 50915 : }
1841 : :
1842 : : /*
1843 : : * relation_excluded_by_constraints
1844 : : *
1845 : : * Detect whether the relation need not be scanned because it has either
1846 : : * self-inconsistent restrictions, or restrictions inconsistent with the
1847 : : * relation's applicable constraints.
1848 : : *
1849 : : * Note: this examines only rel->relid, rel->reloptkind, and
1850 : : * rel->baserestrictinfo; therefore it can be called before filling in
1851 : : * other fields of the RelOptInfo.
1852 : : */
1853 : : bool
1854 : 54213 : relation_excluded_by_constraints(PlannerInfo *root,
1855 : : RelOptInfo *rel, RangeTblEntry *rte)
1856 : : {
1857 : 54213 : bool include_noinherit;
1858 : 54213 : bool include_notnull;
1859 : 54213 : bool include_partition = false;
1860 : 54213 : List *safe_restrictions;
1861 : 54213 : List *constraint_pred;
1862 : 54213 : List *safe_constraints;
1863 : 54213 : ListCell *lc;
1864 : :
1865 : : /* As of now, constraint exclusion works only with simple relations. */
1866 [ + + + - ]: 54213 : Assert(IS_SIMPLE_REL(rel));
1867 : :
1868 : : /*
1869 : : * If there are no base restriction clauses, we have no hope of proving
1870 : : * anything below, so fall out quickly.
1871 : : */
1872 [ + + ]: 54213 : if (rel->baserestrictinfo == NIL)
1873 : 26247 : return false;
1874 : :
1875 : : /*
1876 : : * Regardless of the setting of constraint_exclusion, detect
1877 : : * constant-FALSE-or-NULL restriction clauses. Although const-folding
1878 : : * will reduce "anything AND FALSE" to just "FALSE", the baserestrictinfo
1879 : : * list can still have other members besides the FALSE constant, due to
1880 : : * qual pushdown and other mechanisms; so check them all. This doesn't
1881 : : * fire very often, but it seems cheap enough to be worth doing anyway.
1882 : : * (Without this, we'd miss some optimizations that 9.5 and earlier found
1883 : : * via much more roundabout methods.)
1884 : : */
1885 [ + - + + : 68443 : foreach(lc, rel->baserestrictinfo)
+ + + + ]
1886 : : {
1887 : 40477 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1888 : 40477 : Expr *clause = rinfo->clause;
1889 : :
1890 [ + - + + : 40576 : if (clause && IsA(clause, Const) &&
- + ]
1891 [ + + ]: 100 : (((Const *) clause)->constisnull ||
1892 : 99 : !DatumGetBool(((Const *) clause)->constvalue)))
1893 : 100 : return true;
1894 [ + + ]: 40477 : }
1895 : :
1896 : : /*
1897 : : * Skip further tests, depending on constraint_exclusion.
1898 : : */
1899 [ - + + + ]: 27866 : switch (constraint_exclusion)
1900 : : {
1901 : : case CONSTRAINT_EXCLUSION_OFF:
1902 : : /* In 'off' mode, never make any further tests */
1903 : 9 : return false;
1904 : :
1905 : : case CONSTRAINT_EXCLUSION_PARTITION:
1906 : :
1907 : : /*
1908 : : * When constraint_exclusion is set to 'partition' we only handle
1909 : : * appendrel members. Partition pruning has already been applied,
1910 : : * so there is no need to consider the rel's partition constraints
1911 : : * here.
1912 : : */
1913 [ + + ]: 27835 : if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
1914 : 3080 : break; /* appendrel member, so process it */
1915 : 24755 : return false;
1916 : :
1917 : : case CONSTRAINT_EXCLUSION_ON:
1918 : :
1919 : : /*
1920 : : * In 'on' mode, always apply constraint exclusion. If we are
1921 : : * considering a baserel that is a partition (i.e., it was
1922 : : * directly named rather than expanded from a parent table), then
1923 : : * its partition constraints haven't been considered yet, so
1924 : : * include them in the processing here.
1925 : : */
1926 [ + + ]: 22 : if (rel->reloptkind == RELOPT_BASEREL)
1927 : 17 : include_partition = true;
1928 : 22 : break; /* always try to exclude */
1929 : : }
1930 : :
1931 : : /*
1932 : : * Check for self-contradictory restriction clauses. We dare not make
1933 : : * deductions with non-immutable functions, but any immutable clauses that
1934 : : * are self-contradictory allow us to conclude the scan is unnecessary.
1935 : : *
1936 : : * Note: strip off RestrictInfo because predicate_refuted_by() isn't
1937 : : * expecting to see any in its predicate argument.
1938 : : */
1939 : 3102 : safe_restrictions = NIL;
1940 [ + - + + : 7514 : foreach(lc, rel->baserestrictinfo)
+ + ]
1941 : : {
1942 : 4412 : RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
1943 : :
1944 [ + + ]: 4412 : if (!contain_mutable_functions((Node *) rinfo->clause))
1945 : 4157 : safe_restrictions = lappend(safe_restrictions, rinfo->clause);
1946 : 4412 : }
1947 : :
1948 : : /*
1949 : : * We can use weak refutation here, since we're comparing restriction
1950 : : * clauses with restriction clauses.
1951 : : */
1952 [ + + ]: 3102 : if (predicate_refuted_by(safe_restrictions, safe_restrictions, true))
1953 : 12 : return true;
1954 : :
1955 : : /*
1956 : : * Only plain relations have constraints, so stop here for other rtekinds.
1957 : : */
1958 [ + + ]: 3090 : if (rte->rtekind != RTE_RELATION)
1959 : 47 : return false;
1960 : :
1961 : : /*
1962 : : * If we are scanning just this table, we can use NO INHERIT constraints,
1963 : : * but not if we're scanning its children too. (Note that partitioned
1964 : : * tables should never have NO INHERIT constraints; but it's not necessary
1965 : : * for us to assume that here.)
1966 : : */
1967 : 3043 : include_noinherit = !rte->inh;
1968 : :
1969 : : /*
1970 : : * Currently, attnotnull constraints must be treated as NO INHERIT unless
1971 : : * this is a partitioned table. In future we might track their
1972 : : * inheritance status more accurately, allowing this to be refined.
1973 : : *
1974 : : * XXX do we need/want to change this?
1975 : : */
1976 [ + + ]: 3043 : include_notnull = (!rte->inh || rte->relkind == RELKIND_PARTITIONED_TABLE);
1977 : :
1978 : : /*
1979 : : * Fetch the appropriate set of constraint expressions.
1980 : : */
1981 : 6086 : constraint_pred = get_relation_constraints(root, rte->relid, rel,
1982 : 3043 : include_noinherit,
1983 : 3043 : include_notnull,
1984 : 3043 : include_partition);
1985 : :
1986 : : /*
1987 : : * We do not currently enforce that CHECK constraints contain only
1988 : : * immutable functions, so it's necessary to check here. We daren't draw
1989 : : * conclusions from plan-time evaluation of non-immutable functions. Since
1990 : : * they're ANDed, we can just ignore any mutable constraints in the list,
1991 : : * and reason about the rest.
1992 : : */
1993 : 3043 : safe_constraints = NIL;
1994 [ + + + + : 4343 : foreach(lc, constraint_pred)
+ + ]
1995 : : {
1996 : 1300 : Node *pred = (Node *) lfirst(lc);
1997 : :
1998 [ - + ]: 1300 : if (!contain_mutable_functions(pred))
1999 : 1300 : safe_constraints = lappend(safe_constraints, pred);
2000 : 1300 : }
2001 : :
2002 : : /*
2003 : : * The constraints are effectively ANDed together, so we can just try to
2004 : : * refute the entire collection at once. This may allow us to make proofs
2005 : : * that would fail if we took them individually.
2006 : : *
2007 : : * Note: we use rel->baserestrictinfo, not safe_restrictions as might seem
2008 : : * an obvious optimization. Some of the clauses might be OR clauses that
2009 : : * have volatile and nonvolatile subclauses, and it's OK to make
2010 : : * deductions with the nonvolatile parts.
2011 : : *
2012 : : * We need strong refutation because we have to prove that the constraints
2013 : : * would yield false, not just NULL.
2014 : : */
2015 [ + + ]: 3043 : if (predicate_refuted_by(safe_constraints, rel->baserestrictinfo, false))
2016 : 30 : return true;
2017 : :
2018 : 3013 : return false;
2019 : 54213 : }
2020 : :
2021 : :
2022 : : /*
2023 : : * build_physical_tlist
2024 : : *
2025 : : * Build a targetlist consisting of exactly the relation's user attributes,
2026 : : * in order. The executor can special-case such tlists to avoid a projection
2027 : : * step at runtime, so we use such tlists preferentially for scan nodes.
2028 : : *
2029 : : * Exception: if there are any dropped or missing columns, we punt and return
2030 : : * NIL. Ideally we would like to handle these cases too. However this
2031 : : * creates problems for ExecTypeFromTL, which may be asked to build a tupdesc
2032 : : * for a tlist that includes vars of no-longer-existent types. In theory we
2033 : : * could dig out the required info from the pg_attribute entries of the
2034 : : * relation, but that data is not readily available to ExecTypeFromTL.
2035 : : * For now, we don't apply the physical-tlist optimization when there are
2036 : : * dropped cols.
2037 : : *
2038 : : * We also support building a "physical" tlist for subqueries, functions,
2039 : : * values lists, table expressions, and CTEs, since the same optimization can
2040 : : * occur in SubqueryScan, FunctionScan, ValuesScan, CteScan, TableFunc,
2041 : : * NamedTuplestoreScan, and WorkTableScan nodes.
2042 : : */
2043 : : List *
2044 : 17272 : build_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
2045 : : {
2046 : 17272 : List *tlist = NIL;
2047 : 17272 : Index varno = rel->relid;
2048 [ + - ]: 17272 : RangeTblEntry *rte = planner_rt_fetch(varno, root);
2049 : 17272 : Relation relation;
2050 : 17272 : Query *subquery;
2051 : 17272 : Var *var;
2052 : 17272 : ListCell *l;
2053 : 17272 : int attrno,
2054 : : numattrs;
2055 : 17272 : List *colvars;
2056 : :
2057 [ + + + - ]: 17272 : switch (rte->rtekind)
2058 : : {
2059 : : case RTE_RELATION:
2060 : : /* Assume we already have adequate lock */
2061 : 15505 : relation = table_open(rte->relid, NoLock);
2062 : :
2063 : 15505 : numattrs = RelationGetNumberOfAttributes(relation);
2064 [ + + ]: 269520 : for (attrno = 1; attrno <= numattrs; attrno++)
2065 : : {
2066 : 508044 : Form_pg_attribute att_tup = TupleDescAttr(relation->rd_att,
2067 : 254022 : attrno - 1);
2068 : :
2069 [ + + + + ]: 254022 : if (att_tup->attisdropped || att_tup->atthasmissing)
2070 : : {
2071 : : /* found a dropped or missing col, so punt */
2072 : 7 : tlist = NIL;
2073 : 7 : break;
2074 : : }
2075 : :
2076 : 508030 : var = makeVar(varno,
2077 : 254015 : attrno,
2078 : 254015 : att_tup->atttypid,
2079 : 254015 : att_tup->atttypmod,
2080 : 254015 : att_tup->attcollation,
2081 : : 0);
2082 : :
2083 : 508030 : tlist = lappend(tlist,
2084 : 508030 : makeTargetEntry((Expr *) var,
2085 : 254015 : attrno,
2086 : : NULL,
2087 : : false));
2088 [ - + + ]: 254022 : }
2089 : :
2090 : 15505 : table_close(relation, NoLock);
2091 : 15505 : break;
2092 : :
2093 : : case RTE_SUBQUERY:
2094 : 294 : subquery = rte->subquery;
2095 [ + - + + : 1042 : foreach(l, subquery->targetList)
+ + ]
2096 : : {
2097 : 748 : TargetEntry *tle = (TargetEntry *) lfirst(l);
2098 : :
2099 : : /*
2100 : : * A resjunk column of the subquery can be reflected as
2101 : : * resjunk in the physical tlist; we need not punt.
2102 : : */
2103 : 748 : var = makeVarFromTargetEntry(varno, tle);
2104 : :
2105 : 1496 : tlist = lappend(tlist,
2106 : 1496 : makeTargetEntry((Expr *) var,
2107 : 748 : tle->resno,
2108 : : NULL,
2109 : 748 : tle->resjunk));
2110 : 748 : }
2111 : 294 : break;
2112 : :
2113 : : case RTE_FUNCTION:
2114 : : case RTE_TABLEFUNC:
2115 : : case RTE_VALUES:
2116 : : case RTE_CTE:
2117 : : case RTE_NAMEDTUPLESTORE:
2118 : : case RTE_RESULT:
2119 : : /* Not all of these can have dropped cols, but share code anyway */
2120 : 1473 : expandRTE(rte, varno, 0, VAR_RETURNING_DEFAULT, -1,
2121 : : true /* include dropped */ , NULL, &colvars);
2122 [ + - + + : 4826 : foreach(l, colvars)
+ + ]
2123 : : {
2124 : 3353 : var = (Var *) lfirst(l);
2125 : :
2126 : : /*
2127 : : * A non-Var in expandRTE's output means a dropped column;
2128 : : * must punt.
2129 : : */
2130 [ - + ]: 3353 : if (!IsA(var, Var))
2131 : : {
2132 : 0 : tlist = NIL;
2133 : 0 : break;
2134 : : }
2135 : :
2136 : 6706 : tlist = lappend(tlist,
2137 : 6706 : makeTargetEntry((Expr *) var,
2138 : 3353 : var->varattno,
2139 : : NULL,
2140 : : false));
2141 : 3353 : }
2142 : 1473 : break;
2143 : :
2144 : : default:
2145 : : /* caller error */
2146 [ # # # # ]: 0 : elog(ERROR, "unsupported RTE kind %d in build_physical_tlist",
2147 : : (int) rte->rtekind);
2148 : 0 : break;
2149 : : }
2150 : :
2151 : 34544 : return tlist;
2152 : 17272 : }
2153 : :
2154 : : /*
2155 : : * build_index_tlist
2156 : : *
2157 : : * Build a targetlist representing the columns of the specified index.
2158 : : * Each column is represented by a Var for the corresponding base-relation
2159 : : * column, or an expression in base-relation Vars, as appropriate.
2160 : : *
2161 : : * There are never any dropped columns in indexes, so unlike
2162 : : * build_physical_tlist, we need no failure case.
2163 : : */
2164 : : static List *
2165 : 72925 : build_index_tlist(PlannerInfo *root, IndexOptInfo *index,
2166 : : Relation heapRelation)
2167 : : {
2168 : 72925 : List *tlist = NIL;
2169 : 72925 : Index varno = index->rel->relid;
2170 : 72925 : ListCell *indexpr_item;
2171 : 72925 : int i;
2172 : :
2173 : 72925 : indexpr_item = list_head(index->indexprs);
2174 [ + + ]: 220972 : for (i = 0; i < index->ncolumns; i++)
2175 : : {
2176 : 148047 : int indexkey = index->indexkeys[i];
2177 : 148047 : Expr *indexvar;
2178 : :
2179 [ + + ]: 148047 : if (indexkey != 0)
2180 : : {
2181 : : /* simple column */
2182 : 147557 : const FormData_pg_attribute *att_tup;
2183 : :
2184 [ + - ]: 147557 : if (indexkey < 0)
2185 : 0 : att_tup = SystemAttributeDefinition(indexkey);
2186 : : else
2187 : 147557 : att_tup = TupleDescAttr(heapRelation->rd_att, indexkey - 1);
2188 : :
2189 : 295114 : indexvar = (Expr *) makeVar(varno,
2190 : 147557 : indexkey,
2191 : 147557 : att_tup->atttypid,
2192 : 147557 : att_tup->atttypmod,
2193 : 147557 : att_tup->attcollation,
2194 : : 0);
2195 : 147557 : }
2196 : : else
2197 : : {
2198 : : /* expression column */
2199 [ + - ]: 490 : if (indexpr_item == NULL)
2200 [ # # # # ]: 0 : elog(ERROR, "wrong number of index expressions");
2201 : 490 : indexvar = (Expr *) lfirst(indexpr_item);
2202 : 490 : indexpr_item = lnext(index->indexprs, indexpr_item);
2203 : : }
2204 : :
2205 : 296094 : tlist = lappend(tlist,
2206 : 296094 : makeTargetEntry(indexvar,
2207 : 148047 : i + 1,
2208 : : NULL,
2209 : : false));
2210 : 148047 : }
2211 [ + - ]: 72925 : if (indexpr_item != NULL)
2212 [ # # # # ]: 0 : elog(ERROR, "wrong number of index expressions");
2213 : :
2214 : 145850 : return tlist;
2215 : 72925 : }
2216 : :
2217 : : /*
2218 : : * restriction_selectivity
2219 : : *
2220 : : * Returns the selectivity of a specified restriction operator clause.
2221 : : * This code executes registered procedures stored in the
2222 : : * operator relation, by calling the function manager.
2223 : : *
2224 : : * See clause_selectivity() for the meaning of the additional parameters.
2225 : : */
2226 : : Selectivity
2227 : 68727 : restriction_selectivity(PlannerInfo *root,
2228 : : Oid operatorid,
2229 : : List *args,
2230 : : Oid inputcollid,
2231 : : int varRelid)
2232 : : {
2233 : 68727 : RegProcedure oprrest = get_oprrest(operatorid);
2234 : 68727 : float8 result;
2235 : :
2236 : : /*
2237 : : * if the oprrest procedure is missing for whatever reason, use a
2238 : : * selectivity of 0.5
2239 : : */
2240 [ + + ]: 68727 : if (!oprrest)
2241 : 8 : return (Selectivity) 0.5;
2242 : :
2243 : 137438 : result = DatumGetFloat8(OidFunctionCall4Coll(oprrest,
2244 : 68719 : inputcollid,
2245 : 68719 : PointerGetDatum(root),
2246 : 68719 : ObjectIdGetDatum(operatorid),
2247 : 68719 : PointerGetDatum(args),
2248 : 68719 : Int32GetDatum(varRelid)));
2249 : :
2250 [ + - ]: 68719 : if (result < 0.0 || result > 1.0)
2251 [ # # # # ]: 0 : elog(ERROR, "invalid restriction selectivity: %f", result);
2252 : :
2253 : 68719 : return (Selectivity) result;
2254 : 68727 : }
2255 : :
2256 : : /*
2257 : : * join_selectivity
2258 : : *
2259 : : * Returns the selectivity of a specified join operator clause.
2260 : : * This code executes registered procedures stored in the
2261 : : * operator relation, by calling the function manager.
2262 : : *
2263 : : * See clause_selectivity() for the meaning of the additional parameters.
2264 : : */
2265 : : Selectivity
2266 : 25352 : join_selectivity(PlannerInfo *root,
2267 : : Oid operatorid,
2268 : : List *args,
2269 : : Oid inputcollid,
2270 : : JoinType jointype,
2271 : : SpecialJoinInfo *sjinfo)
2272 : : {
2273 : 25352 : RegProcedure oprjoin = get_oprjoin(operatorid);
2274 : 25352 : float8 result;
2275 : :
2276 : : /*
2277 : : * if the oprjoin procedure is missing for whatever reason, use a
2278 : : * selectivity of 0.5
2279 : : */
2280 [ + + ]: 25352 : if (!oprjoin)
2281 : 23 : return (Selectivity) 0.5;
2282 : :
2283 : 50658 : result = DatumGetFloat8(OidFunctionCall5Coll(oprjoin,
2284 : 25329 : inputcollid,
2285 : 25329 : PointerGetDatum(root),
2286 : 25329 : ObjectIdGetDatum(operatorid),
2287 : 25329 : PointerGetDatum(args),
2288 : 25329 : Int16GetDatum(jointype),
2289 : 25329 : PointerGetDatum(sjinfo)));
2290 : :
2291 [ + - ]: 25329 : if (result < 0.0 || result > 1.0)
2292 [ # # # # ]: 0 : elog(ERROR, "invalid join selectivity: %f", result);
2293 : :
2294 : 25329 : return (Selectivity) result;
2295 : 25352 : }
2296 : :
2297 : : /*
2298 : : * function_selectivity
2299 : : *
2300 : : * Attempt to estimate the selectivity of a specified boolean function clause
2301 : : * by asking its support function. If the function lacks support, return -1.
2302 : : *
2303 : : * See clause_selectivity() for the meaning of the additional parameters.
2304 : : */
2305 : : Selectivity
2306 : 1853 : function_selectivity(PlannerInfo *root,
2307 : : Oid funcid,
2308 : : List *args,
2309 : : Oid inputcollid,
2310 : : bool is_join,
2311 : : int varRelid,
2312 : : JoinType jointype,
2313 : : SpecialJoinInfo *sjinfo)
2314 : : {
2315 : 1853 : RegProcedure prosupport = get_func_support(funcid);
2316 : 1853 : SupportRequestSelectivity req;
2317 : 1853 : SupportRequestSelectivity *sresult;
2318 : :
2319 [ + + ]: 1853 : if (!prosupport)
2320 : 1848 : return (Selectivity) -1; /* no support function */
2321 : :
2322 : 5 : req.type = T_SupportRequestSelectivity;
2323 : 5 : req.root = root;
2324 : 5 : req.funcid = funcid;
2325 : 5 : req.args = args;
2326 : 5 : req.inputcollid = inputcollid;
2327 : 5 : req.is_join = is_join;
2328 : 5 : req.varRelid = varRelid;
2329 : 5 : req.jointype = jointype;
2330 : 5 : req.sjinfo = sjinfo;
2331 : 5 : req.selectivity = -1; /* to catch failure to set the value */
2332 : :
2333 : 5 : sresult = (SupportRequestSelectivity *)
2334 : 5 : DatumGetPointer(OidFunctionCall1(prosupport,
2335 : : PointerGetDatum(&req)));
2336 : :
2337 [ - + ]: 5 : if (sresult != &req)
2338 : 0 : return (Selectivity) -1; /* function did not honor request */
2339 : :
2340 [ + - ]: 5 : if (req.selectivity < 0.0 || req.selectivity > 1.0)
2341 [ # # # # ]: 0 : elog(ERROR, "invalid function selectivity: %f", req.selectivity);
2342 : :
2343 : 5 : return (Selectivity) req.selectivity;
2344 : 1853 : }
2345 : :
2346 : : /*
2347 : : * add_function_cost
2348 : : *
2349 : : * Get an estimate of the execution cost of a function, and *add* it to
2350 : : * the contents of *cost. The estimate may include both one-time and
2351 : : * per-tuple components, since QualCost does.
2352 : : *
2353 : : * The funcid must always be supplied. If it is being called as the
2354 : : * implementation of a specific parsetree node (FuncExpr, OpExpr,
2355 : : * WindowFunc, etc), pass that as "node", else pass NULL.
2356 : : *
2357 : : * In some usages root might be NULL, too.
2358 : : */
2359 : : void
2360 : 123659 : add_function_cost(PlannerInfo *root, Oid funcid, Node *node,
2361 : : QualCost *cost)
2362 : : {
2363 : 123659 : HeapTuple proctup;
2364 : 123659 : Form_pg_proc procform;
2365 : :
2366 : 123659 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2367 [ + - ]: 123659 : if (!HeapTupleIsValid(proctup))
2368 [ # # # # ]: 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2369 : 123659 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2370 : :
2371 [ + + ]: 123659 : if (OidIsValid(procform->prosupport))
2372 : : {
2373 : 4206 : SupportRequestCost req;
2374 : 4206 : SupportRequestCost *sresult;
2375 : :
2376 : 4206 : req.type = T_SupportRequestCost;
2377 : 4206 : req.root = root;
2378 : 4206 : req.funcid = funcid;
2379 : 4206 : req.node = node;
2380 : :
2381 : : /* Initialize cost fields so that support function doesn't have to */
2382 : 4206 : req.startup = 0;
2383 : 4206 : req.per_tuple = 0;
2384 : :
2385 : 4206 : sresult = (SupportRequestCost *)
2386 : 4206 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2387 : : PointerGetDatum(&req)));
2388 : :
2389 [ + + ]: 4206 : if (sresult == &req)
2390 : : {
2391 : : /* Success, so accumulate support function's estimate into *cost */
2392 : 3 : cost->startup += req.startup;
2393 : 3 : cost->per_tuple += req.per_tuple;
2394 : 3 : ReleaseSysCache(proctup);
2395 : 3 : return;
2396 : : }
2397 [ + + ]: 4206 : }
2398 : :
2399 : : /* No support function, or it failed, so rely on procost */
2400 : 123656 : cost->per_tuple += procform->procost * cpu_operator_cost;
2401 : :
2402 : 123656 : ReleaseSysCache(proctup);
2403 [ - + ]: 123659 : }
2404 : :
2405 : : /*
2406 : : * get_function_rows
2407 : : *
2408 : : * Get an estimate of the number of rows returned by a set-returning function.
2409 : : *
2410 : : * The funcid must always be supplied. In current usage, the calling node
2411 : : * will always be supplied, and will be either a FuncExpr or OpExpr.
2412 : : * But it's a good idea to not fail if it's NULL.
2413 : : *
2414 : : * In some usages root might be NULL, too.
2415 : : *
2416 : : * Note: this returns the unfiltered result of the support function, if any.
2417 : : * It's usually a good idea to apply clamp_row_est() to the result, but we
2418 : : * leave it to the caller to do so.
2419 : : */
2420 : : double
2421 : 4833 : get_function_rows(PlannerInfo *root, Oid funcid, Node *node)
2422 : : {
2423 : 4833 : HeapTuple proctup;
2424 : 4833 : Form_pg_proc procform;
2425 : 4833 : double result;
2426 : :
2427 : 4833 : proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
2428 [ + - ]: 4833 : if (!HeapTupleIsValid(proctup))
2429 [ # # # # ]: 0 : elog(ERROR, "cache lookup failed for function %u", funcid);
2430 : 4833 : procform = (Form_pg_proc) GETSTRUCT(proctup);
2431 : :
2432 [ + - ]: 4833 : Assert(procform->proretset); /* else caller error */
2433 : :
2434 [ + + ]: 4833 : if (OidIsValid(procform->prosupport))
2435 : : {
2436 : 2072 : SupportRequestRows req;
2437 : 2072 : SupportRequestRows *sresult;
2438 : :
2439 : 2072 : req.type = T_SupportRequestRows;
2440 : 2072 : req.root = root;
2441 : 2072 : req.funcid = funcid;
2442 : 2072 : req.node = node;
2443 : :
2444 : 2072 : req.rows = 0; /* just for sanity */
2445 : :
2446 : 2072 : sresult = (SupportRequestRows *)
2447 : 2072 : DatumGetPointer(OidFunctionCall1(procform->prosupport,
2448 : : PointerGetDatum(&req)));
2449 : :
2450 [ + + ]: 2072 : if (sresult == &req)
2451 : : {
2452 : : /* Success */
2453 : 1450 : ReleaseSysCache(proctup);
2454 : 1450 : return req.rows;
2455 : : }
2456 [ + + ]: 2072 : }
2457 : :
2458 : : /* No support function, or it failed, so rely on prorows */
2459 : 3383 : result = procform->prorows;
2460 : :
2461 : 3383 : ReleaseSysCache(proctup);
2462 : :
2463 : 3383 : return result;
2464 : 4833 : }
2465 : :
2466 : : /*
2467 : : * has_unique_index
2468 : : *
2469 : : * Detect whether there is a unique index on the specified attribute
2470 : : * of the specified relation, thus allowing us to conclude that all
2471 : : * the (non-null) values of the attribute are distinct.
2472 : : *
2473 : : * This function does not check the index's indimmediate property, which
2474 : : * means that uniqueness may transiently fail to hold intra-transaction.
2475 : : * That's appropriate when we are making statistical estimates, but beware
2476 : : * of using this for any correctness proofs.
2477 : : */
2478 : : bool
2479 : 212579 : has_unique_index(RelOptInfo *rel, AttrNumber attno)
2480 : : {
2481 : 212579 : ListCell *ilist;
2482 : :
2483 [ + + + + : 579576 : foreach(ilist, rel->indexlist)
+ + + + ]
2484 : : {
2485 : 366997 : IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
2486 : :
2487 : : /*
2488 : : * Note: ignore partial indexes, since they don't allow us to conclude
2489 : : * that all attr values are distinct, *unless* they are marked predOK
2490 : : * which means we know the index's predicate is satisfied by the
2491 : : * query. We don't take any interest in expressional indexes either.
2492 : : * Also, a multicolumn unique index doesn't allow us to conclude that
2493 : : * just the specified attr is unique.
2494 : : */
2495 [ + + ]: 366997 : if (index->unique &&
2496 [ + + ]: 249302 : index->nkeycolumns == 1 &&
2497 [ + + - + ]: 130493 : index->indexkeys[0] == attno &&
2498 [ + + ]: 54291 : (index->indpred == NIL || index->predOK))
2499 : 54280 : return true;
2500 [ + + ]: 366997 : }
2501 : 158299 : return false;
2502 : 212579 : }
2503 : :
2504 : :
2505 : : /*
2506 : : * has_row_triggers
2507 : : *
2508 : : * Detect whether the specified relation has any row-level triggers for event.
2509 : : */
2510 : : bool
2511 : 0 : has_row_triggers(PlannerInfo *root, Index rti, CmdType event)
2512 : : {
2513 [ # # ]: 0 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2514 : 0 : Relation relation;
2515 : 0 : TriggerDesc *trigDesc;
2516 : 0 : bool result = false;
2517 : :
2518 : : /* Assume we already have adequate lock */
2519 : 0 : relation = table_open(rte->relid, NoLock);
2520 : :
2521 : 0 : trigDesc = relation->trigdesc;
2522 [ # # # # : 0 : switch (event)
# ]
2523 : : {
2524 : : case CMD_INSERT:
2525 [ # # # # ]: 0 : if (trigDesc &&
2526 [ # # ]: 0 : (trigDesc->trig_insert_after_row ||
2527 : 0 : trigDesc->trig_insert_before_row))
2528 : 0 : result = true;
2529 : 0 : break;
2530 : : case CMD_UPDATE:
2531 [ # # # # ]: 0 : if (trigDesc &&
2532 [ # # ]: 0 : (trigDesc->trig_update_after_row ||
2533 : 0 : trigDesc->trig_update_before_row))
2534 : 0 : result = true;
2535 : 0 : break;
2536 : : case CMD_DELETE:
2537 [ # # # # ]: 0 : if (trigDesc &&
2538 [ # # ]: 0 : (trigDesc->trig_delete_after_row ||
2539 : 0 : trigDesc->trig_delete_before_row))
2540 : 0 : result = true;
2541 : 0 : break;
2542 : : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2543 : : case CMD_MERGE:
2544 : 0 : result = false;
2545 : 0 : break;
2546 : : default:
2547 [ # # # # ]: 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2548 : 0 : break;
2549 : : }
2550 : :
2551 : 0 : table_close(relation, NoLock);
2552 : 0 : return result;
2553 : 0 : }
2554 : :
2555 : : /*
2556 : : * has_transition_tables
2557 : : *
2558 : : * Detect whether the specified relation has any transition tables for event.
2559 : : */
2560 : : bool
2561 : 0 : has_transition_tables(PlannerInfo *root, Index rti, CmdType event)
2562 : : {
2563 [ # # ]: 0 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2564 : 0 : Relation relation;
2565 : 0 : TriggerDesc *trigDesc;
2566 : 0 : bool result = false;
2567 : :
2568 [ # # ]: 0 : Assert(rte->rtekind == RTE_RELATION);
2569 : :
2570 : : /* Currently foreign tables cannot have transition tables */
2571 [ # # ]: 0 : if (rte->relkind == RELKIND_FOREIGN_TABLE)
2572 : 0 : return result;
2573 : :
2574 : : /* Assume we already have adequate lock */
2575 : 0 : relation = table_open(rte->relid, NoLock);
2576 : :
2577 : 0 : trigDesc = relation->trigdesc;
2578 [ # # # # : 0 : switch (event)
# ]
2579 : : {
2580 : : case CMD_INSERT:
2581 [ # # # # ]: 0 : if (trigDesc &&
2582 : 0 : trigDesc->trig_insert_new_table)
2583 : 0 : result = true;
2584 : 0 : break;
2585 : : case CMD_UPDATE:
2586 [ # # # # ]: 0 : if (trigDesc &&
2587 [ # # ]: 0 : (trigDesc->trig_update_old_table ||
2588 : 0 : trigDesc->trig_update_new_table))
2589 : 0 : result = true;
2590 : 0 : break;
2591 : : case CMD_DELETE:
2592 [ # # # # ]: 0 : if (trigDesc &&
2593 : 0 : trigDesc->trig_delete_old_table)
2594 : 0 : result = true;
2595 : 0 : break;
2596 : : /* There is no separate event for MERGE, only INSERT/UPDATE/DELETE */
2597 : : case CMD_MERGE:
2598 : 0 : result = false;
2599 : 0 : break;
2600 : : default:
2601 [ # # # # ]: 0 : elog(ERROR, "unrecognized CmdType: %d", (int) event);
2602 : 0 : break;
2603 : : }
2604 : :
2605 : 0 : table_close(relation, NoLock);
2606 : 0 : return result;
2607 : 0 : }
2608 : :
2609 : : /*
2610 : : * has_stored_generated_columns
2611 : : *
2612 : : * Does table identified by RTI have any STORED GENERATED columns?
2613 : : */
2614 : : bool
2615 : 0 : has_stored_generated_columns(PlannerInfo *root, Index rti)
2616 : : {
2617 [ # # ]: 0 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2618 : 0 : Relation relation;
2619 : 0 : TupleDesc tupdesc;
2620 : 0 : bool result = false;
2621 : :
2622 : : /* Assume we already have adequate lock */
2623 : 0 : relation = table_open(rte->relid, NoLock);
2624 : :
2625 : 0 : tupdesc = RelationGetDescr(relation);
2626 [ # # ]: 0 : result = tupdesc->constr && tupdesc->constr->has_generated_stored;
2627 : :
2628 : 0 : table_close(relation, NoLock);
2629 : :
2630 : 0 : return result;
2631 : 0 : }
2632 : :
2633 : : /*
2634 : : * get_dependent_generated_columns
2635 : : *
2636 : : * Get the column numbers of any STORED GENERATED columns of the relation
2637 : : * that depend on any column listed in target_cols. Both the input and
2638 : : * result bitmapsets contain column numbers offset by
2639 : : * FirstLowInvalidHeapAttributeNumber.
2640 : : */
2641 : : Bitmapset *
2642 : 0 : get_dependent_generated_columns(PlannerInfo *root, Index rti,
2643 : : Bitmapset *target_cols)
2644 : : {
2645 : 0 : Bitmapset *dependentCols = NULL;
2646 [ # # ]: 0 : RangeTblEntry *rte = planner_rt_fetch(rti, root);
2647 : 0 : Relation relation;
2648 : 0 : TupleDesc tupdesc;
2649 : 0 : TupleConstr *constr;
2650 : :
2651 : : /* Assume we already have adequate lock */
2652 : 0 : relation = table_open(rte->relid, NoLock);
2653 : :
2654 : 0 : tupdesc = RelationGetDescr(relation);
2655 : 0 : constr = tupdesc->constr;
2656 : :
2657 [ # # # # ]: 0 : if (constr && constr->has_generated_stored)
2658 : : {
2659 [ # # ]: 0 : for (int i = 0; i < constr->num_defval; i++)
2660 : : {
2661 : 0 : AttrDefault *defval = &constr->defval[i];
2662 : 0 : Node *expr;
2663 : 0 : Bitmapset *attrs_used = NULL;
2664 : :
2665 : : /* skip if not generated column */
2666 [ # # ]: 0 : if (!TupleDescCompactAttr(tupdesc, defval->adnum - 1)->attgenerated)
2667 : 0 : continue;
2668 : :
2669 : : /* identify columns this generated column depends on */
2670 : 0 : expr = stringToNode(defval->adbin);
2671 : 0 : pull_varattnos(expr, 1, &attrs_used);
2672 : :
2673 [ # # ]: 0 : if (bms_overlap(target_cols, attrs_used))
2674 : 0 : dependentCols = bms_add_member(dependentCols,
2675 : 0 : defval->adnum - FirstLowInvalidHeapAttributeNumber);
2676 [ # # # ]: 0 : }
2677 : 0 : }
2678 : :
2679 : 0 : table_close(relation, NoLock);
2680 : :
2681 : 0 : return dependentCols;
2682 : 0 : }
2683 : :
2684 : : /*
2685 : : * set_relation_partition_info
2686 : : *
2687 : : * Set partitioning scheme and related information for a partitioned table.
2688 : : */
2689 : : static void
2690 : 2356 : set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
2691 : : Relation relation)
2692 : : {
2693 : 2356 : PartitionDesc partdesc;
2694 : :
2695 : : /*
2696 : : * Create the PartitionDirectory infrastructure if we didn't already.
2697 : : */
2698 [ + + ]: 2356 : if (root->glob->partition_directory == NULL)
2699 : : {
2700 : 1376 : root->glob->partition_directory =
2701 : 1376 : CreatePartitionDirectory(CurrentMemoryContext, true);
2702 : 1376 : }
2703 : :
2704 : 4712 : partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
2705 : 2356 : relation);
2706 : 2356 : rel->part_scheme = find_partition_scheme(root, relation);
2707 [ + - ]: 2356 : Assert(partdesc != NULL && rel->part_scheme != NULL);
2708 : 2356 : rel->boundinfo = partdesc->boundinfo;
2709 : 2356 : rel->nparts = partdesc->nparts;
2710 : 2356 : set_baserel_partition_key_exprs(relation, rel);
2711 : 2356 : set_baserel_partition_constraint(relation, rel);
2712 : 2356 : }
2713 : :
2714 : : /*
2715 : : * find_partition_scheme
2716 : : *
2717 : : * Find or create a PartitionScheme for this Relation.
2718 : : */
2719 : : static PartitionScheme
2720 : 2356 : find_partition_scheme(PlannerInfo *root, Relation relation)
2721 : : {
2722 : 2356 : PartitionKey partkey = RelationGetPartitionKey(relation);
2723 : 2356 : ListCell *lc;
2724 : 2356 : int partnatts,
2725 : : i;
2726 : 2356 : PartitionScheme part_scheme;
2727 : :
2728 : : /* A partitioned table should have a partition key. */
2729 [ + - ]: 2356 : Assert(partkey != NULL);
2730 : :
2731 : 2356 : partnatts = partkey->partnatts;
2732 : :
2733 : : /* Search for a matching partition scheme and return if found one. */
2734 [ + + + + : 3437 : foreach(lc, root->part_schemes)
+ + + + ]
2735 : : {
2736 : 1081 : part_scheme = lfirst(lc);
2737 : :
2738 : : /* Match partitioning strategy and number of keys. */
2739 [ + + + + ]: 1081 : if (partkey->strategy != part_scheme->strategy ||
2740 : 917 : partnatts != part_scheme->partnatts)
2741 : 239 : continue;
2742 : :
2743 : : /* Match partition key type properties. */
2744 : 1684 : if (memcmp(partkey->partopfamily, part_scheme->partopfamily,
2745 [ + + + + ]: 1684 : sizeof(Oid) * partnatts) != 0 ||
2746 : 1534 : memcmp(partkey->partopcintype, part_scheme->partopcintype,
2747 [ + - + - : 1534 : sizeof(Oid) * partnatts) != 0 ||
- + ]
2748 : 1534 : memcmp(partkey->partcollation, part_scheme->partcollation,
2749 : 1534 : sizeof(Oid) * partnatts) != 0)
2750 : 75 : continue;
2751 : :
2752 : : /*
2753 : : * Length and byval information should match when partopcintype
2754 : : * matches.
2755 : : */
2756 [ + - ]: 767 : Assert(memcmp(partkey->parttyplen, part_scheme->parttyplen,
2757 : : sizeof(int16) * partnatts) == 0);
2758 [ + - ]: 767 : Assert(memcmp(partkey->parttypbyval, part_scheme->parttypbyval,
2759 : : sizeof(bool) * partnatts) == 0);
2760 : :
2761 : : /*
2762 : : * If partopfamily and partopcintype matched, must have the same
2763 : : * partition comparison functions. Note that we cannot reliably
2764 : : * Assert the equality of function structs themselves for they might
2765 : : * be different across PartitionKey's, so just Assert for the function
2766 : : * OIDs.
2767 : : */
2768 : : #ifdef USE_ASSERT_CHECKING
2769 [ + + ]: 1539 : for (i = 0; i < partkey->partnatts; i++)
2770 [ + - ]: 772 : Assert(partkey->partsupfunc[i].fn_oid ==
2771 : : part_scheme->partsupfunc[i].fn_oid);
2772 : : #endif
2773 : :
2774 : : /* Found matching partition scheme. */
2775 : 767 : return part_scheme;
2776 : : }
2777 : :
2778 : : /*
2779 : : * Did not find matching partition scheme. Create one copying relevant
2780 : : * information from the relcache. We need to copy the contents of the
2781 : : * array since the relcache entry may not survive after we have closed the
2782 : : * relation.
2783 : : */
2784 : 1589 : part_scheme = palloc0_object(PartitionSchemeData);
2785 : 1589 : part_scheme->strategy = partkey->strategy;
2786 : 1589 : part_scheme->partnatts = partkey->partnatts;
2787 : :
2788 : 1589 : part_scheme->partopfamily = palloc_array(Oid, partnatts);
2789 : 1589 : memcpy(part_scheme->partopfamily, partkey->partopfamily,
2790 : : sizeof(Oid) * partnatts);
2791 : :
2792 : 1589 : part_scheme->partopcintype = palloc_array(Oid, partnatts);
2793 : 1589 : memcpy(part_scheme->partopcintype, partkey->partopcintype,
2794 : : sizeof(Oid) * partnatts);
2795 : :
2796 : 1589 : part_scheme->partcollation = palloc_array(Oid, partnatts);
2797 : 1589 : memcpy(part_scheme->partcollation, partkey->partcollation,
2798 : : sizeof(Oid) * partnatts);
2799 : :
2800 : 1589 : part_scheme->parttyplen = palloc_array(int16, partnatts);
2801 : 1589 : memcpy(part_scheme->parttyplen, partkey->parttyplen,
2802 : : sizeof(int16) * partnatts);
2803 : :
2804 : 1589 : part_scheme->parttypbyval = palloc_array(bool, partnatts);
2805 : 1589 : memcpy(part_scheme->parttypbyval, partkey->parttypbyval,
2806 : : sizeof(bool) * partnatts);
2807 : :
2808 : 1589 : part_scheme->partsupfunc = palloc_array(FmgrInfo, partnatts);
2809 [ + + ]: 3494 : for (i = 0; i < partnatts; i++)
2810 : 3810 : fmgr_info_copy(&part_scheme->partsupfunc[i], &partkey->partsupfunc[i],
2811 : 1905 : CurrentMemoryContext);
2812 : :
2813 : : /* Add the partitioning scheme to PlannerInfo. */
2814 : 1589 : root->part_schemes = lappend(root->part_schemes, part_scheme);
2815 : :
2816 : 1589 : return part_scheme;
2817 : 2356 : }
2818 : :
2819 : : /*
2820 : : * set_baserel_partition_key_exprs
2821 : : *
2822 : : * Builds partition key expressions for the given base relation and fills
2823 : : * rel->partexprs.
2824 : : */
2825 : : static void
2826 : 2356 : set_baserel_partition_key_exprs(Relation relation,
2827 : : RelOptInfo *rel)
2828 : : {
2829 : 2356 : PartitionKey partkey = RelationGetPartitionKey(relation);
2830 : 2356 : int partnatts;
2831 : 2356 : int cnt;
2832 : 2356 : List **partexprs;
2833 : 2356 : ListCell *lc;
2834 : 2356 : Index varno = rel->relid;
2835 : :
2836 [ + + + - ]: 2356 : Assert(IS_SIMPLE_REL(rel) && rel->relid > 0);
2837 : :
2838 : : /* A partitioned table should have a partition key. */
2839 [ + - ]: 2356 : Assert(partkey != NULL);
2840 : :
2841 : 2356 : partnatts = partkey->partnatts;
2842 : 2356 : partexprs = palloc_array(List *, partnatts);
2843 : 2356 : lc = list_head(partkey->partexprs);
2844 : :
2845 [ + + ]: 5033 : for (cnt = 0; cnt < partnatts; cnt++)
2846 : : {
2847 : 2677 : Expr *partexpr;
2848 : 2677 : AttrNumber attno = partkey->partattrs[cnt];
2849 : :
2850 [ + + ]: 2677 : if (attno != InvalidAttrNumber)
2851 : : {
2852 : : /* Single column partition key is stored as a Var node. */
2853 [ + - ]: 2520 : Assert(attno > 0);
2854 : :
2855 : 5040 : partexpr = (Expr *) makeVar(varno, attno,
2856 : 2520 : partkey->parttypid[cnt],
2857 : 2520 : partkey->parttypmod[cnt],
2858 : 2520 : partkey->parttypcoll[cnt], 0);
2859 : 2520 : }
2860 : : else
2861 : : {
2862 [ + - ]: 157 : if (lc == NULL)
2863 [ # # # # ]: 0 : elog(ERROR, "wrong number of partition key expressions");
2864 : :
2865 : : /* Re-stamp the expression with given varno. */
2866 : 157 : partexpr = (Expr *) copyObject(lfirst(lc));
2867 : 157 : ChangeVarNodes((Node *) partexpr, 1, varno, 0);
2868 : 157 : lc = lnext(partkey->partexprs, lc);
2869 : : }
2870 : :
2871 : : /* Base relations have a single expression per key. */
2872 : 2677 : partexprs[cnt] = list_make1(partexpr);
2873 : 2677 : }
2874 : :
2875 : 2356 : rel->partexprs = partexprs;
2876 : :
2877 : : /*
2878 : : * A base relation does not have nullable partition key expressions, since
2879 : : * no outer join is involved. We still allocate an array of empty
2880 : : * expression lists to keep partition key expression handling code simple.
2881 : : * See build_joinrel_partition_info() and match_expr_to_partition_keys().
2882 : : */
2883 : 2356 : rel->nullable_partexprs = palloc0_array(List *, partnatts);
2884 : 2356 : }
2885 : :
2886 : : /*
2887 : : * set_baserel_partition_constraint
2888 : : *
2889 : : * Builds the partition constraint for the given base relation and sets it
2890 : : * in the given RelOptInfo. All Var nodes are restamped with the relid of the
2891 : : * given relation.
2892 : : */
2893 : : static void
2894 : 2358 : set_baserel_partition_constraint(Relation relation, RelOptInfo *rel)
2895 : : {
2896 : 2358 : List *partconstr;
2897 : :
2898 [ - + ]: 2358 : if (rel->partition_qual) /* already done */
2899 : 0 : return;
2900 : :
2901 : : /*
2902 : : * Run the partition quals through const-simplification similar to check
2903 : : * constraints. We skip canonicalize_qual, though, because partition
2904 : : * quals should be in canonical form already; also, since the qual is in
2905 : : * implicit-AND format, we'd have to explicitly convert it to explicit-AND
2906 : : * format and back again.
2907 : : */
2908 : 2358 : partconstr = RelationGetPartitionQual(relation);
2909 [ + + ]: 2358 : if (partconstr)
2910 : : {
2911 : 616 : partconstr = (List *) expression_planner((Expr *) partconstr);
2912 [ + + ]: 616 : if (rel->relid != 1)
2913 : 601 : ChangeVarNodes((Node *) partconstr, 1, rel->relid, 0);
2914 : 616 : rel->partition_qual = partconstr;
2915 : 616 : }
2916 [ - + ]: 2358 : }
|